Exemple #1
0
static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
	struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
	struct inode *inode;
	int err;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFDIR | mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &f2fs_dir_inode_operations;
	inode->i_fop = &f2fs_dir_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;
	mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);

	set_inode_flag(F2FS_I(inode), FI_INC_LINK);
	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	f2fs_unlock_op(sbi);
	if (err)
		goto out_fail;

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	return 0;

out_fail:
	clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
	clear_nlink(inode);
	unlock_new_inode(inode);
	make_bad_inode(inode);
	iput(inode);
	alloc_nid_failed(sbi, inode->i_ino);
	return err;
}
Exemple #2
0
static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode = d_inode(dentry);
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = -ENOENT;

	trace_f2fs_unlink_enter(dir, dentry);

	err = dquot_initialize(dir);
	if (err)
		return err;

	de = f2fs_find_entry(dir, &dentry->d_name, &page);
	if (!de) {
		if (IS_ERR(page))
			err = PTR_ERR(page);
		goto fail;
	}

	f2fs_balance_fs(sbi, true);

	f2fs_lock_op(sbi);
	err = acquire_orphan_inode(sbi);
	if (err) {
		f2fs_unlock_op(sbi);
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
		goto fail;
	}
	f2fs_delete_entry(de, page, dir, inode);
	f2fs_unlock_op(sbi);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
fail:
	trace_f2fs_unlink_exit(inode, err);
	return err;
}
static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
                       struct nameidata *nd)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    nid_t ino = 0;
    int err;

    inode = f2fs_new_inode(dir, mode);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
        set_cold_files(sbi, inode, dentry->d_name.name);

    inode->i_op = &f2fs_file_inode_operations;
    inode->i_fop = &f2fs_file_operations;
    inode->i_mapping->a_ops = &f2fs_dblock_aops;
    ino = inode->i_ino;

    f2fs_balance_fs(sbi, true);

    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    if (err)
        goto out;
    f2fs_unlock_op(sbi);

    alloc_nid_done(sbi, ino);

    d_instantiate(dentry, inode);
    unlock_new_inode(inode);

    if (IS_DIRSYNC(dir))
        f2fs_sync_fs(sbi->sb, 1);
    return 0;
out:
    handle_failed_inode(inode);
    return err;
}
Exemple #4
0
static void fill_zero(struct inode *inode, pgoff_t index,
					loff_t start, loff_t len)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct page *page;

	if (!len)
		return;

	f2fs_balance_fs(sbi);

	f2fs_lock_op(sbi);
	page = get_new_data_page(inode, NULL, index, false);
	f2fs_unlock_op(sbi);

	if (!IS_ERR(page)) {
		f2fs_wait_on_page_writeback(page, DATA);
		zero_user(page, start, len);
		set_page_dirty(page);
		f2fs_put_page(page, 1);
	}
}
Exemple #5
0
int f2fs_setxattr(struct inode *inode, int index, const char *name,
				const void *value, size_t size,
				struct page *ipage, int flags)
{
	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
	int err;

	/* this case is only from init_inode_metadata */
	if (ipage)
		return __f2fs_setxattr(inode, index, name, value,
						size, ipage, flags);
	f2fs_balance_fs(sbi);

	f2fs_lock_op(sbi);
	/* protect xattr_ver */
	down_write(&F2FS_I(inode)->i_sem);
	err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags);
	up_write(&F2FS_I(inode)->i_sem);
	f2fs_unlock_op(sbi);

	return err;
}
Exemple #6
0
static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
				umode_t mode, dev_t rdev)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err = 0;

	err = dquot_initialize(dir);
	if (err)
		return err;

	inode = f2fs_new_inode(dir, mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	init_special_inode(inode, inode->i_mode, rdev);
	inode->i_op = &f2fs_special_inode_operations;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);

	f2fs_balance_fs(sbi, true);
	return 0;
out:
	handle_failed_inode(inode);
	return err;
}
Exemple #7
0
static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
		struct dentry *dentry)
{
	struct inode *inode = d_inode(old_dentry);
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	int err;

	if (f2fs_encrypted_inode(dir) &&
			!fscrypt_has_permitted_context(dir, inode))
		return -EPERM;

	err = dquot_initialize(dir);
	if (err)
		return err;

	f2fs_balance_fs(sbi, true);

	inode->i_ctime = current_time(inode);
	ihold(inode);

	set_inode_flag(inode, FI_INC_LINK);
	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);

	d_instantiate(dentry, inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;
out:
	clear_inode_flag(inode, FI_INC_LINK);
	iput(inode);
	f2fs_unlock_op(sbi);
	return err;
}
Exemple #8
0
static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
				umode_t mode, dev_t rdev)
{
	struct super_block *sb = dir->i_sb;
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
	struct inode *inode;
	int err = 0;

	if (!new_valid_dev(rdev))
		return -EINVAL;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	init_special_inode(inode, inode->i_mode, rdev);
	inode->i_op = &f2fs_special_inode_operations;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	f2fs_unlock_op(sbi);
	if (err)
		goto out;

	alloc_nid_done(sbi, inode->i_ino);
	d_instantiate(dentry, inode);
	unlock_new_inode(inode);
	return 0;
out:
	clear_nlink(inode);
	unlock_new_inode(inode);
	make_bad_inode(inode);
	iput(inode);
	alloc_nid_failed(sbi, inode->i_ino);
	return err;
}
Exemple #9
0
static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
					const char *symname)
{
	struct super_block *sb = dir->i_sb;
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
	struct inode *inode;
	size_t symlen = strlen(symname) + 1;
	int err;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &f2fs_symlink_inode_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	f2fs_unlock_op(sbi);
	if (err)
		goto out;

	err = page_symlink(inode, symname, symlen);
	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);
	return err;
out:
	clear_nlink(inode);
	unlock_new_inode(inode);
	make_bad_inode(inode);
	iput(inode);
	alloc_nid_failed(sbi, inode->i_ino);
	return err;
}
Exemple #10
0
static int __recover_dot_dentries(struct inode *dir, nid_t pino)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct qstr dot = QSTR_INIT(".", 1);
    struct qstr dotdot = QSTR_INIT("..", 2);
    struct f2fs_dir_entry *de;
    struct page *page;
    int err = 0;

    f2fs_lock_op(sbi);

    de = f2fs_find_entry(dir, &dot, &page);
    if (de) {
        f2fs_dentry_kunmap(dir, page);
        f2fs_put_page(page, 0);
    } else {
        err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
        if (err)
            goto out;
    }

    de = f2fs_find_entry(dir, &dotdot, &page);
    if (de) {
        f2fs_dentry_kunmap(dir, page);
        f2fs_put_page(page, 0);
    } else {
        err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
    }
out:
    if (!err) {
        clear_inode_flag(F2FS_I(dir), FI_INLINE_DOTS);
        mark_inode_dirty(dir);
    }

    f2fs_unlock_op(sbi);
    return err;
}
Exemple #11
0
static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
					const char *symname)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	size_t symlen = strlen(symname) + 1;
	int err;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &f2fs_symlink_inode_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);

	err = page_symlink(inode, symname, symlen);
	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return err;
out:
	handle_failed_inode(inode);
	return err;
}
Exemple #12
0
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);

	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
			inode->i_ino == F2FS_META_INO(sbi))
		return 0;

	if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
		return 0;

	/*
	 * We need to lock here to prevent from producing dirty node pages
	 * during the urgent cleaning time when runing out of free sections.
	 */
	f2fs_lock_op(sbi);
	update_inode_page(inode);
	f2fs_unlock_op(sbi);

	if (wbc)
		f2fs_balance_fs(sbi);

	return 0;
}
Exemple #13
0
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
                            loff_t pos, unsigned len, unsigned flags,
                            struct page **pagep, void **fsdata)
{
    struct inode *inode = mapping->host;
    struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
    struct page *page = NULL;
    struct page *ipage;
    pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
    struct dnode_of_data dn;
    int err = 0;

    trace_f2fs_write_begin(inode, pos, len, flags);

    f2fs_balance_fs(sbi);

    /*
     * We should check this at this moment to avoid deadlock on inode page
     * and #0 page. The locking rule for inline_data conversion should be:
     * lock_page(page #0) -> lock_page(inode_page)
     */
    if (index != 0) {
        err = f2fs_convert_inline_inode(inode);
        if (err)
            goto fail;
    }
repeat:
    page = grab_cache_page_write_begin(mapping, index, flags);
    if (!page) {
        err = -ENOMEM;
        goto fail;
    }

    *pagep = page;

    f2fs_lock_op(sbi);

    /* check inline_data */
    ipage = get_node_page(sbi, inode->i_ino);
    if (IS_ERR(ipage)) {
        err = PTR_ERR(ipage);
        goto unlock_fail;
    }

    set_new_dnode(&dn, inode, ipage, ipage, 0);

    if (f2fs_has_inline_data(inode)) {
        if (pos + len <= MAX_INLINE_DATA) {
            read_inline_data(page, ipage);
            set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
            sync_inode_page(&dn);
            goto put_next;
        }
        err = f2fs_convert_inline_page(&dn, page);
        if (err)
            goto put_fail;
    }

    err = f2fs_get_block(&dn, index);
    if (err)
        goto put_fail;
put_next:
    f2fs_put_dnode(&dn);
    f2fs_unlock_op(sbi);

    f2fs_wait_on_page_writeback(page, DATA);

    if (len == PAGE_CACHE_SIZE)
        goto out_update;
    if (PageUptodate(page))
        goto out_clear;

    if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
        unsigned start = pos & (PAGE_CACHE_SIZE - 1);
        unsigned end = start + len;

