SANE_Status sane_read (SANE_Handle handle, SANE_Byte * buf, SANE_Int max_len, SANE_Int * len) { Mustek_Usb_Scanner *s = handle; SANE_Word lines_to_read, lines_read; SANE_Status status; DBG (5, "sane_read: start\n"); if (!s) { DBG (1, "sane_read: handle is null!\n"); return SANE_STATUS_INVAL; } if (!buf) { DBG (1, "sane_read: buf is null!\n"); return SANE_STATUS_INVAL; } if (!len) { DBG (1, "sane_read: len is null!\n"); return SANE_STATUS_INVAL; } *len = 0; if (!s->scanning) { DBG (3, "sane_read: scan was cancelled, is over or has not been " "initiated yet\n"); return SANE_STATUS_CANCELLED; } if (s->hw->scan_buffer_len == 0) { if (s->read_rows > 0) { lines_to_read = SCAN_BUFFER_SIZE / (s->hw->width * s->hw->bpp / 8); if (lines_to_read > s->read_rows) lines_to_read = s->read_rows; s->hw->temp_buffer_start = s->hw->temp_buffer; s->hw->temp_buffer_len = (s->hw->width * s->hw->bpp / 8) * lines_to_read; DBG (4, "sane_read: reading %d source lines\n", lines_to_read); RIE (usb_high_scan_get_rows (s->hw, s->hw->temp_buffer, lines_to_read, SANE_FALSE)); RIE (fit_lines (s, s->hw->temp_buffer, s->hw->scan_buffer, lines_to_read, &lines_read)); s->read_rows -= lines_to_read; if ((s->total_lines + lines_read) > s->height_dots) lines_read = s->height_dots - s->total_lines; s->total_lines += lines_read; DBG (4, "sane_read: %d destination lines, %d total\n", lines_read, s->total_lines); s->hw->scan_buffer_start = s->hw->scan_buffer; s->hw->scan_buffer_len = (s->width_dots * s->bpp / 8) * lines_read; } else { DBG (4, "sane_read: scan finished -- exit\n"); return SANE_STATUS_EOF; } } if (s->hw->scan_buffer_len == 0) { DBG (4, "sane_read: scan finished -- exit\n"); return SANE_STATUS_EOF; } *len = MIN (max_len, (SANE_Int) s->hw->scan_buffer_len); memcpy (buf, s->hw->scan_buffer_start, *len); DBG (4, "sane_read: exit, read %d bytes from scan_buffer; " "%ld bytes remaining\n", *len, (long int) (s->hw->scan_buffer_len - *len)); s->hw->scan_buffer_len -= (*len); s->hw->scan_buffer_start += (*len); s->total_bytes += (*len); return SANE_STATUS_GOOD; }
// returns the 35 points associated to the test chart in [x1,y1,x2,y2] // format if there are more than 35 points will return NULL matd_t* build_homography(image_u32_t* im, vx_buffer_t* buf, metrics_t met) { frame_t frame = {{0,0}, {im->width-1, im->height-1}, {0,0}, {1,1}}; int good_size = 0; zarray_t* blobs = zarray_create(sizeof(node_t)); hsv_find_balls_blob_detector(im, frame, met, blobs, buf); // remove unqualified blobs if(met.qualify) { for(int i = 0; i < zarray_size(blobs); i++) { node_t n; zarray_get(blobs, i, &n); if(!blob_qualifies(im, &n, met, buf)) zarray_remove_index(blobs, i, 0); } } if(zarray_size(blobs) == NUM_TARGETS ||zarray_size(blobs) == NUM_CHART_BLOBS) good_size = 1; zarray_sort(blobs, compare); int pix_array[zarray_size(blobs)*2]; // iterate through int idx = 0; double size = 2.0; for(int i = 0; i < zarray_size(blobs); i++) { node_t n; zarray_get(blobs, i, &n); loc_t center = { .x = n.ave_loc.x/n.num_children, .y = n.ave_loc.y/n.num_children}; loc_t parent = { .x = n.id % im->stride, .y = n.id / im->stride}; if(buf != NULL) { add_circle_to_buffer(buf, size, center, vx_maroon); // add_circle_to_buffer(buf, size, parent, vx_olive); // add_sides_to_buffer(im, buf, 1.0, &n, vx_orange, met); loc_t* lp = fit_lines(im, &n, buf, met, NULL); if(lp != NULL) { // printf("(%d, %d) (%d, %d) (%d, %d) (%d, %d) \n", // lp[0].x, lp[0].y, lp[1].x, lp[1].y, lp[2].x, lp[2].y, lp[3].x, lp[3].y); loc_t intersect = get_line_intersection(lp[0], lp[1], lp[2], lp[3]); if(in_range(im, intersect.x, intersect.y)) { loc_t ext_lines[2]; extend_lines_to_edge_of_image(im, intersect, center, ext_lines); add_line_to_buffer(im, buf, 2.0, ext_lines[0], ext_lines[1], vx_blue); } for(int i = 0; i < 4; i++) { pix_array[i*2] = lp[i].x; pix_array[i*2+1] = lp[i].y; add_circle_to_buffer(buf, 3.0, lp[i], vx_orange); } } free(n.sides); // loc_t corners[4] = {{n.box.right, n.box.top}, // {n.box.right, n.box.bottom}, // {n.box.left, n.box.bottom}, // {n.box.left, n.box.top}}; // print extremes of box // if(1) { // add_circle_to_buffer(buf, size, corners[0], vx_green); // add_circle_to_buffer(buf, size, corners[1], vx_yellow); // add_circle_to_buffer(buf, size, corners[2], vx_red); // add_circle_to_buffer(buf, size, corners[3], vx_blue); // for(int j = 0; j < 4; j++) { // // add_circle_to_buffer(buf, size, corners[j], vx_maroon); // } // } } } matd_t* H; H = dist_homography(pix_array, NUM_TARGETS); // if(0) {//zarray_size(blobs) == NUM_CHART_BLOBS){ // H = dist_homography(pix_array, NUM_CHART_BLOBS); // } // else if(zarray_size(blobs) == NUM_TARGETS){ // H = dist_homography(pix_array, NUM_TARGETS); // if(met.add_lines) connect_lines(blobs, buf); // } // else { // if(met.dothis) // printf("num figures: %d\n", zarray_size(blobs)); // return(NULL); // } // make projected points // project_measurements_through_homography(H, buf, blobs, zarray_size(blobs)); zarray_destroy(blobs); return(H); } /* { R00, R01, R02, TX, R10, R11, R12, TY, R20, R21, R22, TZ, 0, 0, 0, 1 }); */ double get_rotation(const char* axis, matd_t* H) { double cosine, sine, theta; if(strncmp(axis,"x", 1)) { cosine = MATD_EL(H, 1, 1); sine = MATD_EL(H, 2, 1); } else if(strncmp(axis,"y", 1)) { cosine = MATD_EL(H, 0, 0); sine = MATD_EL(H, 0, 2); } else if(strncmp(axis,"z", 1)) { cosine = MATD_EL(H, 0, 0); sine = MATD_EL(H, 1, 0); } else assert(0); theta = atan2(sine, cosine); return(theta); } // if buf is NULL, will not fill with points of the homography void take_measurements(image_u32_t* im, vx_buffer_t* buf, metrics_t met) { // form homography matd_t* H = build_homography(im, buf, met); if(H == NULL) return; // get model view from homography matd_t* Model = homography_to_pose(H, 654, 655, 334, 224); // printf("\n"); // matd_print(H, matrix_format); // printf("\n\n"); // printf("model:\n"); // matd_print(Model, "%15f"); // printf("\n\n"); // matd_print(matd_op("M^-1",Model), matrix_format); // printf("\n"); // extrapolate metrics from model view double TX = MATD_EL(Model, 0, 3); double TY = MATD_EL(Model, 1, 3); double TZ = MATD_EL(Model, 2, 3); // double rot_x = get_rotation("x", H); // double rot_y = get_rotation("y", H); // double rot_z = get_rotation("z", H); double cosine = MATD_EL(Model, 0, 0); double rot_z = acos(cosine) * 180/1.5 - 180; cosine = MATD_EL(Model, 2, 2); double rot_x = asin(cosine) * 90/1.3 + 90; cosine = MATD_EL(Model, 1, 1); double rot_y = asin(cosine); char str[200]; sprintf(str, "<<#00ffff,serif-30>> DIST:%lf Offset:(%lf, %lf)\n rot: (%lf, %lf, %lf)\n", TZ, TX, TY, rot_x, rot_y, rot_z); vx_object_t *text = vxo_text_create(VXO_TEXT_ANCHOR_BOTTOM_LEFT, str); vx_buffer_add_back(buf, vxo_pix_coords(VX_ORIGIN_BOTTOM_LEFT, text)); // printf("dist: %lf cos:%lf angle: %lf\n", TZ, cosine, theta); }