void Foam::GAMGPreconditioner::precondition
(
    scalarField& wA,
    const scalarField& rA,
    const direction cmpt
) const
{
    wA = 0.0;
    scalarField AwA(wA.size());
    scalarField finestCorrection(wA.size());
    scalarField finestResidual(rA);

    // Create coarse grid correction fields
    PtrList<scalarField> coarseCorrX;

    // Create coarse grid sources
    PtrList<scalarField> coarseB;

    // Create the smoothers for all levels
    PtrList<lduSmoother> smoothers;

    // Initialise the above data structures
    GAMG_.initVcycle(coarseCorrX, coarseB, smoothers);

    for (label cycle=0; cycle<nVcycles_; cycle++)
    {
        GAMG_.Vcycle
        (
            smoothers,
            wA,
            rA,
            AwA,
            finestCorrection,
            finestResidual,
            coarseCorrX,
            coarseB,
            cmpt
        );

        if (cycle < nVcycles_ - 1)
        {
            // Calculate finest level residual field
            matrix_.Amul(AwA, wA, coupleBouCoeffs_, interfaces_, cmpt);
            finestResidual = rA;
            finestResidual -= AwA;
        }
    }
}
void Foam::GAMGPreconditioner::precondition
(
    solveScalarField& wA,
    const solveScalarField& rA_ss,
    const direction cmpt
) const
{
    wA = 0.0;
    solveScalarField AwA(wA.size());
    solveScalarField finestCorrection(wA.size());
    solveScalarField finestResidual(rA_ss);

    // Create coarse grid correction fields
    PtrList<solveScalarField> coarseCorrFields;

    // Create coarse grid sources
    PtrList<solveScalarField> coarseSources;

    // Create the smoothers for all levels
    PtrList<lduMatrix::smoother> smoothers;

    // Scratch fields if processor-agglomerated coarse level meshes
    // are bigger than original. Usually not needed
    solveScalarField ApsiScratch;
    solveScalarField finestCorrectionScratch;

    // Initialise the above data structures
    initVcycle
    (
        coarseCorrFields,
        coarseSources,
        smoothers,
        ApsiScratch,
        finestCorrectionScratch
    );


    scalarField rA_s;

    for (label cycle=0; cycle<nVcycles_; cycle++)
    {
        const scalarField& rA =
            ConstFieldWrapper<scalar, solveScalar>::get(rA_ss, rA_s);

        Vcycle
        (
            smoothers,
            wA,
            rA,
            AwA,
            finestCorrection,
            finestResidual,

            (ApsiScratch.size() ? ApsiScratch : AwA),
            (
                finestCorrectionScratch.size()
              ? finestCorrectionScratch
              : finestCorrection
            ),

            coarseCorrFields,
            coarseSources,
            cmpt
        );

        if (cycle < nVcycles_-1)
        {
            // Calculate finest level residual field
            matrix_.Amul(AwA, wA, interfaceBouCoeffs_, interfaces_, cmpt);
            finestResidual = rA_ss;
            finestResidual -= AwA;
        }
    }
}
Exemple #3
0
Foam::solverPerformance Foam::GAMGSolver::solve
(
    scalargpuField& psi,
    const scalargpuField& source,
    const direction cmpt
) const
{
    // Setup class containing solver performance data
    solverPerformance solverPerf(typeName, fieldName_);

    // Calculate A.psi used to calculate the initial residual
    scalargpuField Apsi(psi.size());
    matrix_.Amul(Apsi, psi, interfaceBouCoeffs_, interfaces_, cmpt);

    // Create the storage for the finestCorrection which may be used as a
    // temporary in normFactor
    scalargpuField finestCorrection(psi.size());

    // Calculate normalisation factor
    scalar normFactor = this->normFactor(psi, source, Apsi, finestCorrection);

    if (debug >= 2)
    {
        Pout<< "   Normalisation factor = " << normFactor << endl;
    }

    // Calculate initial finest-grid residual field
    scalargpuField finestResidual(source - Apsi);

    // Calculate normalised residual for convergence test
    solverPerf.initialResidual() = gSumMag
                                   (
                                       finestResidual,
                                       matrix().mesh().comm()
                                   )/normFactor;
    solverPerf.finalResidual() = solverPerf.initialResidual();


    // Check convergence, solve if not converged
    if
    (
        minIter_ > 0
        || !solverPerf.checkConvergence(tolerance_, relTol_)
    )
    {
        // Create coarse grid correction fields
        PtrList<scalargpuField> coarseCorrFields;

        // Create coarse grid sources
        PtrList<scalargpuField> coarseSources;

        // Create the smoothers for all levels
        PtrList<lduMatrix::smoother> smoothers;

        // Scratch fields if processor-agglomerated coarse level meshes
        // are bigger than original. Usually not needed
        scalargpuField scratch1;
        scalargpuField scratch2;

        // Initialise the above data structures
        initVcycle
        (
            coarseCorrFields,
            coarseSources,
            smoothers,
            scratch1,
            scratch2
        );

        do
        {
            Vcycle
            (
                smoothers,
                psi,
                source,
                Apsi,
                finestCorrection,
                finestResidual,

                (scratch1.size() ? scratch1 : Apsi),
                (scratch2.size() ? scratch2 : finestCorrection),

                coarseCorrFields,
                coarseSources,
                cmpt
            );

            // Calculate finest level residual field
            matrix_.Amul(Apsi, psi, interfaceBouCoeffs_, interfaces_, cmpt);
            finestResidual = source;
            finestResidual -= Apsi;

            solverPerf.finalResidual() = gSumMag
                                         (
                                             finestResidual,
                                             matrix().mesh().comm()
                                         )/normFactor;

            if (debug >= 2)
            {
                solverPerf.print(Info.masterStream(matrix().mesh().comm()));
            }
        } while
        (
            (
                ++solverPerf.nIterations() < maxIter_
                && !solverPerf.checkConvergence(tolerance_, relTol_)
            )
            || solverPerf.nIterations() < minIter_
        );
    }

    return solverPerf;
}