        /* Reading beyond i_size is simple: memset to zero */
        zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
        goto out_update;
    }

    if (dn.data_blkaddr == NEW_ADDR) {
        zero_user_segment(page, 0, PAGE_CACHE_SIZE);
    } else {
        struct f2fs_io_info fio = {
            .sbi = sbi,
            .type = DATA,
            .rw = READ_SYNC,
            .blk_addr = dn.data_blkaddr,
            .page = page,
            .encrypted_page = NULL,
        };
        err = f2fs_submit_page_bio(&fio);
        if (err)
            goto fail;

        lock_page(page);
        if (unlikely(!PageUptodate(page))) {
            err = -EIO;
            goto fail;
        }
        if (unlikely(page->mapping != mapping)) {
            f2fs_put_page(page, 1);
            goto repeat;
        }

        /* avoid symlink page */
        if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
            err = f2fs_decrypt_one(inode, page);
            if (err)
                goto fail;
        }
    }
out_update:
    SetPageUptodate(page);
out_clear:
    clear_cold_data(page);
    return 0;

put_fail:
    f2fs_put_dnode(&dn);
unlock_fail:
    f2fs_unlock_op(sbi);
fail:
    f2fs_put_page(page, 1);
    f2fs_write_failed(mapping, pos + len);
    return err;
}

static int f2fs_write_end(struct file *file,
                          struct address_space *mapping,
                          loff_t pos, unsigned len, unsigned copied,
                          struct page *page, void *fsdata)
{
    struct inode *inode = page->mapping->host;

    trace_f2fs_write_end(inode, pos, len, copied);

    set_page_dirty(page);

    if (pos + copied > i_size_read(inode)) {
        i_size_write(inode, pos + copied);
        mark_inode_dirty(inode);
        update_inode_page(inode);
    }

    f2fs_put_page(page, 1);
    return copied;
}

static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
                           loff_t offset)
{
    unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;

    if (offset & blocksize_mask)
        return -EINVAL;

    if (iov_iter_alignment(iter) & blocksize_mask)
        return -EINVAL;

    return 0;
}
Exemple #14
0
static int f2fs_write_data_page(struct page *page,
                                struct writeback_control *wbc)
{
    struct inode *inode = page->mapping->host;
    struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
    loff_t i_size = i_size_read(inode);
    const pgoff_t end_index = ((unsigned long long) i_size)
                              >> PAGE_CACHE_SHIFT;
    unsigned offset = 0;
    bool need_balance_fs = false;
    int err = 0;
    struct f2fs_io_info fio = {
        .sbi = sbi,
        .type = DATA,
        .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
        .page = page,
        .encrypted_page = NULL,
    };

    trace_f2fs_writepage(page, DATA);

    if (page->index < end_index)
        goto write;

    /*
     * If the offset is out-of-range of file size,
     * this page does not have to be written to disk.
     */
    offset = i_size & (PAGE_CACHE_SIZE - 1);
    if ((page->index >= end_index + 1) || !offset)
        goto out;

    zero_user_segment(page, offset, PAGE_CACHE_SIZE);
write:
    if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
        goto redirty_out;
    if (f2fs_is_drop_cache(inode))
        goto out;
    if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
            available_free_memory(sbi, BASE_CHECK))
        goto redirty_out;

    /* Dentry blocks are controlled by checkpoint */
    if (S_ISDIR(inode->i_mode)) {
        if (unlikely(f2fs_cp_error(sbi)))
            goto redirty_out;
        err = do_write_data_page(&fio);
        goto done;
    }

    /* we should bypass data pages to proceed the kworkder jobs */
    if (unlikely(f2fs_cp_error(sbi))) {
        SetPageError(page);
        goto out;
    }

    if (!wbc->for_reclaim)
        need_balance_fs = true;
    else if (has_not_enough_free_secs(sbi, 0))
        goto redirty_out;

    err = -EAGAIN;
    f2fs_lock_op(sbi);
    if (f2fs_has_inline_data(inode))
        err = f2fs_write_inline_data(inode, page);
    if (err == -EAGAIN)
        err = do_write_data_page(&fio);
    f2fs_unlock_op(sbi);
done:
    if (err && err != -ENOENT)
        goto redirty_out;

    clear_cold_data(page);
out:
    inode_dec_dirty_pages(inode);
    if (err)
        ClearPageUptodate(page);
    unlock_page(page);
    if (need_balance_fs)
        f2fs_balance_fs(sbi);
    if (wbc->for_reclaim)
        f2fs_submit_merged_bio(sbi, DATA, WRITE);
    return 0;

redirty_out:
    redirty_page_for_writepage(wbc, page);
    return AOP_WRITEPAGE_ACTIVATE;
}

static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
                            void *data)
{
    struct address_space *mapping = data;
    int ret = mapping->a_ops->writepage(page, wbc);
    mapping_set_error(mapping, ret);
    return ret;
}

/*
 * This function was copied from write_cche_pages from mm/page-writeback.c.
 * The major change is making write step of cold data page separately from
 * warm/hot data page.
 */
static int f2fs_write_cache_pages(struct address_space *mapping,
                                  struct writeback_control *wbc, writepage_t writepage,
                                  void *data)
{
    int ret = 0;
    int done = 0;
    struct pagevec pvec;
    int nr_pages;
    pgoff_t uninitialized_var(writeback_index);
    pgoff_t index;
    pgoff_t end;		/* Inclusive */
    pgoff_t done_index;
    int cycled;
    int range_whole = 0;
    int tag;
    int step = 0;

    pagevec_init(&pvec, 0);
next:
    if (wbc->range_cyclic) {
        writeback_index = mapping->writeback_index; /* prev offset */
        index = writeback_index;
        if (index == 0)
            cycled = 1;
        else
            cycled = 0;
        end = -1;
    } else {
        index = wbc->range_start >> PAGE_CACHE_SHIFT;
        end = wbc->range_end >> PAGE_CACHE_SHIFT;
        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
            range_whole = 1;
        cycled = 1; /* ignore range_cyclic tests */
    }
    if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
        tag = PAGECACHE_TAG_TOWRITE;
    else
        tag = PAGECACHE_TAG_DIRTY;
retry:
    if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
        tag_pages_for_writeback(mapping, index, end);
    done_index = index;
    while (!done && (index <= end)) {
        int i;

        nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
                                      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
        if (nr_pages == 0)
            break;

        for (i = 0; i < nr_pages; i++) {
            struct page *page = pvec.pages[i];

            if (page->index > end) {
                done = 1;
                break;
            }

            done_index = page->index;

            lock_page(page);

            if (unlikely(page->mapping != mapping)) {
continue_unlock:
                unlock_page(page);
                continue;
            }

            if (!PageDirty(page)) {
                /* someone wrote it for us */
                goto continue_unlock;
            }

            if (step == is_cold_data(page))
                goto continue_unlock;

            if (PageWriteback(page)) {
                if (wbc->sync_mode != WB_SYNC_NONE)
                    f2fs_wait_on_page_writeback(page, DATA);
                else
                    goto continue_unlock;
            }

            BUG_ON(PageWriteback(page));
            if (!clear_page_dirty_for_io(page))
                goto continue_unlock;

            ret = (*writepage)(page, wbc, data);
            if (unlikely(ret)) {
                if (ret == AOP_WRITEPAGE_ACTIVATE) {
                    unlock_page(page);
                    ret = 0;
                } else {
                    done_index = page->index + 1;
                    done = 1;
                    break;
                }
            }

            if (--wbc->nr_to_write <= 0 &&
                    wbc->sync_mode == WB_SYNC_NONE) {
                done = 1;
                break;
            }
        }
        pagevec_release(&pvec);
        cond_resched();
    }

    if (step < 1) {
        step++;
        goto next;
    }

    if (!cycled && !done) {
        cycled = 1;
        index = 0;
        end = writeback_index - 1;
        goto retry;
    }
    if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
        mapping->writeback_index = done_index;

    return ret;
}
Exemple #15
0
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
								int mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct address_space *mapping = inode->i_mapping;
	pgoff_t index, pg_start, pg_end;
	loff_t new_size = i_size_read(inode);
	loff_t off_start, off_end;
	int ret = 0;

	if (!S_ISREG(inode->i_mode))
		return -EINVAL;

	ret = inode_newsize_ok(inode, (len + offset));
	if (ret)
		return ret;

	f2fs_balance_fs(sbi);

	if (f2fs_has_inline_data(inode)) {
		ret = f2fs_convert_inline_inode(inode);
		if (ret)
			return ret;
	}

	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
	if (ret)
		return ret;

	truncate_pagecache_range(inode, offset, offset + len - 1);

	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;

	off_start = offset & (PAGE_CACHE_SIZE - 1);
	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);

	if (pg_start == pg_end) {
		ret = fill_zero(inode, pg_start, off_start,
						off_end - off_start);
		if (ret)
			return ret;

		if (offset + len > new_size)
			new_size = offset + len;
		new_size = max_t(loff_t, new_size, offset + len);
	} else {
		if (off_start) {
			ret = fill_zero(inode, pg_start++, off_start,
						PAGE_CACHE_SIZE - off_start);
			if (ret)
				return ret;

			new_size = max_t(loff_t, new_size,
						pg_start << PAGE_CACHE_SHIFT);
		}

		for (index = pg_start; index < pg_end; index++) {
			struct dnode_of_data dn;
			struct page *ipage;

			f2fs_lock_op(sbi);

			ipage = get_node_page(sbi, inode->i_ino);
			if (IS_ERR(ipage)) {
				ret = PTR_ERR(ipage);
				f2fs_unlock_op(sbi);
				goto out;
			}

			set_new_dnode(&dn, inode, ipage, NULL, 0);
			ret = f2fs_reserve_block(&dn, index);
			if (ret) {
				f2fs_unlock_op(sbi);
				goto out;
			}

			if (dn.data_blkaddr != NEW_ADDR) {
				invalidate_blocks(sbi, dn.data_blkaddr);

				dn.data_blkaddr = NEW_ADDR;
				set_data_blkaddr(&dn);

				dn.data_blkaddr = NULL_ADDR;
				f2fs_update_extent_cache(&dn);
			}
			f2fs_put_dnode(&dn);
			f2fs_unlock_op(sbi);

			new_size = max_t(loff_t, new_size,
					(index + 1) << PAGE_CACHE_SHIFT);
		}

		if (off_end) {
			ret = fill_zero(inode, pg_end, 0, off_end);
			if (ret)
				goto out;

			new_size = max_t(loff_t, new_size, offset + len);
		}
	}

out:
	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
		i_size_write(inode, new_size);
		mark_inode_dirty(inode);
		update_inode_page(inode);
	}

	return ret;
}
Exemple #16
0
static int __f2fs_convert_inline_data(struct inode *inode, struct page *page)
{
	int err;
	struct page *ipage;
	struct dnode_of_data dn;
	void *src_addr, *dst_addr;
	block_t new_blk_addr;
	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
	struct f2fs_io_info fio = {
		.type = DATA,
		.rw = WRITE_SYNC | REQ_PRIO,
	};

	f2fs_lock_op(sbi);
	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	/*
	 * i_addr[0] is not used for inline data,
	 * so reserving new block will not destroy inline data
	 */
	set_new_dnode(&dn, inode, ipage, NULL, 0);
	err = f2fs_reserve_block(&dn, 0);
	if (err) {
		f2fs_unlock_op(sbi);
		return err;
	}

	zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);

