int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino, u32 x_nid, u32 *blk_cnt) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct node_info ni; if (x_nid == 0x0) return 0; if (f2fs_test_bit(x_nid, fsck->nat_area_bitmap) != 0x0) { f2fs_clear_bit(x_nid, fsck->nat_area_bitmap); } else { ASSERT_MSG(0, "xattr_nid duplicated [0x%x]\n", x_nid); } *blk_cnt = *blk_cnt + 1; fsck->chk.valid_blk_cnt++; fsck->chk.valid_node_cnt++; ASSERT(get_node_info(sbi, x_nid, &ni) >= 0); if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap) != 0) { ASSERT_MSG(0, "Duplicated node block for x_attr. " "x_nid[0x%x] block addr[0x%x]\n", x_nid, ni.blk_addr); } f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap); DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid); return 0; }
int fsck_chk_data_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, u32 blk_addr, u32 *child_cnt, u32 *child_files, int last_blk, enum FILE_TYPE ftype, u32 parent_nid, u16 idx_in_node, u8 ver) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); /* Is it reserved block? */ if (blk_addr == NEW_ADDR) { fsck->chk.valid_blk_cnt++; return 0; } IS_VALID_BLK_ADDR(sbi, blk_addr); is_valid_ssa_data_blk(sbi, blk_addr, parent_nid, idx_in_node, ver); if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk_addr), fsck->sit_area_bitmap) == 0x0) { ASSERT_MSG(0, "SIT bitmap is 0x0. blk_addr[0x%x]\n", blk_addr); } if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk_addr), fsck->main_area_bitmap) != 0) { ASSERT_MSG(0, "Duplicated data block. pnid[0x%x] idx[0x%x] blk_addr[0x%x]\n", parent_nid, idx_in_node, blk_addr); } f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk_addr), fsck->main_area_bitmap); fsck->chk.valid_blk_cnt++; if (ftype == F2FS_FT_DIR) { fsck_chk_dentry_blk(sbi, inode, blk_addr, child_cnt, child_files, last_blk); } return 0; }
void f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid, int inode) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct f2fs_checkpoint *cp = F2FS_CKPT(sbi); nid_t i, inode_cnt, node_cnt; for (i = 0; i < nm_i->max_nid; i++) if(f2fs_test_bit(i, nm_i->nid_bitmap) == 0) break; ASSERT(i < nm_i->max_nid); f2fs_set_bit(i, nm_i->nid_bitmap); *nid = i; inode_cnt = get_cp(valid_inode_count); node_cnt = get_cp(valid_node_count); if (inode) set_cp(valid_inode_count, inode_cnt + 1); set_cp(valid_node_count, node_cnt + 1); }
static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, block_t blkaddr, struct dnode_of_data *dn) { struct seg_entry *sentry; unsigned int segno = GET_SEGNO(sbi, blkaddr); unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); struct f2fs_summary_block *sum_node; struct f2fs_summary sum; struct page *sum_page, *node_page; struct dnode_of_data tdn = *dn; nid_t ino, nid; struct inode *inode; unsigned int offset; block_t bidx; int i; sentry = get_seg_entry(sbi, segno); if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) return 0; /* Get the previous summary */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); if (curseg->segno == segno) { sum = curseg->sum_blk->entries[blkoff]; goto got_it; } } sum_page = f2fs_get_sum_page(sbi, segno); if (IS_ERR(sum_page)) return PTR_ERR(sum_page); sum_node = (struct f2fs_summary_block *)page_address(sum_page); sum = sum_node->entries[blkoff]; f2fs_put_page(sum_page, 1); got_it: /* Use the locked dnode page and inode */ nid = le32_to_cpu(sum.nid); if (dn->inode->i_ino == nid) { tdn.nid = nid; if (!dn->inode_page_locked) lock_page(dn->inode_page); tdn.node_page = dn->inode_page; tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); goto truncate_out; } else if (dn->nid == nid) { tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); goto truncate_out; } /* Get the node page */ node_page = f2fs_get_node_page(sbi, nid); if (IS_ERR(node_page)) return PTR_ERR(node_page); offset = ofs_of_node(node_page); ino = ino_of_node(node_page); f2fs_put_page(node_page, 1); if (ino != dn->inode->i_ino) { int ret; /* Deallocate previous index in the node page */ inode = f2fs_iget_retry(sbi->sb, ino); if (IS_ERR(inode)) return PTR_ERR(inode); ret = dquot_initialize(inode); if (ret) { iput(inode); return ret; } } else { inode = dn->inode; } bidx = f2fs_start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node); /* * if inode page is locked, unlock temporarily, but its reference * count keeps alive. */ if (ino == dn->inode->i_ino && dn->inode_page_locked) unlock_page(dn->inode_page); set_new_dnode(&tdn, inode, NULL, NULL, 0); if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) goto out; if (tdn.data_blkaddr == blkaddr) f2fs_truncate_data_blocks_range(&tdn, 1); f2fs_put_dnode(&tdn); out: if (ino != dn->inode->i_ino) iput(inode); else if (dn->inode_page_locked) lock_page(dn->inode_page); return 0; truncate_out: if (datablock_addr(tdn.inode, tdn.node_page, tdn.ofs_in_node) == blkaddr) f2fs_truncate_data_blocks_range(&tdn, 1); if (dn->inode->i_ino == nid && !dn->inode_page_locked) unlock_page(dn->inode_page); return 0; }
int fsck_verify(struct f2fs_sb_info *sbi) { int i = 0; int ret = 0; u32 nr_unref_nid = 0; struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct hard_link_node *node = NULL; printf("\n"); for (i = 0; i < fsck->nr_nat_entries; i++) { if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) { printf("NID[0x%x] is unreachable\n", i); nr_unref_nid++; } } if (fsck->hard_link_list_head != NULL) { node = fsck->hard_link_list_head; while (node) { printf("NID[0x%x] has [0x%x] more unreachable links\n", node->nid, node->links); node = node->next; } } printf("[FSCK] Unreachable nat entries "); if (nr_unref_nid == 0x0) { printf(" [Ok..] [0x%x]\n", nr_unref_nid); } else { printf(" [Fail] [0x%x]\n", nr_unref_nid); ret = EXIT_ERR_CODE; } printf("[FSCK] SIT valid block bitmap checking "); if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap, fsck->sit_area_bitmap_sz) == 0x0) { printf("[Ok..]\n"); } else { printf("[Fail]\n"); ret = EXIT_ERR_CODE; } printf("[FSCK] Hard link checking for regular file "); if (fsck->hard_link_list_head == NULL) { printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files); } else { printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files); ret = EXIT_ERR_CODE; } printf("[FSCK] valid_block_count matching with CP "); if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) { printf(" [Ok..] [0x%lx]\n", fsck->chk.valid_blk_cnt); } else { printf(" [Fail] [0x%lx]\n", fsck->chk.valid_blk_cnt); ret = EXIT_ERR_CODE; } printf("[FSCK] valid_node_count matcing with CP (de lookup) "); if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt); ret = EXIT_ERR_CODE; } printf("[FSCK] valid_node_count matcing with CP (nat lookup) "); if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt); ret = EXIT_ERR_CODE; } printf("[FSCK] valid_inode_count matched with CP "); if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) { printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt); } else { printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt); ret = EXIT_ERR_CODE; } return ret; }
int fsck_chk_inode_blk(struct f2fs_sb_info *sbi, u32 nid, enum FILE_TYPE ftype, struct f2fs_node *node_blk, u32 *blk_cnt, struct node_info *ni) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); u32 child_cnt = 0, child_files = 0; enum NODE_TYPE ntype; u32 i_links = le32_to_cpu(node_blk->i.i_links); u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks); int idx = 0; int ret = 0; ASSERT(node_blk->footer.nid == node_blk->footer.ino); ASSERT(le32_to_cpu(node_blk->footer.nid) == nid); if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap) == 0x0) fsck->chk.valid_inode_cnt++; /* Orphan node. i_links should be 0 */ if (ftype == F2FS_FT_ORPHAN) { ASSERT(i_links == 0); } else { ASSERT(i_links > 0); } if (ftype == F2FS_FT_DIR) { /* not included '.' & '..' */ if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap) != 0) { DBG(0, "Duplicated inode blk. ino[0x%x][0x%x]\n", nid, ni->blk_addr); ASSERT(0); } f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap); } else { if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap) == 0x0) { f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap); if (i_links > 1) { /* First time. Create new hard link node */ add_into_hard_link_list(sbi, nid, i_links); fsck->chk.multi_hard_link_files++; } } else { if (i_links <= 1) { DBG(0, "Error. Node ID [0x%x]." " There are one more hard links." " But i_links is [0x%x]\n", nid, i_links); ASSERT(0); } DBG(3, "ino[0x%x] has hard links [0x%x]\n", nid, i_links); ret = find_and_dec_hard_link_list(sbi, nid); ASSERT(ret >= 0); /* No need to go deep into the node */ goto out; } } fsck_chk_xattr_blk(sbi, nid, le32_to_cpu(node_blk->i.i_xattr_nid), blk_cnt); if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV || ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK) goto check; if((node_blk->i.i_inline & F2FS_INLINE_DATA)){ DBG(3, "ino[0x%x] has inline data!