Exemple #1
0
static void ff_dct_calc_I_c(DCTContext *ctx, FFTSample *data)
{
    int n = 1 << ctx->nbits;
    int i;
    float next = -0.5f * (data[0] - data[n]);

    for(i = 0; i < n/2; i++) {
        float tmp1 = data[i    ];
        float tmp2 = data[n - i];
        float s = SIN(ctx, n, 2*i);
        float c = COS(ctx, n, 2*i);

        c *= tmp1 - tmp2;
        s *= tmp1 - tmp2;

        next += c;

        tmp1 = (tmp1 + tmp2) * 0.5f;
        data[i    ] = tmp1 - s;
        data[n - i] = tmp1 + s;
    }

    ff_rdft_calc(&ctx->rdft, data);
    data[n] = data[1];
    data[1] = next;

    for(i = 3; i <= n; i += 2)
        data[i] = data[i - 2] - data[i];
}
Exemple #2
0
static void ff_dst_calc_I_c(DCTContext *ctx, FFTSample *data)
{
    int n = 1 << ctx->nbits;
    int i;

    data[0] = 0;
    for(i = 1; i < n/2; i++) {
        float tmp1 = data[i    ];
        float tmp2 = data[n - i];
        float s = SIN(ctx, n, 2*i);

        s *= tmp1 + tmp2;
        tmp1 = (tmp1 - tmp2) * 0.5f;
        data[i    ] = s + tmp1;
        data[n - i] = s - tmp1;
    }

    data[n/2] *= 2;
    ff_rdft_calc(&ctx->rdft, data);

    data[0] *= 0.5f;

    for(i = 1; i < n-2; i += 2) {
        data[i + 1] += data[i - 1];
        data[i    ] = -data[i + 2];
    }

    data[n-1] = 0;
}
Exemple #3
0
static void ff_dct_calc_III_c(DCTContext *ctx, FFTSample *data)
{
    int n = 1 << ctx->nbits;
    int i;

    float next = data[n - 1];
    float inv_n = 1.0f / n;

    for (i = n - 2; i >= 2; i -= 2) {
        float val1 = data[i    ];
        float val2 = data[i - 1] - data[i + 1];
        float c = COS(ctx, n, i);
        float s = SIN(ctx, n, i);

        data[i    ] = c * val1 + s * val2;
        data[i + 1] = s * val1 - c * val2;
    }

    data[1] = 2 * next;

    ff_rdft_calc(&ctx->rdft, data);

    for (i = 0; i < n / 2; i++) {
        float tmp1 = data[i        ] * inv_n;
        float tmp2 = data[n - i - 1] * inv_n;
        float csc = ctx->csc2[i] * (tmp1 - tmp2);

        tmp1 += tmp2;
        data[i        ] = tmp1 + csc;
        data[n - i - 1] = tmp1 - csc;
    }
}
Exemple #4
0
static void ff_dct_calc_II_c(DCTContext *ctx, FFTSample *data)
{
    int n = 1 << ctx->nbits;
    int i;
    float next;

    for (i=0; i < n/2; i++) {
        float tmp1 = data[i        ];
        float tmp2 = data[n - i - 1];
        float s = SIN(ctx, n, 2*i + 1);

        s *= tmp1 - tmp2;
        tmp1 = (tmp1 + tmp2) * 0.5f;

        data[i    ] = tmp1 + s;
        data[n-i-1] = tmp1 - s;
    }

    ff_rdft_calc(&ctx->rdft, data);

    next = data[1] * 0.5;
    data[1] *= -1;

    for (i = n - 2; i >= 0; i -= 2) {
        float inr = data[i    ];
        float ini = data[i + 1];
        float c = COS(ctx, n, i);
        float s = SIN(ctx, n, i);

        data[i  ] = c * inr + s * ini;

        data[i+1] = next;

        next +=     s * inr - c * ini;
    }
}
Exemple #5
0
int main(int argc, char **argv)
{
    FFTComplex *tab, *tab1, *tab_ref;
    FFTSample *tab2;
    int it, i, c;
    int do_speed = 0;
    int err = 1;
    enum tf_transform transform = TRANSFORM_FFT;
    int do_inverse = 0;
    FFTContext s1, *s = &s1;
    FFTContext m1, *m = &m1;
    RDFTContext r1, *r = &r1;
    DCTContext d1, *d = &d1;
    int fft_nbits, fft_size, fft_size_2;
    double scale = 1.0;
    AVLFG prng;
    av_lfg_init(&prng, 1);

    fft_nbits = 9;
    for(;;) {
        c = getopt(argc, argv, "hsimrdn:f:");
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            help();
            break;
        case 's':
            do_speed = 1;
            break;
        case 'i':
            do_inverse = 1;
            break;
        case 'm':
            transform = TRANSFORM_MDCT;
            break;
        case 'r':
            transform = TRANSFORM_RDFT;
            break;
        case 'd':
            transform = TRANSFORM_DCT;
            break;
        case 'n':
            fft_nbits = atoi(optarg);
            break;
        case 'f':
            scale = atof(optarg);
            break;
        }
    }