	/* Copy the whole inline data block */
	src_addr = inline_data_addr(ipage);
	dst_addr = kmap(page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
	kunmap(page);
	SetPageUptodate(page);

	/* write data page to try to make data consistent */
	set_page_writeback(page);
	write_data_page(page, &dn, &new_blk_addr, &fio);
	update_extent_cache(new_blk_addr, &dn);
	f2fs_wait_on_page_writeback(page, DATA);

	/* clear inline data and flag after data writeback */
	zero_user_segment(ipage, INLINE_DATA_OFFSET,
				 INLINE_DATA_OFFSET + MAX_INLINE_DATA);
	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
	stat_dec_inline_inode(inode);

	sync_inode_page(&dn);
	f2fs_put_dnode(&dn);
	f2fs_unlock_op(sbi);
	return err;
}

int f2fs_convert_inline_data(struct inode *inode, pgoff_t to_size)
{
	struct page *page;
	int err;

	if (!f2fs_has_inline_data(inode))
		return 0;
	else if (to_size <= MAX_INLINE_DATA)
		return 0;

	page = grab_cache_page_write_begin(inode->i_mapping, 0, AOP_FLAG_NOFS);
	if (!page)
		return -ENOMEM;

	err = __f2fs_convert_inline_data(inode, page);
	f2fs_put_page(page, 1);
	return err;
}

int f2fs_write_inline_data(struct inode *inode,
			   struct page *page, unsigned size)
{
	void *src_addr, *dst_addr;
	struct page *ipage;
	struct dnode_of_data dn;
	int err;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
	if (err)
		return err;
	ipage = dn.inode_page;

	zero_user_segment(ipage, INLINE_DATA_OFFSET,
				 INLINE_DATA_OFFSET + MAX_INLINE_DATA);
	src_addr = kmap(page);
	dst_addr = inline_data_addr(ipage);
	memcpy(dst_addr, src_addr, size);
	kunmap(page);

	/* Release the first data block if it is allocated */
	if (!f2fs_has_inline_data(inode)) {
		truncate_data_blocks_range(&dn, 1);
		set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
		stat_inc_inline_inode(inode);
	}

	sync_inode_page(&dn);
	f2fs_put_dnode(&dn);

	return 0;
}
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
    void *src_addr, *dst_addr;
    struct f2fs_io_info fio = {
        .sbi = F2FS_I_SB(dn->inode),
        .type = DATA,
        .rw = WRITE_SYNC | REQ_PRIO,
        .page = page,
        .encrypted_page = NULL,
    };
    int dirty, err;

    f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);

    if (!f2fs_exist_data(dn->inode))
        goto clear_out;

    err = f2fs_reserve_block(dn, 0);
    if (err)
        return err;

    f2fs_wait_on_page_writeback(page, DATA);

    if (PageUptodate(page))
        goto no_update;

    zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);

    /* Copy the whole inline data block */
    src_addr = inline_data_addr(dn->inode_page);
    dst_addr = kmap_atomic(page);
    memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
    flush_dcache_page(page);
    kunmap_atomic(dst_addr);
    SetPageUptodate(page);
no_update:
    set_page_dirty(page);

    /* clear dirty state */
    dirty = clear_page_dirty_for_io(page);

    /* write data page to try to make data consistent */
    set_page_writeback(page);
    fio.blk_addr = dn->data_blkaddr;
    write_data_page(dn, &fio);
    set_data_blkaddr(dn);
    f2fs_update_extent_cache(dn);
    f2fs_wait_on_page_writeback(page, DATA);
    if (dirty)
        inode_dec_dirty_pages(dn->inode);

    /* this converted inline_data should be recovered. */
    set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);

    /* clear inline data and flag after data writeback */
    truncate_inline_inode(dn->inode_page, 0);
clear_out:
    stat_dec_inline_inode(dn->inode);
    f2fs_clear_inline_inode(dn->inode);
    sync_inode_page(dn);
    f2fs_put_dnode(dn);
    return 0;
}

int f2fs_convert_inline_inode(struct inode *inode)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
    struct dnode_of_data dn;
    struct page *ipage, *page;
    int err = 0;

    page = grab_cache_page(inode->i_mapping, 0);
    if (!page)
        return -ENOMEM;

    f2fs_lock_op(sbi);

    ipage = get_node_page(sbi, inode->i_ino);
    if (IS_ERR(ipage)) {
        err = PTR_ERR(ipage);
        goto out;
    }

    set_new_dnode(&dn, inode, ipage, ipage, 0);

    if (f2fs_has_inline_data(inode))
        err = f2fs_convert_inline_page(&dn, page);

    f2fs_put_dnode(&dn);
out:
    f2fs_unlock_op(sbi);

    f2fs_put_page(page, 1);
    return err;
}

int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
    void *src_addr, *dst_addr;
    struct dnode_of_data dn;
    int err;

    set_new_dnode(&dn, inode, NULL, NULL, 0);
    err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
    if (err)
        return err;

    if (!f2fs_has_inline_data(inode)) {
        f2fs_put_dnode(&dn);
        return -EAGAIN;
    }

    f2fs_bug_on(F2FS_I_SB(inode), page->index);

    f2fs_wait_on_page_writeback(dn.inode_page, NODE);
    src_addr = kmap_atomic(page);
    dst_addr = inline_data_addr(dn.inode_page);
    memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
    kunmap_atomic(src_addr);

    set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
    set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);

    sync_inode_page(&dn);
    f2fs_put_dnode(&dn);
    return 0;
}
Exemple #18
0
static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
                       struct inode *new_dir, struct dentry *new_dentry)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
    struct inode *old_inode = old_dentry->d_inode;
    struct inode *new_inode = new_dentry->d_inode;
    struct page *old_dir_page;
    struct page *old_page, *new_page;
    struct f2fs_dir_entry *old_dir_entry = NULL;
    struct f2fs_dir_entry *old_entry;
    struct f2fs_dir_entry *new_entry;
    int err = -ENOENT;

    f2fs_balance_fs(sbi);

    old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
    if (!old_entry)
        goto out;

    if (S_ISDIR(old_inode->i_mode)) {
        err = -EIO;
        old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
        if (!old_dir_entry)
            goto out_old;
    }

    if (new_inode) {

        err = -ENOTEMPTY;
        if (old_dir_entry && !f2fs_empty_dir(new_inode))
            goto out_dir;

        err = -ENOENT;
        new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
                                    &new_page);
        if (!new_entry)
            goto out_dir;

        f2fs_lock_op(sbi);

        err = acquire_orphan_inode(sbi);
        if (err)
            goto put_out_dir;

        if (update_dent_inode(old_inode, &new_dentry->d_name)) {
            release_orphan_inode(sbi);
            goto put_out_dir;
        }

        f2fs_set_link(new_dir, new_entry, new_page, old_inode);

        new_inode->i_ctime = CURRENT_TIME;
        down_write(&F2FS_I(new_inode)->i_sem);
        if (old_dir_entry)
            drop_nlink(new_inode);
        drop_nlink(new_inode);
        up_write(&F2FS_I(new_inode)->i_sem);

        mark_inode_dirty(new_inode);

        if (!new_inode->i_nlink)
            add_orphan_inode(sbi, new_inode->i_ino);
        else
            release_orphan_inode(sbi);

        update_inode_page(old_inode);
        update_inode_page(new_inode);
    } else {
        f2fs_lock_op(sbi);

        err = f2fs_add_link(new_dentry, old_inode);
        if (err) {
            f2fs_unlock_op(sbi);
            goto out_dir;
        }

        if (old_dir_entry) {
            inc_nlink(new_dir);
            update_inode_page(new_dir);
        }
    }

    down_write(&F2FS_I(old_inode)->i_sem);
    file_lost_pino(old_inode);
    up_write(&F2FS_I(old_inode)->i_sem);

    old_inode->i_ctime = CURRENT_TIME;
    mark_inode_dirty(old_inode);

    f2fs_delete_entry(old_entry, old_page, old_dir, NULL);

    if (old_dir_entry) {
        if (old_dir != new_dir) {
            f2fs_set_link(old_inode, old_dir_entry,
                          old_dir_page, new_dir);
            update_inode_page(old_inode);
        } else {
            f2fs_dentry_kunmap(old_inode, old_dir_page);
            f2fs_put_page(old_dir_page, 0);
        }
        drop_nlink(old_dir);
        mark_inode_dirty(old_dir);
        update_inode_page(old_dir);
    }

    f2fs_unlock_op(sbi);

    if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
        f2fs_sync_fs(sbi->sb, 1);
    return 0;

put_out_dir:
    f2fs_unlock_op(sbi);
    f2fs_dentry_kunmap(new_dir, new_page);
    f2fs_put_page(new_page, 0);
out_dir:
    if (old_dir_entry) {
        f2fs_dentry_kunmap(old_inode, old_dir_page);
        f2fs_put_page(old_dir_page, 0);
    }
out_old:
    f2fs_dentry_kunmap(old_dir, old_page);
    f2fs_put_page(old_page, 0);
out:
    return err;
}
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	nid_t ino;
	struct inode *inode;
	bool nid_free = false;
	int err;

	inode = new_inode(dir->i_sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);

	f2fs_lock_op(sbi);
	if (!alloc_nid(sbi, &ino)) {
		f2fs_unlock_op(sbi);
		err = -ENOSPC;
		goto fail;
	}
	f2fs_unlock_op(sbi);

	inode_init_owner(inode, dir, mode);

	inode->i_ino = ino;
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	inode->i_generation = sbi->s_next_generation++;

	err = insert_inode_locked(inode);
	if (err) {
		err = -EINVAL;
		nid_free = true;
		goto out;
	}

