Exemple #1
0
void test_mm(Mesh *mesh)
{
	_F_
	// testing a visualization of a vector-valued solution, where each component is on
	// a different mesh
	Mesh mesh0, mesh1, mesh2;
	mesh0.copy(*mesh);
	mesh1.copy(*mesh);
	mesh2.copy(*mesh);

	mesh0.refine_element(1, H3D_REFT_HEX_X);
	mesh1.refine_element(1, H3D_REFT_HEX_Y);
	mesh2.refine_element(1, H3D_REFT_HEX_Z);

	ExactSolution ex_sln0(&mesh0, exact_solution0);
	ExactSolution ex_sln1(&mesh1, exact_solution1);
	ExactSolution ex_sln2(&mesh2, exact_solution2);
	output.out(&ex_sln0, &ex_sln1, &ex_sln2, "U");
}
Exemple #2
0
int main(int argc, char **args) 
{
  // Test variable.
  int success_test = 1;

	if (argc < 2) error("Not enough parameters.");

  // Load the mesh.
	Mesh mesh;
  H3DReader mloader;
  if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]);

  // Initialize the space 1.
	Ord3 o1(2, 2, 2);
	H1Space space1(&mesh, bc_types, NULL, o1);

	// Initialize the space 2.
	Ord3 o2(4, 4, 4);
	H1Space space2(&mesh, bc_types, NULL, o2);

	WeakForm wf(2);
	wf.add_matrix_form(0, 0, bilinear_form_1_1<double, scalar>, bilinear_form_1_1<Ord, Ord>, HERMES_SYM);
	wf.add_matrix_form(0, 1, bilinear_form_1_2<double, scalar>, bilinear_form_1_2<Ord, Ord>, HERMES_SYM);
	wf.add_vector_form(0, linear_form_1<double, scalar>, linear_form_1<Ord, Ord>);
	wf.add_matrix_form(1, 1, bilinear_form_2_2<double, scalar>, bilinear_form_2_2<Ord, Ord>, HERMES_SYM);
	wf.add_vector_form(1, linear_form_2<double, scalar>, linear_form_2<Ord, Ord>);

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, Tuple<Space *>(&space1, &space2), is_linear);

  // Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS.
  initialize_solution_environment(matrix_solver, argc, args);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initialize the preconditioner in the case of SOLVER_AZTECOO.
  if (matrix_solver == SOLVER_AZTECOO) 
  {
    ((AztecOOSolver*) solver)->set_solver(iterative_method);
    ((AztecOOSolver*) solver)->set_precond(preconditioner);
    // Using default iteration parameters (see solver/aztecoo.h).
  }

  // Assemble the linear problem.
  info("Assembling (ndof: %d).", Space::get_num_dofs(Tuple<Space *>(&space1, &space2)));
  dp.assemble(matrix, rhs);

  // Solve the linear system. If successful, obtain the solution.
  info("Solving.");
	Solution sln1(&mesh);
	Solution sln2(&mesh);
  if(solver->solve()) Solution::vector_to_solutions(solver->get_solution(), Tuple<Space *>(&space1, &space2), Tuple<Solution *>(&sln1, &sln2));
  else error ("Matrix solver failed.\n");

  ExactSolution ex_sln1(&mesh, exact_sln_fn_1);
  ExactSolution ex_sln2(&mesh, exact_sln_fn_2);

  // Calculate exact error.
  info("Calculating exact error.");
  Adapt *adaptivity = new Adapt(Tuple<Space *>(&space1, &space2), Tuple<ProjNormType>(HERMES_H1_NORM, HERMES_H1_NORM));
  bool solutions_for_adapt = false;
  double err_exact = adaptivity->calc_err_exact(Tuple<Solution *>(&sln1, &sln2), Tuple<Solution *>(&ex_sln1, &ex_sln2), solutions_for_adapt, HERMES_TOTAL_ERROR_ABS);

  if (err_exact > EPS)
		// Calculated solution is not precise enough.
		success_test = 0;

  // Clean up.
  delete matrix;
  delete rhs;
  delete solver;
  delete adaptivity;