\n", nid); goto check; } /* check data blocks in inode */ for (idx = 0; idx < ADDRS_PER_INODE(&node_blk->i); idx++) { if (le32_to_cpu(node_blk->i.i_addr[idx]) != 0) { *blk_cnt = *blk_cnt + 1; ret = fsck_chk_data_blk(sbi, &node_blk->i, le32_to_cpu(node_blk->i.i_addr[idx]), &child_cnt, &child_files, (i_blocks == *blk_cnt), ftype, nid, idx, ni->version); ASSERT(ret >= 0); } } /* check node blocks in inode */ for (idx = 0; idx < 5; idx++) { if (idx == 0 || idx == 1) ntype = TYPE_DIRECT_NODE; else if (idx == 2 || idx == 3) ntype = TYPE_INDIRECT_NODE; else if (idx == 4) ntype = TYPE_DOUBLE_INDIRECT_NODE; else ASSERT(0); if (le32_to_cpu(node_blk->i.i_nid[idx]) != 0) { *blk_cnt = *blk_cnt + 1; ret = fsck_chk_node_blk(sbi, &node_blk->i, le32_to_cpu(node_blk->i.i_nid[idx]), ftype, ntype, blk_cnt); ASSERT(ret >= 0); } } check: if (ftype == F2FS_FT_DIR) DBG(1, "Directory Inode: ino: %x name: %s depth: %d child files: %d\n\n", le32_to_cpu(node_blk->footer.ino), node_blk->i.i_name, le32_to_cpu(node_blk->i.i_current_depth), child_files); if (ftype == F2FS_FT_ORPHAN) DBG(1, "Orphan Inode: ino: %x name: %s i_blocks: %lu\n\n", le32_to_cpu(node_blk->footer.ino), node_blk->i.i_name, i_blocks); if ((ftype == F2FS_FT_DIR && i_links != child_cnt) || (i_blocks != *blk_cnt)) { print_node_info(node_blk); DBG(1, "blk cnt [0x%x]\n", *blk_cnt); DBG(1, "child cnt [0x%x]\n", child_cnt); } ASSERT(i_blocks == *blk_cnt); if (ftype == F2FS_FT_DIR) ASSERT(i_links == child_cnt); out: return 0; }
int fsck_chk_node_blk(struct f2fs_sb_info *sbi, struct f2fs_inode *inode, u32 nid, enum FILE_TYPE ftype, enum NODE_TYPE ntype, u32 *blk_cnt) { struct f2fs_fsck *fsck = F2FS_FSCK(sbi); struct node_info ni; struct f2fs_node *node_blk = NULL; int ret = 0; IS_VALID_NID(sbi, nid); if (ftype != F2FS_FT_ORPHAN || f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0x0) f2fs_clear_bit(nid, fsck->nat_area_bitmap); else ASSERT_MSG(0, "nid duplicated [0x%x]\n", nid); ret = get_node_info(sbi, nid, &ni); ASSERT(ret >= 0); /* Is it reserved block? * if block addresss was 0xffff,ffff,ffff,ffff * it means that block was already allocated, but not stored in disk */ if (ni.blk_addr == NEW_ADDR) { fsck->chk.valid_blk_cnt++; fsck->chk.valid_node_cnt++; if (ntype == TYPE_INODE) fsck->chk.valid_inode_cnt++; return 0; } IS_VALID_BLK_ADDR(sbi, ni.blk_addr); is_valid_ssa_node_blk(sbi, nid, ni.blk_addr); if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->sit_area_bitmap) == 0x0) { DBG(0, "SIT bitmap is 0x0. blk_addr[0x%x] %i\n", ni.blk_addr, ni.blk_addr); ASSERT(0); }else{ DBG(0, "SIT bitmap is NOT 0x0. blk_addr[0x%x] %i\n", ni.blk_addr, ni.blk_addr); //ASSERT(0); } if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap) == 0x0) { DBG(0, "SIT and main bitmap is 0x0. blk_addr[0x%x] %i\n", ni.blk_addr, ni.blk_addr); fsck->chk.valid_blk_cnt++; fsck->chk.valid_node_cnt++; }else{ DBG(0, "SIT and main bitmap is NOT 0x0. blk_addr[0x%x] %i\n", ni.blk_addr, ni.blk_addr); } node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1); ASSERT(node_blk != NULL); ret = dev_read_block(node_blk, ni.blk_addr); ASSERT(ret >= 0); ASSERT_MSG(nid == le32_to_cpu(node_blk->footer.nid), "nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]\n", nid, ni.blk_addr, le32_to_cpu(node_blk->footer.nid)); if (ntype == TYPE_INODE) { ret = fsck_chk_inode_blk(sbi, nid, ftype, node_blk, blk_cnt, &ni); } else { /* it's not inode */ ASSERT(node_blk->footer.nid != node_blk->footer.ino); if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap) != 0) { DBG(0, "Duplicated node block. ino[0x%x][0x%x]\n", nid, ni.blk_addr); ASSERT(0); } f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap); switch (ntype) { case TYPE_DIRECT_NODE: ret = fsck_chk_dnode_blk(sbi, inode, nid, ftype, node_blk, blk_cnt, &ni); break; case TYPE_INDIRECT_NODE: ret = fsck_chk_idnode_blk(sbi, inode, nid, ftype, node_blk, blk_cnt); break; case TYPE_DOUBLE_INDIRECT_NODE: ret = fsck_chk_didnode_blk(sbi, inode, nid, ftype, node_blk, blk_cnt); break; default: ASSERT(0); } } ASSERT(ret >= 0); free(node_blk); return 0; }