	/* If the directory encrypted, then we should encrypt the inode. */
	if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode))
		f2fs_set_encrypted_inode(inode);

	if (f2fs_may_inline_data(inode))
		set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
	if (f2fs_may_inline_dentry(inode))
		set_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);

	stat_inc_inline_inode(inode);
	stat_inc_inline_dir(inode);

	trace_f2fs_new_inode(inode, 0);
	mark_inode_dirty(inode);
	return inode;

out:
	clear_nlink(inode);
	unlock_new_inode(inode);
fail:
	trace_f2fs_new_inode(inode, err);
	make_bad_inode(inode);
	iput(inode);
	if (nid_free)
		alloc_nid_failed(sbi, ino);
	return ERR_PTR(err);
}
struct dentry *f2fs_get_parent(struct dentry *child)
{
	struct qstr dotdot = {.len = 2, .name = ".."};
	unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
	if (!ino)
		return ERR_PTR(-ENOENT);
	return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
}

static int __recover_dot_dentries(struct inode *dir, nid_t pino)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct qstr dot = {.len = 1, .name = "."};
	struct qstr dotdot = {.len = 2, .name = ".."};
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = 0;

	f2fs_lock_op(sbi);

	de = f2fs_find_entry(dir, &dot, &page, 0);
	if (de) {
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
	} else {
		err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
		if (err)
			goto out;
	}

	de = f2fs_find_entry(dir, &dotdot, &page, 0);
	if (de) {
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
	} else {
		err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
	}
out:
	if (!err) {
		clear_inode_flag(F2FS_I(dir), FI_INLINE_DOTS);
		mark_inode_dirty(dir);
	}

	f2fs_unlock_op(sbi);
	return err;
}

static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
					struct nameidata *nd)
{
	struct inode *inode = NULL;
	struct f2fs_dir_entry *de;
	struct page *page;
	nid_t ino;
	int err = 0;

	if (dentry->d_name.len > F2FS_NAME_LEN)
		return ERR_PTR(-ENAMETOOLONG);

	de = f2fs_find_entry(dir, &dentry->d_name, &page, nd ? nd->flags : 0);
	if (!de)
		return d_splice_alias(inode, dentry);

	ino = le32_to_cpu(de->ino);
	f2fs_dentry_kunmap(dir, page);
	f2fs_put_page(page, 0);

	inode = f2fs_iget(dir->i_sb, ino);
	if (IS_ERR(inode))
		return ERR_CAST(inode);

	if (f2fs_has_inline_dots(inode)) {
		err = __recover_dot_dentries(inode, dir->i_ino);
		if (err)
			goto err_out;
	}
	return d_splice_alias(inode, dentry);

err_out:
	iget_failed(inode);
	return ERR_PTR(err);
}

static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode = dentry->d_inode;
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = -ENOENT;

	trace_f2fs_unlink_enter(dir, dentry);
	f2fs_balance_fs(sbi);

	de = f2fs_find_entry(dir, &dentry->d_name, &page, 0);
	if (!de)
		goto fail;

	f2fs_lock_op(sbi);
	err = acquire_orphan_inode(sbi);
	if (err) {
		f2fs_unlock_op(sbi);
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
		goto fail;
	}
	f2fs_delete_entry(de, page, dir, inode);
	f2fs_unlock_op(sbi);

	/* In order to evict this inode, we set it dirty */
	mark_inode_dirty(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
fail:
	trace_f2fs_unlink_exit(inode, err);
	return err;
}

static void *f2fs_follow_link(struct dentry *dentry, struct nameidata *nd)
{
	struct page *page;

	page = page_follow_link_light(dentry, nd);
	if (IS_ERR(page))
		return page;

	/* this is broken symlink case */
	if (*nd_get_link(nd) == 0) {
		kunmap(page);
		page_cache_release(page);
		return ERR_PTR(-ENOENT);
	}
	return page;
}

static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
					const char *symname)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	size_t len = strlen(symname);
	size_t p_len;
	char *p_str;
	struct f2fs_str disk_link = FSTR_INIT(NULL, 0);
	struct f2fs_encrypted_symlink_data *sd = NULL;
	int err;

	if (len > dir->i_sb->s_blocksize)
		return -ENAMETOOLONG;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	if (f2fs_encrypted_inode(inode))
		inode->i_op = &f2fs_encrypted_symlink_inode_operations;
	else
		inode->i_op = &f2fs_symlink_inode_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);
	alloc_nid_done(sbi, inode->i_ino);

	if (f2fs_encrypted_inode(dir)) {
		struct qstr istr = QSTR_INIT(symname, len);

		err = f2fs_get_encryption_info(inode);
		if (err)
			goto err_out;

		err = f2fs_fname_crypto_alloc_buffer(inode, len, &disk_link);
		if (err)
			goto err_out;

		err = f2fs_fname_usr_to_disk(inode, &istr, &disk_link);
		if (err < 0)
			goto err_out;

		p_len = encrypted_symlink_data_len(disk_link.len) + 1;

		if (p_len > dir->i_sb->s_blocksize) {
			err = -ENAMETOOLONG;
			goto err_out;
		}

		sd = kzalloc(p_len, GFP_NOFS);
		if (!sd) {
			err = -ENOMEM;
			goto err_out;
		}
		memcpy(sd->encrypted_path, disk_link.name, disk_link.len);
		sd->len = cpu_to_le16(disk_link.len);
		p_str = (char *)sd;
	} else {
		p_len = len + 1;
		p_str = (char *)symname;
	}

	err = page_symlink(inode, p_str, p_len);

err_out:
	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	/*
	 * Let's flush symlink data in order to avoid broken symlink as much as
	 * possible. Nevertheless, fsyncing is the best way, but there is no
	 * way to get a file descriptor in order to flush that.
	 *
	 * Note that, it needs to do dir->fsync to make this recoverable.
	 * If the symlink path is stored into inline_data, there is no
	 * performance regression.
	 */
	if (!err)
		filemap_write_and_wait_range(inode->i_mapping, 0, p_len - 1);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);

	kfree(sd);
	f2fs_fname_crypto_free_buffer(&disk_link);
	return err;
out:
	handle_failed_inode(inode);
	return err;
}

static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFDIR | mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &f2fs_dir_inode_operations;
	inode->i_fop = &f2fs_dir_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;
	mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);

	set_inode_flag(F2FS_I(inode), FI_INC_LINK);
	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out_fail;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;

out_fail:
	clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
	handle_failed_inode(inode);
	return err;
}

static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = dentry->d_inode;
	if (f2fs_empty_dir(inode))
		return f2fs_unlink(dir, dentry);
	return -ENOTEMPTY;
}

static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
				int mode, dev_t rdev)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err = 0;

	if (!new_valid_dev(rdev))
		return -EINVAL;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	init_special_inode(inode, inode->i_mode, rdev);
	inode->i_op = &f2fs_special_inode_operations;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;
out:
	handle_failed_inode(inode);
	return err;
}

static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
			struct inode *new_dir, struct dentry *new_dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
	struct inode *old_inode = old_dentry->d_inode;
	struct inode *new_inode = new_dentry->d_inode;
	struct page *old_dir_page;
	struct page *old_page, *new_page;
	struct f2fs_dir_entry *old_dir_entry = NULL;
	struct f2fs_dir_entry *old_entry;
	struct f2fs_dir_entry *new_entry;
	int err = -ENOENT;

	if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) &&
		!f2fs_is_child_context_consistent_with_parent(new_dir,
							old_inode)) {
		err = -EPERM;
		goto out;
	}

	f2fs_balance_fs(sbi);

	old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page, 0);
	if (!old_entry)
		goto out;

	if (S_ISDIR(old_inode->i_mode)) {
		err = -EIO;
		old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
		if (!old_dir_entry)
			goto out_old;
	}

	if (new_inode) {

		err = -ENOTEMPTY;
		if (old_dir_entry && !f2fs_empty_dir(new_inode))
			goto out_dir;

		err = -ENOENT;
		new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
						&new_page, 0);
		if (!new_entry)
			goto out_dir;

		f2fs_lock_op(sbi);

		err = acquire_orphan_inode(sbi);
		if (err)
			goto put_out_dir;

		if (update_dent_inode(old_inode, new_inode,
						&new_dentry->d_name)) {
			release_orphan_inode(sbi);
			goto put_out_dir;
		}

		f2fs_set_link(new_dir, new_entry, new_page, old_inode);

		new_inode->i_ctime = CURRENT_TIME;
		down_write(&F2FS_I(new_inode)->i_sem);
		if (old_dir_entry)
			drop_nlink(new_inode);
		drop_nlink(new_inode);
		up_write(&F2FS_I(new_inode)->i_sem);