    fft_size = 1 << fft_nbits;
    fft_size_2 = fft_size >> 1;
    tab = av_malloc(fft_size * sizeof(FFTComplex));
    tab1 = av_malloc(fft_size * sizeof(FFTComplex));
    tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
    tab2 = av_malloc(fft_size * sizeof(FFTSample));

    switch (transform) {
    case TRANSFORM_MDCT:
        av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"IMDCT");
        else
            av_log(NULL, AV_LOG_INFO,"MDCT");
        ff_mdct_init(m, fft_nbits, do_inverse, scale);
        break;
    case TRANSFORM_FFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"IFFT");
        else
            av_log(NULL, AV_LOG_INFO,"FFT");
        ff_fft_init(s, fft_nbits, do_inverse);
        fft_ref_init(fft_nbits, do_inverse);
        break;
    case TRANSFORM_RDFT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
        else
            av_log(NULL, AV_LOG_INFO,"DFT_R2C");
        ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
        fft_ref_init(fft_nbits, do_inverse);
        break;
    case TRANSFORM_DCT:
        if (do_inverse)
            av_log(NULL, AV_LOG_INFO,"DCT_III");
        else
            av_log(NULL, AV_LOG_INFO,"DCT_II");
        ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
        break;
    }
    av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);

    /* generate random data */

    for (i = 0; i < fft_size; i++) {
        tab1[i].re = frandom(&prng);
        tab1[i].im = frandom(&prng);
    }

    /* checking result */
    av_log(NULL, AV_LOG_INFO,"Checking...\n");

    switch (transform) {
    case TRANSFORM_MDCT:
        if (do_inverse) {
            imdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
            ff_imdct_calc(m, tab2, (float *)tab1);
            err = check_diff((float *)tab_ref, tab2, fft_size, scale);
        } else {
            mdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);

            ff_mdct_calc(m, tab2, (float *)tab1);

            err = check_diff((float *)tab_ref, tab2, fft_size / 2, scale);
        }
        break;
    case TRANSFORM_FFT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        ff_fft_permute(s, tab);
        ff_fft_calc(s, tab);

        fft_ref(tab_ref, tab1, fft_nbits);
        err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 1.0);
        break;
    case TRANSFORM_RDFT:
        if (do_inverse) {
            tab1[         0].im = 0;
            tab1[fft_size_2].im = 0;
            for (i = 1; i < fft_size_2; i++) {
                tab1[fft_size_2+i].re =  tab1[fft_size_2-i].re;
                tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
            }

            memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
            tab2[1] = tab1[fft_size_2].re;

            ff_rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            for (i = 0; i < fft_size; i++) {
                tab[i].re = tab2[i];
                tab[i].im = 0;
            }
            err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
        } else {
            for (i = 0; i < fft_size; i++) {
                tab2[i]    = tab1[i].re;
                tab1[i].im = 0;
            }
            ff_rdft_calc(r, tab2);
            fft_ref(tab_ref, tab1, fft_nbits);
            tab_ref[0].im = tab_ref[fft_size_2].re;
            err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
        }
        break;
    case TRANSFORM_DCT:
        memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
        ff_dct_calc(d, tab);
        if (do_inverse) {
            idct_ref(tab_ref, tab1, fft_nbits);
        } else {
            dct_ref(tab_ref, tab1, fft_nbits);
        }
        err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
        break;
    }

    /* do a speed test */

    if (do_speed) {
        int64_t time_start, duration;
        int nb_its;

        av_log(NULL, AV_LOG_INFO,"Speed test...\n");
        /* we measure during about 1 seconds */
        nb_its = 1;
        for(;;) {
            time_start = gettime();
            for (it = 0; it < nb_its; it++) {
                switch (transform) {
                case TRANSFORM_MDCT:
                    if (do_inverse) {
                        ff_imdct_calc(m, (float *)tab, (float *)tab1);
                    } else {
                        ff_mdct_calc(m, (float *)tab, (float *)tab1);
                    }
                    break;
                case TRANSFORM_FFT:
                    memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
                    ff_fft_calc(s, tab);
                    break;
                case TRANSFORM_RDFT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    ff_rdft_calc(r, tab2);
                    break;
                case TRANSFORM_DCT:
                    memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
                    ff_dct_calc(d, tab2);
                    break;
                }
            }
            duration = gettime() - time_start;
            if (duration >= 1000000)
                break;
            nb_its *= 2;
        }
        av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
               (double)duration / nb_its,
               (double)duration / 1000000.0,
               nb_its);
    }

    switch (transform) {
    case TRANSFORM_MDCT:
        ff_mdct_end(m);
        break;
    case TRANSFORM_FFT:
        ff_fft_end(s);
        break;
    case TRANSFORM_RDFT:
        ff_rdft_end(r);
        break;
    case TRANSFORM_DCT:
        ff_dct_end(d);
        break;
    }

    av_free(tab);
    av_free(tab1);
    av_free(tab2);
    av_free(tab_ref);
    av_free(exptab);

    return err;
}
Exemple #6
0
void av_rdft_calc(RDFTContext *s, FFTSample *data)
{
    ff_rdft_calc(s, data);
}