  // Properly terminate the solver in the case of SOLVER_PETSC or SOLVER_MUMPS.
  finalize_solution_environment(matrix_solver);
  
  if (success_test) {
    info("Success!");
    return ERR_SUCCESS;
	}
	else {
    info("Failure!");
    return ERR_FAILURE;
	}
}
Exemple #3
0
int main(int argc, char **args)
{
	if (argc < 3) error("Not enough parameters.");

	char *type = args[1];

	Mesh mesh;
	H3DReader mesh_loader;
	if (!mesh_loader.load(args[2], &mesh)) error("Loading mesh file '%s'\n", args[2]);

	if (strcmp(type, "sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln(&mesh, exact_solution);
		output.out(&ex_sln, "U");
	}
	else if (strcmp(type, "vec-sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln(&mesh, exact_vec_solution);
		output.out(&ex_sln, "U");
	}
	else if (strcmp(type, "3sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln0(&mesh, exact_solution0);
		ExactSolution ex_sln1(&mesh, exact_solution1);
		ExactSolution ex_sln2(&mesh, exact_solution2);
		output.out(&ex_sln0, &ex_sln1, &ex_sln2, "U");
	}
	else if (strcmp(type, "ord") == 0) {

		Ord3 order;
		if (mesh.elements[1]->get_mode() == HERMES_MODE_HEX)
			order = Ord3(2, 3, 4);
		else if (mesh.elements[1]->get_mode() == HERMES_MODE_TET)
			order = Ord3(3);
		else
			error(HERMES_ERR_NOT_IMPLEMENTED);

		H1Space space(&mesh, bc_types, essential_bc_values, order);

#if defined GMSH
		output.out_orders_gmsh(&space, "orders_gmsh");
#elif defined VTK
		output.out_orders_vtk(&space, "orders_vtk");
#endif
	}
	else if (strcmp(type, "bc") == 0) {

#if defined GMSH
		output.out_bc_gmsh(&mesh);
#elif defined VTK
		output.out_bc_vtk(&mesh);
#endif
	}
	else if (strcmp(type, "mat") == 0) {
		StiffMatrix mat;
		test_mat(&mesh, mat);
		output.out(&mat);
	}
	else if (strcmp(type, "mm") == 0) {
		test_mm(&mesh);
	}

	return 0;
}
Exemple #4
0
int main(int argc, char **args)
{
	set_verbose(false);

	if (argc < 3) error("Not enough parameters");

	char *type = args[1];

	Mesh mesh;
	Mesh3DReader mesh_loader;
	if (!mesh_loader.load(args[2], &mesh)) error("Loading mesh file '%s'\n", args[2]);

	if (strcmp(type, "sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln(&mesh, exact_solution);
		output.out(&ex_sln, "U");
	}
	else if (strcmp(type, "vec-sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln(&mesh, exact_vec_solution);
		output.out(&ex_sln, "U");
	}
	else if (strcmp(type, "3sln") == 0) {
		// Testing on Exact solution which always gives the same value (values from Solution may differ by epsilon)
		ExactSolution ex_sln0(&mesh, exact_solution0);
		ExactSolution ex_sln1(&mesh, exact_solution1);
		ExactSolution ex_sln2(&mesh, exact_solution2);
		output.out(&ex_sln0, &ex_sln1, &ex_sln2, "U");
	}
	else if (strcmp(type, "ord") == 0) {
		H1ShapesetLobattoHex shapeset;

		H1Space space(&mesh, &shapeset);
		space.set_bc_types(bc_types);
		space.set_essential_bc_values(essential_bc_values);

		order3_t order;
		if (mesh.elements[1]->get_mode() == MODE_HEXAHEDRON)
			order = order3_t(2, 3, 4);
		else if (mesh.elements[1]->get_mode() == MODE_TETRAHEDRON)
			order = order3_t(3);
		else
			error(H3D_ERR_NOT_IMPLEMENTED);
		space.set_uniform_order(order);

		output.out_orders(&space, "orders");
	}
	else if (strcmp(type, "bc") == 0) {
		output.out_bc(&mesh);
	}
	else if (strcmp(type, "mat") == 0) {
		StiffMatrix mat;
		test_mat(&mesh, mat);
		output.out(&mat);
	}
	else if (strcmp(type, "mm") == 0) {
		test_mm(&mesh);
	}

	return 0;
}