		mark_inode_dirty(new_inode);

		if (!new_inode->i_nlink)
			add_orphan_inode(sbi, new_inode->i_ino);
		else
			release_orphan_inode(sbi);

		update_inode_page(old_inode);
		update_inode_page(new_inode);
	} else {
		f2fs_lock_op(sbi);

		err = f2fs_add_link(new_dentry, old_inode);
		if (err) {
			f2fs_unlock_op(sbi);
			goto out_dir;
		}

		if (old_dir_entry) {
			inc_nlink(new_dir);
			update_inode_page(new_dir);
		}
	}

	down_write(&F2FS_I(old_inode)->i_sem);
	file_lost_pino(old_inode);
	if (new_inode && file_enc_name(new_inode))
		file_set_enc_name(old_inode);
	up_write(&F2FS_I(old_inode)->i_sem);

	old_inode->i_ctime = CURRENT_TIME;
	mark_inode_dirty(old_inode);

	f2fs_delete_entry(old_entry, old_page, old_dir, NULL);

	if (old_dir_entry) {
		if (old_dir != new_dir) {
			f2fs_set_link(old_inode, old_dir_entry,
						old_dir_page, new_dir);
			update_inode_page(old_inode);
		} else {
			f2fs_dentry_kunmap(old_inode, old_dir_page);
			f2fs_put_page(old_dir_page, 0);
		}
		drop_nlink(old_dir);
		mark_inode_dirty(old_dir);
		update_inode_page(old_dir);
	}

	f2fs_unlock_op(sbi);

	if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;

put_out_dir:
	f2fs_unlock_op(sbi);
	f2fs_dentry_kunmap(new_dir, new_page);
	f2fs_put_page(new_page, 0);
out_dir:
	if (old_dir_entry) {
		f2fs_dentry_kunmap(old_inode, old_dir_page);
		f2fs_put_page(old_dir_page, 0);
	}
out_old:
	f2fs_dentry_kunmap(old_dir, old_page);
	f2fs_put_page(old_page, 0);
out:
	return err;
}

#ifdef CONFIG_F2FS_FS_ENCRYPTION
static void *f2fs_encrypted_follow_link(struct dentry *dentry,
						struct nameidata *nd)
{
	struct page *cpage = NULL;
	char *caddr, *paddr = NULL;
	struct f2fs_str cstr;
	struct f2fs_str pstr = FSTR_INIT(NULL, 0);
	struct inode *inode = dentry->d_inode;
	struct f2fs_encrypted_symlink_data *sd;
	loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1);
	u32 max_size = inode->i_sb->s_blocksize;
	int res;

	res = f2fs_get_encryption_info(inode);
	if (res)
		return ERR_PTR(res);

	cpage = read_mapping_page(inode->i_mapping, 0, NULL);
	if (IS_ERR(cpage))
		return cpage;
	caddr = kmap(cpage);
	caddr[size] = 0;

	/* Symlink is encrypted */
	sd = (struct f2fs_encrypted_symlink_data *)caddr;
	cstr.name = sd->encrypted_path;
	cstr.len = le16_to_cpu(sd->len);

	/* this is broken symlink case */
	if (cstr.name[0] == 0 && cstr.len == 0) {
		res = -ENOENT;
		goto errout;
	}

	if ((cstr.len + sizeof(struct f2fs_encrypted_symlink_data) - 1) >
								max_size) {
		/* Symlink data on the disk is corrupted */
		res = -EIO;
		goto errout;
	}
	res = f2fs_fname_crypto_alloc_buffer(inode, cstr.len, &pstr);
	if (res)
		goto errout;

	res = f2fs_fname_disk_to_usr(inode, NULL, &cstr, &pstr);
	if (res < 0)
		goto errout;

	paddr = pstr.name;

	/* Null-terminate the name */
	paddr[res] = '\0';
	nd_set_link(nd, paddr);

	kunmap(cpage);
	page_cache_release(cpage);
	return NULL;
errout:
	f2fs_fname_crypto_free_buffer(&pstr);
	kunmap(cpage);
	page_cache_release(cpage);
	return ERR_PTR(res);
}

void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
		void *cookie)
{
	char *s = nd_get_link(nd);
	if (!IS_ERR(s))
		kfree(s);
}

const struct inode_operations f2fs_encrypted_symlink_inode_operations = {
	.readlink       = generic_readlink,
	.follow_link    = f2fs_encrypted_follow_link,
	.put_link       = kfree_put_link,
	.getattr	= f2fs_getattr,
	.setattr	= f2fs_setattr,
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr	= generic_removexattr,
};
#endif

const struct inode_operations f2fs_dir_inode_operations = {
	.create		= f2fs_create,
	.lookup		= f2fs_lookup,
	.link		= f2fs_link,
	.unlink		= f2fs_unlink,
	.symlink	= f2fs_symlink,
	.mkdir		= f2fs_mkdir,
	.rmdir		= f2fs_rmdir,
	.mknod		= f2fs_mknod,
	.rename		= f2fs_rename,
	.getattr	= f2fs_getattr,
	.setattr	= f2fs_setattr,
	.check_acl	= f2fs_check_acl,
#ifdef CONFIG_F2FS_FS_XATTR
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_symlink_inode_operations = {
	.readlink       = generic_readlink,
	.follow_link    = f2fs_follow_link,
	.put_link       = page_put_link,
	.getattr	= f2fs_getattr,
	.setattr	= f2fs_setattr,
#ifdef CONFIG_F2FS_FS_XATTR
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_special_inode_operations = {
	.getattr	= f2fs_getattr,
	.setattr        = f2fs_setattr,
	.check_acl	= f2fs_check_acl,
#ifdef CONFIG_F2FS_FS_XATTR
	.setxattr       = generic_setxattr,
	.getxattr       = generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr    = generic_removexattr,
#endif
};
Exemple #21
0
/*
 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
 * f2fs_map_blocks structure.
 * If original data blocks are allocated, then give them to blockdev.
 * Otherwise,
 *     a. preallocate requested block addresses
 *     b. do not use extent cache for better performance
 *     c. give the block addresses to blockdev
 */
static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
                           int create, int flag)
{
    unsigned int maxblocks = map->m_len;
    struct dnode_of_data dn;
    int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
    pgoff_t pgofs, end_offset;
    int err = 0, ofs = 1;
    struct extent_info ei;
    bool allocated = false;

    map->m_len = 0;
    map->m_flags = 0;

    /* it only supports block size == page size */
    pgofs =	(pgoff_t)map->m_lblk;

    if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
        map->m_pblk = ei.blk + pgofs - ei.fofs;
        map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
        map->m_flags = F2FS_MAP_MAPPED;
        goto out;
    }

    if (create)
        f2fs_lock_op(F2FS_I_SB(inode));

    /* When reading holes, we need its node page */
    set_new_dnode(&dn, inode, NULL, NULL, 0);
    err = get_dnode_of_data(&dn, pgofs, mode);
    if (err) {
        if (err == -ENOENT)
            err = 0;
        goto unlock_out;
    }
    if (dn.data_blkaddr == NEW_ADDR) {
        if (flag == F2FS_GET_BLOCK_BMAP) {
            err = -ENOENT;
            goto put_out;
        } else if (flag == F2FS_GET_BLOCK_READ ||
                   flag == F2FS_GET_BLOCK_DIO) {
            goto put_out;
        }
        /*
         * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
         * mark it as mapped and unwritten block.
         */
    }

    if (dn.data_blkaddr != NULL_ADDR) {
        map->m_flags = F2FS_MAP_MAPPED;
        map->m_pblk = dn.data_blkaddr;
        if (dn.data_blkaddr == NEW_ADDR)
            map->m_flags |= F2FS_MAP_UNWRITTEN;
    } else if (create) {
        err = __allocate_data_block(&dn);
        if (err)
            goto put_out;
        allocated = true;
        map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
        map->m_pblk = dn.data_blkaddr;
    } else {
        if (flag == F2FS_GET_BLOCK_BMAP)
            err = -ENOENT;
        goto put_out;
    }

    end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
    map->m_len = 1;
    dn.ofs_in_node++;
    pgofs++;

get_next:
    if (dn.ofs_in_node >= end_offset) {
        if (allocated)
            sync_inode_page(&dn);
        allocated = false;
        f2fs_put_dnode(&dn);

        set_new_dnode(&dn, inode, NULL, NULL, 0);
        err = get_dnode_of_data(&dn, pgofs, mode);
        if (err) {
            if (err == -ENOENT)
                err = 0;
            goto unlock_out;
        }

        if (dn.data_blkaddr == NEW_ADDR &&
                flag != F2FS_GET_BLOCK_FIEMAP)
            goto put_out;

        end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
    }

    if (maxblocks > map->m_len) {
        block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
        if (blkaddr == NULL_ADDR && create) {
            err = __allocate_data_block(&dn);
            if (err)
                goto sync_out;
            allocated = true;
            map->m_flags |= F2FS_MAP_NEW;
            blkaddr = dn.data_blkaddr;
        }
        /* Give more consecutive addresses for the readahead */
        if ((map->m_pblk != NEW_ADDR &&
                blkaddr == (map->m_pblk + ofs)) ||
                (map->m_pblk == NEW_ADDR &&
                 blkaddr == NEW_ADDR)) {
            ofs++;
            dn.ofs_in_node++;
            pgofs++;
            map->m_len++;
            goto get_next;
        }
    }
sync_out:
    if (allocated)
        sync_inode_page(&dn);
put_out:
    f2fs_put_dnode(&dn);
unlock_out:
    if (create)
        f2fs_unlock_op(F2FS_I_SB(inode));
out:
    trace_f2fs_map_blocks(inode, map, err);
    return err;
}
Exemple #22
0
static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
						struct vm_fault *vmf)
{
	struct page *page = vmf->page;
	struct inode *inode = file_inode(vma->vm_file);
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	int err;

	f2fs_balance_fs(sbi);

	sb_start_pagefault(inode->i_sb);

