static void evergreen_set_global_binding(struct pipe_context *ctx, unsigned first, unsigned n, struct pipe_resource **resources, uint32_t **handles) { struct r600_context *rctx = (struct r600_context *)ctx; struct compute_memory_pool *pool = rctx->screen->global_pool; struct r600_resource_global **buffers = (struct r600_resource_global **)resources; unsigned i; COMPUTE_DBG(rctx->screen, "*** evergreen_set_global_binding first = %u n = %u\n", first, n); if (!resources) { /* XXX: Unset */ return; } /* We mark these items for promotion to the pool if they * aren't already there */ for (i = first; i < first + n; i++) { struct compute_memory_item *item = buffers[i]->chunk; if (!is_item_in_pool(item)) buffers[i]->chunk->status |= ITEM_FOR_PROMOTING; } if (compute_memory_finalize_pending(pool, ctx) == -1) { /* XXX: Unset */ return; } for (i = first; i < first + n; i++) { uint32_t buffer_offset; uint32_t handle; assert(resources[i]->target == PIPE_BUFFER); assert(resources[i]->bind & PIPE_BIND_GLOBAL); buffer_offset = util_le32_to_cpu(*(handles[i])); handle = buffer_offset + buffers[i]->chunk->start_in_dw * 4; *(handles[i]) = util_cpu_to_le32(handle); } /* globals for writing */ evergreen_set_rat(rctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4); /* globals for reading */ evergreen_cs_set_vertex_buffer(rctx, 1, 0, (struct pipe_resource*)pool->bo); /* constants for reading, LLVM puts them in text segment */ evergreen_cs_set_vertex_buffer(rctx, 2, 0, (struct pipe_resource*)rctx->cs_shader_state.shader->code_bo); }
static void evergreen_set_global_binding( struct pipe_context *ctx_, unsigned first, unsigned n, struct pipe_resource **resources, uint32_t **handles) { struct r600_context *ctx = (struct r600_context *)ctx_; struct compute_memory_pool *pool = ctx->screen->global_pool; struct r600_resource_global **buffers = (struct r600_resource_global **)resources; COMPUTE_DBG("*** evergreen_set_global_binding first = %u n = %u\n", first, n); if (!resources) { /* XXX: Unset */ return; } compute_memory_finalize_pending(pool, ctx_); for (int i = 0; i < n; i++) { assert(resources[i]->target == PIPE_BUFFER); assert(resources[i]->bind & PIPE_BIND_GLOBAL); *(handles[i]) = buffers[i]->chunk->start_in_dw * 4; } evergreen_set_rat(ctx->cs_shader_state.shader, 0, pool->bo, 0, pool->size_in_dw * 4); evergreen_cs_set_vertex_buffer(ctx, 1, 0, (struct pipe_resource*)pool->bo); }
static void evergreen_set_compute_resources(struct pipe_context * ctx_, unsigned start, unsigned count, struct pipe_surface ** surfaces) { struct r600_context *ctx = (struct r600_context *)ctx_; struct r600_surface **resources = (struct r600_surface **)surfaces; COMPUTE_DBG("*** evergreen_set_compute_resources: start = %u count = %u\n", start, count); for (int i = 0; i < count; i++) { /* The First two vertex buffers are reserved for parameters and * global buffers. */ unsigned vtx_id = 2 + i; if (resources[i]) { struct r600_resource_global *buffer = (struct r600_resource_global*) resources[i]->base.texture; if (resources[i]->base.writable) { assert(i+1 < 12); evergreen_set_rat(ctx->cs_shader_state.shader, i+1, (struct r600_resource *)resources[i]->base.texture, buffer->chunk->start_in_dw*4, resources[i]->base.texture->width0); } evergreen_cs_set_vertex_buffer(ctx, vtx_id, buffer->chunk->start_in_dw * 4, resources[i]->base.texture); } } }
/* The kernel parameters are stored a vtx buffer (ID=0), besides the explicit * kernel parameters there are inplicit parameters that need to be stored * in the vertex buffer as well. Here is how these parameters are organized in * the buffer: * * DWORDS 0-2: Number of work groups in each dimension (x,y,z) * DWORDS 3-5: Number of global work items in each dimension (x,y,z) * DWORDS 6-8: Number of work items within each work group in each dimension * (x,y,z) * DWORDS 9+ : Kernel parameters */ void evergreen_compute_upload_input( struct pipe_context *ctx_, const uint *block_layout, const uint *grid_layout, const void *input) { struct r600_context *ctx = (struct r600_context *)ctx_; struct r600_pipe_compute *shader = ctx->cs_shader_state.shader; int i; unsigned kernel_parameters_offset_bytes = 36; uint32_t * num_work_groups_start; uint32_t * global_size_start; uint32_t * local_size_start; uint32_t * kernel_parameters_start; if (shader->input_size == 0) { return; } if (!shader->kernel_param) { unsigned buffer_size = shader->input_size; /* Add space for the grid dimensions */ buffer_size += kernel_parameters_offset_bytes * sizeof(uint); shader->kernel_param = r600_compute_buffer_alloc_vram( ctx->screen, buffer_size); } num_work_groups_start = ctx->ws->buffer_map( shader->kernel_param->cs_buf, ctx->cs, PIPE_TRANSFER_WRITE); global_size_start = num_work_groups_start + (3 * (sizeof(uint) /4)); local_size_start = global_size_start + (3 * (sizeof(uint)) / 4); kernel_parameters_start = local_size_start + (3 * (sizeof(uint)) / 4); /* Copy the work group size */ memcpy(num_work_groups_start, grid_layout, 3 * sizeof(uint)); /* Copy the global size */ for (i = 0; i < 3; i++) { global_size_start[i] = grid_layout[i] * block_layout[i]; } /* Copy the local dimensions */ memcpy(local_size_start, block_layout, 3 * sizeof(uint)); /* Copy the kernel inputs */ memcpy(kernel_parameters_start, input, shader->input_size); for (i = 0; i < (kernel_parameters_offset_bytes / 4) + (shader->input_size / 4); i++) { COMPUTE_DBG("input %i : %i\n", i, ((unsigned*)num_work_groups_start)[i]); } ctx->ws->buffer_unmap(shader->kernel_param->cs_buf); ///ID=0 is reserved for the parameters evergreen_cs_set_vertex_buffer(ctx, 0, 0, (struct pipe_resource*)shader->kernel_param); ///ID=0 is reserved for parameters evergreen_set_const_cache(shader, 0, shader->kernel_param, shader->input_size, 0); }