	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));

	/* block allocation */
	f2fs_lock_op(sbi);
	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = f2fs_reserve_block(&dn, page->index);
	if (err) {
		f2fs_unlock_op(sbi);
		goto out;
	}
	f2fs_put_dnode(&dn);
	f2fs_unlock_op(sbi);

	file_update_time(vma->vm_file);
	lock_page(page);
	if (unlikely(page->mapping != inode->i_mapping ||
			page_offset(page) > i_size_read(inode) ||
			!PageUptodate(page))) {
		unlock_page(page);
		err = -EFAULT;
		goto out;
	}

	/*
	 * check to see if the page is mapped already (no holes)
	 */
	if (PageMappedToDisk(page))
		goto mapped;

	/* page is wholly or partially inside EOF */
	if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
						i_size_read(inode)) {
		unsigned offset;
		offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
	}
	set_page_dirty(page);
	SetPageUptodate(page);

	trace_f2fs_vm_page_mkwrite(page, DATA);
mapped:
	/* fill the page */
	f2fs_wait_on_page_writeback(page, DATA);

	/* wait for GCed encrypted page writeback */
	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);

	/* if gced page is attached, don't write to cold segment */
	clear_cold_data(page);
out:
	sb_end_pagefault(inode->i_sb);
	return block_page_mkwrite_return(err);
}
Exemple #23
0
/*
 * Called at the last iput() if i_nlink is zero
 */
void f2fs_evict_inode(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct f2fs_inode_info *fi = F2FS_I(inode);
	nid_t xnid = fi->i_xattr_nid;
	int err = 0;

	/* some remained atomic pages should discarded */
	if (f2fs_is_atomic_file(inode))
		commit_inmem_pages(inode, true);

	trace_f2fs_evict_inode(inode);
	truncate_inode_pages(&inode->i_data, 0);

	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
			inode->i_ino == F2FS_META_INO(sbi))
		goto out_clear;

	f2fs_bug_on(sbi, get_dirty_pages(inode));
	remove_dirty_dir_inode(inode);

	f2fs_destroy_extent_tree(inode);

	if (inode->i_nlink || is_bad_inode(inode))
		goto no_delete;

	set_inode_flag(fi, FI_NO_ALLOC);
	i_size_write(inode, 0);

	if (F2FS_HAS_BLOCKS(inode))
		err = f2fs_truncate(inode, true);

	if (!err) {
		f2fs_lock_op(sbi);
		err = remove_inode_page(inode);
		f2fs_unlock_op(sbi);
	}

no_delete:
	stat_dec_inline_xattr(inode);
	stat_dec_inline_dir(inode);
	stat_dec_inline_inode(inode);

	invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
	if (xnid)
		invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
	if (is_inode_flag_set(fi, FI_APPEND_WRITE))
		add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
	if (is_inode_flag_set(fi, FI_UPDATE_WRITE))
		add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
	if (is_inode_flag_set(fi, FI_FREE_NID)) {
		if (err && err != -ENOENT)
			alloc_nid_done(sbi, inode->i_ino);
		else
			alloc_nid_failed(sbi, inode->i_ino);
		clear_inode_flag(fi, FI_FREE_NID);
	}

	if (err && err != -ENOENT) {
		if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) {
			/*
			 * get here because we failed to release resource
			 * of inode previously, reminder our user to run fsck
			 * for fixing.
			 */
			set_sbi_flag(sbi, SBI_NEED_FSCK);
			f2fs_msg(sbi->sb, KERN_WARNING,
				"inode (ino:%lu) resource leak, run fsck "
				"to fix this issue!", inode->i_ino);
		}
	}
out_clear:
#ifdef CONFIG_F2FS_FS_ENCRYPTION
	if (fi->i_crypt_info)
		f2fs_free_encryption_info(inode, fi->i_crypt_info);
#endif
	clear_inode(inode);
}
Exemple #24
0
static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	pgoff_t pg_start, pg_end, delta, nrpages, idx;
	loff_t new_size;
	int ret;

	if (!S_ISREG(inode->i_mode))
		return -EINVAL;

	new_size = i_size_read(inode) + len;
	if (new_size > inode->i_sb->s_maxbytes)
		return -EFBIG;

	if (offset >= i_size_read(inode))
		return -EINVAL;

	/* insert range should be aligned to block size of f2fs. */
	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
		return -EINVAL;

	f2fs_balance_fs(sbi);

	if (f2fs_has_inline_data(inode)) {
		ret = f2fs_convert_inline_inode(inode);
		if (ret)
			return ret;
	}

	ret = truncate_blocks(inode, i_size_read(inode), true);
	if (ret)
		return ret;

	/* write out all dirty pages from offset */
	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
	if (ret)
		return ret;

	truncate_pagecache(inode, 0, offset);

	pg_start = offset >> PAGE_CACHE_SHIFT;
	pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
	delta = pg_end - pg_start;
	nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;

	for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
		struct dnode_of_data dn;
		struct page *ipage;
		block_t new_addr, old_addr;

		f2fs_lock_op(sbi);

		set_new_dnode(&dn, inode, NULL, NULL, 0);
		ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
		if (ret && ret != -ENOENT) {
			goto out;
		} else if (ret == -ENOENT) {
			goto next;
		} else if (dn.data_blkaddr == NULL_ADDR) {
			f2fs_put_dnode(&dn);
			goto next;
		} else {
			new_addr = dn.data_blkaddr;
			truncate_data_blocks_range(&dn, 1);
			f2fs_put_dnode(&dn);
		}

		ipage = get_node_page(sbi, inode->i_ino);
		if (IS_ERR(ipage)) {
			ret = PTR_ERR(ipage);
			goto out;
		}

		set_new_dnode(&dn, inode, ipage, NULL, 0);
		ret = f2fs_reserve_block(&dn, idx + delta);
		if (ret)
			goto out;

		old_addr = dn.data_blkaddr;
		f2fs_bug_on(sbi, old_addr != NEW_ADDR);

		if (new_addr != NEW_ADDR) {
			struct node_info ni;

			get_node_info(sbi, dn.nid, &ni);
			f2fs_replace_block(sbi, &dn, old_addr, new_addr,
							ni.version, true);
		}
		f2fs_put_dnode(&dn);
next:
		f2fs_unlock_op(sbi);
	}

	i_size_write(inode, new_size);
	return 0;
out:
	f2fs_unlock_op(sbi);
	return ret;
}
Exemple #25
0
/*
 * Called at the last iput() if i_nlink is zero
 */
void f2fs_evict_inode(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
	int err = 0;

	/* some remained atomic pages should discarded */
	if (f2fs_is_atomic_file(inode))
		drop_inmem_pages(inode);

	trace_f2fs_evict_inode(inode);
	truncate_inode_pages_final(&inode->i_data);

	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
			inode->i_ino == F2FS_META_INO(sbi))
		goto out_clear;

	f2fs_bug_on(sbi, get_dirty_pages(inode));
	remove_dirty_inode(inode);

	f2fs_destroy_extent_tree(inode);

	if (inode->i_nlink || is_bad_inode(inode))
		goto no_delete;

#ifdef CONFIG_F2FS_FAULT_INJECTION
	if (time_to_inject(sbi, FAULT_EVICT_INODE))
		goto no_delete;
#endif

	remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
	remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);

	sb_start_intwrite(inode->i_sb);
	set_inode_flag(inode, FI_NO_ALLOC);
	i_size_write(inode, 0);
retry:
	if (F2FS_HAS_BLOCKS(inode))
		err = f2fs_truncate(inode);

	if (!err) {
		f2fs_lock_op(sbi);
		err = remove_inode_page(inode);
		f2fs_unlock_op(sbi);
		if (err == -ENOENT)
			err = 0;
	}

	/* give more chances, if ENOMEM case */
	if (err == -ENOMEM) {
		err = 0;
		goto retry;
	}

	if (err)
		update_inode_page(inode);
	sb_end_intwrite(inode->i_sb);
no_delete:
	stat_dec_inline_xattr(inode);
	stat_dec_inline_dir(inode);
	stat_dec_inline_inode(inode);

	invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
	if (xnid)
		invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
	if (inode->i_nlink) {
		if (is_inode_flag_set(inode, FI_APPEND_WRITE))
			add_ino_entry(sbi, inode->i_ino, APPEND_INO);
		if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
			add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
	}
	if (is_inode_flag_set(inode, FI_FREE_NID)) {
		alloc_nid_failed(sbi, inode->i_ino);
		clear_inode_flag(inode, FI_FREE_NID);
	}
	f2fs_bug_on(sbi, err &&
		!exist_written_data(sbi, inode->i_ino, ORPHAN_INO));
out_clear:
	fscrypt_put_encryption_info(inode, NULL);
	clear_inode(inode);
}
Exemple #26
0
int truncate_blocks(struct inode *inode, u64 from, bool lock)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	unsigned int blocksize = inode->i_sb->s_blocksize;
	struct dnode_of_data dn;
	pgoff_t free_from;
	int count = 0, err = 0;
	struct page *ipage;
	bool truncate_page = false;

	trace_f2fs_truncate_blocks_enter(inode, from);

	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);

	if (lock)
		f2fs_lock_op(sbi);

	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage)) {
		err = PTR_ERR(ipage);
		goto out;
	}

	if (f2fs_has_inline_data(inode)) {
		if (truncate_inline_inode(ipage, from))
			set_page_dirty(ipage);
		f2fs_put_page(ipage, 1);
		truncate_page = true;
		goto out;
	}

	set_new_dnode(&dn, inode, ipage, NULL, 0);
	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
	if (err) {
		if (err == -ENOENT)
			goto free_next;
		goto out;
	}

	count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));

	count -= dn.ofs_in_node;
	f2fs_bug_on(sbi, count < 0);

	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
		truncate_data_blocks_range(&dn, count);
		free_from += count;
	}

	f2fs_put_dnode(&dn);
free_next:
	err = truncate_inode_blocks(inode, free_from);
out:
	if (lock)
		f2fs_unlock_op(sbi);

	/* lastly zero out the first data page */
	if (!err)
		err = truncate_partial_data_page(inode, from, truncate_page);

	trace_f2fs_truncate_blocks_exit(inode, err);
	return err;
}
struct dentry *f2fs_get_parent(struct dentry *child)
{
    struct qstr dotdot = {.len = 2, .name = ".."};
    unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
    if (!ino)
        return ERR_PTR(-ENOENT);
    return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
}

static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
                                  struct nameidata *nd)
{
    struct inode *inode = NULL;
    struct f2fs_dir_entry *de;
    struct page *page;

    if (dentry->d_name.len > F2FS_NAME_LEN)
        return ERR_PTR(-ENAMETOOLONG);

    de = f2fs_find_entry(dir, &dentry->d_name, &page);
    if (de) {
        nid_t ino = le32_to_cpu(de->ino);
        kunmap(page);
        f2fs_put_page(page, 0);

        inode = f2fs_iget(dir->i_sb, ino);
        if (IS_ERR(inode))
            return ERR_CAST(inode);

        stat_inc_inline_inode(inode);
    }

    return d_splice_alias(inode, dentry);
}

static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode = dentry->d_inode;
    struct f2fs_dir_entry *de;
    struct page *page;
    int err = -ENOENT;

    trace_f2fs_unlink_enter(dir, dentry);
    f2fs_balance_fs(sbi);

    de = f2fs_find_entry(dir, &dentry->d_name, &page);
    if (!de)
        goto fail;

    f2fs_lock_op(sbi);
    err = acquire_orphan_inode(sbi);
    if (err) {
        f2fs_unlock_op(sbi);
        kunmap(page);
        f2fs_put_page(page, 0);
        goto fail;
    }
    f2fs_delete_entry(de, page, inode);
    f2fs_unlock_op(sbi);

    /* In order to evict this inode, we set it dirty */
    mark_inode_dirty(inode);
fail:
    trace_f2fs_unlink_exit(inode, err);
    return err;
}

static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
                        const char *symname)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    size_t symlen = strlen(symname) + 1;
    int err;

    f2fs_balance_fs(sbi);

    inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    inode->i_op = &f2fs_symlink_inode_operations;
    inode->i_mapping->a_ops = &f2fs_dblock_aops;

    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    f2fs_unlock_op(sbi);
    if (err)
        goto out;

    err = page_symlink(inode, symname, symlen);
    alloc_nid_done(sbi, inode->i_ino);

    d_instantiate(dentry, inode);
    unlock_new_inode(inode);
    return err;
out:
    clear_nlink(inode);
    iget_failed(inode);
    alloc_nid_failed(sbi, inode->i_ino);
    return err;
}

static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    int err;

    f2fs_balance_fs(sbi);

    inode = f2fs_new_inode(dir, S_IFDIR | mode);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    inode->i_op = &f2fs_dir_inode_operations;
    inode->i_fop = &f2fs_dir_operations;
    inode->i_mapping->a_ops = &f2fs_dblock_aops;
    mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);

    set_inode_flag(F2FS_I(inode), FI_INC_LINK);
    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    f2fs_unlock_op(sbi);
    if (err)
        goto out_fail;

    alloc_nid_done(sbi, inode->i_ino);

    d_instantiate(dentry, inode);
    unlock_new_inode(inode);

    return 0;

out_fail:
    clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
    clear_nlink(inode);
    iget_failed(inode);
    alloc_nid_failed(sbi, inode->i_ino);
    return err;
}

static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
{
    struct inode *inode = dentry->d_inode;
    if (f2fs_empty_dir(inode))
        return f2fs_unlink(dir, dentry);
    return -ENOTEMPTY;
}

static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
                      umode_t mode, dev_t rdev)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    int err = 0;

    if (!new_valid_dev(rdev))
        return -EINVAL;

    f2fs_balance_fs(sbi);

    inode = f2fs_new_inode(dir, mode);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    init_special_inode(inode, inode->i_mode, rdev);
    inode->i_op = &f2fs_special_inode_operations;

    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    f2fs_unlock_op(sbi);
    if (err)
        goto out;

    alloc_nid_done(sbi, inode->i_ino);
    d_instantiate(dentry, inode);
    unlock_new_inode(inode);
    return 0;
out:
    clear_nlink(inode);
    iget_failed(inode);
    alloc_nid_failed(sbi, inode->i_ino);
    return err;
}

static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
                       struct inode *new_dir, struct dentry *new_dentry)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
    struct inode *old_inode = old_dentry->d_inode;
    struct inode *new_inode = new_dentry->d_inode;
    struct page *old_dir_page;
    struct page *old_page, *new_page;
    struct f2fs_dir_entry *old_dir_entry = NULL;
    struct f2fs_dir_entry *old_entry;
    struct f2fs_dir_entry *new_entry;
    int err = -ENOENT;

    f2fs_balance_fs(sbi);

    old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
    if (!old_entry)
        goto out;

    if (S_ISDIR(old_inode->i_mode)) {
        err = -EIO;
        old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
        if (!old_dir_entry)
            goto out_old;
    }

    if (new_inode) {

        err = -ENOTEMPTY;
        if (old_dir_entry && !f2fs_empty_dir(new_inode))
            goto out_dir;

        err = -ENOENT;
        new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
                                    &new_page);
        if (!new_entry)
            goto out_dir;

        f2fs_lock_op(sbi);

        err = acquire_orphan_inode(sbi);
        if (err)
            goto put_out_dir;

        if (update_dent_inode(old_inode, &new_dentry->d_name)) {
            release_orphan_inode(sbi);
            goto put_out_dir;
        }

        f2fs_set_link(new_dir, new_entry, new_page, old_inode);

        new_inode->i_ctime = CURRENT_TIME;
        down_write(&F2FS_I(new_inode)->i_sem);
        if (old_dir_entry)
            drop_nlink(new_inode);
        drop_nlink(new_inode);
        up_write(&F2FS_I(new_inode)->i_sem);

        mark_inode_dirty(new_inode);

        if (!new_inode->i_nlink)
            add_orphan_inode(sbi, new_inode->i_ino);
        else
            release_orphan_inode(sbi);

        update_inode_page(old_inode);
        update_inode_page(new_inode);
    } else {
        f2fs_lock_op(sbi);

        err = f2fs_add_link(new_dentry, old_inode);
        if (err) {
            f2fs_unlock_op(sbi);
            goto out_dir;
        }

        if (old_dir_entry) {
            inc_nlink(new_dir);
            update_inode_page(new_dir);
        }
    }

    down_write(&F2FS_I(old_inode)->i_sem);
    file_lost_pino(old_inode);
    up_write(&F2FS_I(old_inode)->i_sem);

    old_inode->i_ctime = CURRENT_TIME;
    mark_inode_dirty(old_inode);

    f2fs_delete_entry(old_entry, old_page, NULL);

    if (old_dir_entry) {
        if (old_dir != new_dir) {
            f2fs_set_link(old_inode, old_dir_entry,
                          old_dir_page, new_dir);
            update_inode_page(old_inode);
        } else {
            kunmap(old_dir_page);
            f2fs_put_page(old_dir_page, 0);
        }
        drop_nlink(old_dir);
        mark_inode_dirty(old_dir);
        update_inode_page(old_dir);
    }

    f2fs_unlock_op(sbi);
    return 0;

put_out_dir:
    f2fs_unlock_op(sbi);
    kunmap(new_page);
    f2fs_put_page(new_page, 0);
out_dir:
    if (old_dir_entry) {
        kunmap(old_dir_page);
        f2fs_put_page(old_dir_page, 0);
    }
out_old:
    kunmap(old_page);
    f2fs_put_page(old_page, 0);
out:
    return err;
}

const struct inode_operations f2fs_dir_inode_operations = {
    .create		= f2fs_create,
    .lookup		= f2fs_lookup,
    .link		= f2fs_link,
    .unlink		= f2fs_unlink,
    .symlink	= f2fs_symlink,
    .mkdir		= f2fs_mkdir,
    .rmdir		= f2fs_rmdir,
    .mknod		= f2fs_mknod,
    .rename		= f2fs_rename,
    .getattr	= f2fs_getattr,
    .setattr	= f2fs_setattr,
    .get_acl	= f2fs_get_acl,
#ifdef CONFIG_F2FS_FS_XATTR
    .setxattr	= generic_setxattr,
    .getxattr	= generic_getxattr,
    .listxattr	= f2fs_listxattr,
    .removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_symlink_inode_operations = {
    .readlink       = generic_readlink,
    .follow_link    = page_follow_link_light,
    .put_link       = page_put_link,
    .getattr	= f2fs_getattr,
    .setattr	= f2fs_setattr,
#ifdef CONFIG_F2FS_FS_XATTR
    .setxattr	= generic_setxattr,
    .getxattr	= generic_getxattr,
    .listxattr	= f2fs_listxattr,
    .removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_special_inode_operations = {
    .getattr	= f2fs_getattr,
    .setattr        = f2fs_setattr,
    .get_acl	= f2fs_get_acl,
#ifdef CONFIG_F2FS_FS_XATTR
    .setxattr       = generic_setxattr,
    .getxattr       = generic_getxattr,
    .listxattr	= f2fs_listxattr,
    .removexattr    = generic_removexattr,
#endif
};
Exemple #28
0
static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
	int ret = 0;

	for (; end < nrpages; start++, end++) {
		block_t new_addr, old_addr;

		f2fs_lock_op(sbi);

		set_new_dnode(&dn, inode, NULL, NULL, 0);
		ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
		if (ret && ret != -ENOENT) {
			goto out;
		} else if (ret == -ENOENT) {
			new_addr = NULL_ADDR;
		} else {
			new_addr = dn.data_blkaddr;
			truncate_data_blocks_range(&dn, 1);
			f2fs_put_dnode(&dn);
		}

		if (new_addr == NULL_ADDR) {
			set_new_dnode(&dn, inode, NULL, NULL, 0);
			ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
			if (ret && ret != -ENOENT) {
				goto out;
			} else if (ret == -ENOENT) {
				f2fs_unlock_op(sbi);
				continue;
			}

			if (dn.data_blkaddr == NULL_ADDR) {
				f2fs_put_dnode(&dn);
				f2fs_unlock_op(sbi);
				continue;
			} else {
				truncate_data_blocks_range(&dn, 1);
			}

			f2fs_put_dnode(&dn);
		} else {
			struct page *ipage;

			ipage = get_node_page(sbi, inode->i_ino);
			if (IS_ERR(ipage)) {
				ret = PTR_ERR(ipage);
				goto out;
			}

			set_new_dnode(&dn, inode, ipage, NULL, 0);
			ret = f2fs_reserve_block(&dn, start);
			if (ret)
				goto out;

			old_addr = dn.data_blkaddr;
			if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
				dn.data_blkaddr = NULL_ADDR;
				f2fs_update_extent_cache(&dn);
				invalidate_blocks(sbi, old_addr);

				dn.data_blkaddr = new_addr;
				set_data_blkaddr(&dn);
			} else if (new_addr != NEW_ADDR) {
				struct node_info ni;

				get_node_info(sbi, dn.nid, &ni);
				f2fs_replace_block(sbi, &dn, old_addr, new_addr,
							ni.version, true);
			}

			f2fs_put_dnode(&dn);
		}
		f2fs_unlock_op(sbi);
	}
	return 0;
out:
	f2fs_unlock_op(sbi);
	return ret;
}
Exemple #29
0
static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
                             struct inode *new_dir, struct dentry *new_dentry)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
    struct inode *old_inode = old_dentry->d_inode;
    struct inode *new_inode = new_dentry->d_inode;
    struct page *old_dir_page, *new_dir_page;
    struct page *old_page, *new_page;
    struct f2fs_dir_entry *old_dir_entry = NULL, *new_dir_entry = NULL;
    struct f2fs_dir_entry *old_entry, *new_entry;
    int old_nlink = 0, new_nlink = 0;
    int err = -ENOENT;

    f2fs_balance_fs(sbi);

    old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
    if (!old_entry)
        goto out;

    new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page);
    if (!new_entry)
        goto out_old;

    /* prepare for updating ".." directory entry info later */
    if (old_dir != new_dir) {
        if (S_ISDIR(old_inode->i_mode)) {
            err = -EIO;
            old_dir_entry = f2fs_parent_dir(old_inode,
                                            &old_dir_page);
            if (!old_dir_entry)
                goto out_new;
        }

        if (S_ISDIR(new_inode->i_mode)) {
            err = -EIO;
            new_dir_entry = f2fs_parent_dir(new_inode,
                                            &new_dir_page);
            if (!new_dir_entry)
                goto out_old_dir;
        }
    }

    /*
     * If cross rename between file and directory those are not
     * in the same directory, we will inc nlink of file's parent
     * later, so we should check upper boundary of its nlink.
     */
    if ((!old_dir_entry || !new_dir_entry) &&
            old_dir_entry != new_dir_entry) {
        old_nlink = old_dir_entry ? -1 : 1;
        new_nlink = -old_nlink;
        err = -EMLINK;
        if ((old_nlink > 0 && old_inode->i_nlink >= F2FS_LINK_MAX) ||
                (new_nlink > 0 && new_inode->i_nlink >= F2FS_LINK_MAX))
            goto out_new_dir;
    }

    f2fs_lock_op(sbi);

    err = update_dent_inode(old_inode, &new_dentry->d_name);
    if (err)
        goto out_unlock;

    err = update_dent_inode(new_inode, &old_dentry->d_name);
    if (err)
        goto out_undo;

    /* update ".." directory entry info of old dentry */
    if (old_dir_entry)
        f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir);

    /* update ".." directory entry info of new dentry */
    if (new_dir_entry)
        f2fs_set_link(new_inode, new_dir_entry, new_dir_page, old_dir);

    /* update directory entry info of old dir inode */
    f2fs_set_link(old_dir, old_entry, old_page, new_inode);

    down_write(&F2FS_I(old_inode)->i_sem);
    file_lost_pino(old_inode);
    up_write(&F2FS_I(old_inode)->i_sem);

    update_inode_page(old_inode);

    old_dir->i_ctime = CURRENT_TIME;
    if (old_nlink) {
        down_write(&F2FS_I(old_dir)->i_sem);
        if (old_nlink < 0)
            drop_nlink(old_dir);
        else
            inc_nlink(old_dir);
        up_write(&F2FS_I(old_dir)->i_sem);
    }
    mark_inode_dirty(old_dir);
    update_inode_page(old_dir);

    /* update directory entry info of new dir inode */
    f2fs_set_link(new_dir, new_entry, new_page, old_inode);

    down_write(&F2FS_I(new_inode)->i_sem);
    file_lost_pino(new_inode);
    up_write(&F2FS_I(new_inode)->i_sem);

    update_inode_page(new_inode);

    new_dir->i_ctime = CURRENT_TIME;
    if (new_nlink) {
        down_write(&F2FS_I(new_dir)->i_sem);
        if (new_nlink < 0)
            drop_nlink(new_dir);
        else
            inc_nlink(new_dir);
        up_write(&F2FS_I(new_dir)->i_sem);
    }
    mark_inode_dirty(new_dir);
    update_inode_page(new_dir);

    f2fs_unlock_op(sbi);

    if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
        f2fs_sync_fs(sbi->sb, 1);
    return 0;
out_undo:
    /* Still we may fail to recover name info of f2fs_inode here */
    update_dent_inode(old_inode, &old_dentry->d_name);
out_unlock:
    f2fs_unlock_op(sbi);
out_new_dir:
    if (new_dir_entry) {
        f2fs_dentry_kunmap(new_inode, new_dir_page);
        f2fs_put_page(new_dir_page, 0);
    }
out_old_dir:
    if (old_dir_entry) {
        f2fs_dentry_kunmap(old_inode, old_dir_page);
        f2fs_put_page(old_dir_page, 0);
    }
out_new:
    f2fs_dentry_kunmap(new_dir, new_page);
    f2fs_put_page(new_page, 0);
out_old:
    f2fs_dentry_kunmap(old_dir, old_page);
    f2fs_put_page(old_page, 0);
out:
    return err;
}
Exemple #30
0
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
	struct f2fs_io_info fio = {
		.sbi = F2FS_I_SB(dn->inode),
		.type = DATA,
		.op = REQ_OP_WRITE,
		.op_flags = REQ_SYNC | REQ_PRIO,
		.page = page,
		.encrypted_page = NULL,
	};
	int dirty, err;

	if (!f2fs_exist_data(dn->inode))
		goto clear_out;

	err = f2fs_reserve_block(dn, 0);
	if (err)
		return err;

	f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));

	read_inline_data(page, dn->inode_page);
	set_page_dirty(page);

	/* clear dirty state */
	dirty = clear_page_dirty_for_io(page);

	/* write data page to try to make data consistent */
	set_page_writeback(page);
	fio.old_blkaddr = dn->data_blkaddr;
	set_inode_flag(dn->inode, FI_HOT_DATA);
	write_data_page(dn, &fio);
	f2fs_wait_on_page_writeback(page, DATA, true);
	if (dirty) {
		inode_dec_dirty_pages(dn->inode);
		remove_dirty_inode(dn->inode);
	}

	/* this converted inline_data should be recovered. */
	set_inode_flag(dn->inode, FI_APPEND_WRITE);

	/* clear inline data and flag after data writeback */
	truncate_inline_inode(dn->inode, dn->inode_page, 0);
	clear_inline_node(dn->inode_page);
clear_out:
	stat_dec_inline_inode(dn->inode);
	clear_inode_flag(dn->inode, FI_INLINE_DATA);
	f2fs_put_dnode(dn);
	return 0;
}

int f2fs_convert_inline_inode(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	struct page *ipage, *page;
	int err = 0;

	if (!f2fs_has_inline_data(inode))
		return 0;

	page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
	if (!page)
		return -ENOMEM;

	f2fs_lock_op(sbi);

	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage)) {
		err = PTR_ERR(ipage);
		goto out;
	}

	set_new_dnode(&dn, inode, ipage, ipage, 0);

	if (f2fs_has_inline_data(inode))
		err = f2fs_convert_inline_page(&dn, page);

	f2fs_put_dnode(&dn);
out:
	f2fs_unlock_op(sbi);

	f2fs_put_page(page, 1);

	f2fs_balance_fs(sbi, dn.node_changed);

	return err;
}

int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
	void *src_addr, *dst_addr;
	struct dnode_of_data dn;
	int err;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
	if (err)
		return err;

	if (!f2fs_has_inline_data(inode)) {
		f2fs_put_dnode(&dn);
		return -EAGAIN;
	}

	f2fs_bug_on(F2FS_I_SB(inode), page->index);

	f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
	src_addr = kmap_atomic(page);
	dst_addr = inline_data_addr(dn.inode_page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
	kunmap_atomic(src_addr);
	set_page_dirty(dn.inode_page);

	set_inode_flag(inode, FI_APPEND_WRITE);
	set_inode_flag(inode, FI_DATA_EXIST);

	clear_inline_node(dn.inode_page);
	f2fs_put_dnode(&dn);
	return 0;
}