void OutputFileFITS::writeKeyword(const std::string& name, const std::string& value, const std::string& comment) {
	int status = 0;
	char card[FLEN_CARD];

	if(!isOpened())
		throwException("Error in OutputFileFITS::writeKeyword() ", status);

	// check if this is a protected keyword that must not be changed.
	fits_read_card(infptr, name.c_str(), card, &status);
	if(status != KEY_NO_EXIST) {
		if (*card && fits_get_keyclass(card) == TYP_STRUC_KEY)
			throwException("Error in OutputFileFITS::writeKeyword() protected ", status);
	}
	if (status != KEY_NO_EXIST && status != 0)
		throwException("Error in OutputFileFITS::writeKeyword() ", status);

	status = 0;
	std::string key = name + " = " + value + " / " + comment;
	int keytype;
	fits_parse_template((char*)key.c_str(), card, &keytype, &status);
	if (status)
		throwException("Error in OutputFileFITS::writeKeyword() ", status);

	fits_update_card(infptr, name.c_str(), card, &status);
	if (status)
		throwException("Error in OutputFileFITS::writeKeyword() ", status);
}
int addkey(char *outfile, char *keyword, char *keyvalue)
{
	fitsfile *outfptr;         /* FITS file pointer, defined in fitsio.h */
	char card[FLEN_CARD], newcard[FLEN_CARD];
	char oldvalue[FLEN_VALUE], comment[FLEN_COMMENT];
	int status = 0;   /*  CFITSIO status value MUST be initialized to zero!  */
	int keytype;

	if (!fits_open_file(&outfptr, outfile, READWRITE, &status))
	{
		if (fits_read_card(outfptr, keyword, card, &status))
		{
			printf("Keyword does not exist\n");
			card[0] = '\0';
			comment[0] = '\0';
			status = 0;  /* reset status after error */
		}
		else
			printf("%s\n",card);

		/* check if this is a protected keyword that must not be changed */
		if (*card && fits_get_keyclass(card) == TYP_STRUC_KEY)
		{
			printf("Protected keyword cannot be modified.\n");
		}
		else
		{
			/* get the comment string */
			if (*card)fits_parse_value(card, oldvalue, comment, &status);

			/* construct template for new keyword */
			strcpy(newcard, keyword);     /* copy keyword name */
			strcat(newcard, " = ");       /* '=' value delimiter */
			strcat(newcard, keyvalue);    /* new value */
			if (*comment) {
				strcat(newcard, " / ");  /* comment delimiter */
				strcat(newcard, comment);     /* append the comment */
			}

			/* reformat the keyword string to conform to FITS rules */
			fits_parse_template(newcard, card, &keytype, &status);

			/* overwrite the keyword with the new value */
			fits_update_card(outfptr, keyword, card, &status);

			printf("Keyword has been changed to:\n");
			printf("%s\n",card);
		}  
		fits_close_file(outfptr, &status);
	}    /* open_file */

	/* if error occured, print out error message */
	if (status) fits_report_error(stderr, status);
	return(status);
}
int main(int argc, char *argv[])
{
  fitsfile *fptr = 0;         /* FITS file pointer, defined in fitsio.h */
  char card[FLEN_CARD], newcard[FLEN_CARD];
  char oldvalue[FLEN_VALUE], comment[FLEN_COMMENT];
  int status = 0;   /*  CFITSIO status value MUST be initialized to zero!  */
  int keytype = 0;

  if (argc != 4) {
    fprintf(stderr, "Usage:  %s filename[ext] keyword newvalue\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "Modify the value of a header keyword.\n");
    fprintf(stderr, "\n");
    fprintf(stderr, "Examples: \n");
    fprintf(stderr, "  %s file.fits dec 30.0 - set DEC = 30.0 \n", argv[0]);
    return (0);
  }

  if (!fits_open_file(&fptr, argv[1], READWRITE, &status)) {
    if (fits_read_card(fptr,argv[2], card, &status)) {
      fprintf(stderr, "Keyword does not exist\n");
      return (1);
    }

    if (fits_get_keyclass(card) == TYP_STRUC_KEY) {
      fprintf(stderr, "Protected keyword cannot be modified\n");
      return (1);
    }

    fits_parse_value(card, oldvalue, comment, &status);

    /* construct template for new keyword */
    strcpy(newcard, argv[2]);     /* copy keyword name */
    strcat(newcard, " = ");       /* '=' value delimiter */
    strcat(newcard, argv[3]);     /* new value */
    if (*comment) {
      strcat(newcard, " / ");  /* comment delimiter */
      strcat(newcard, comment);     /* append the comment */
    }

    /* reformat the keyword string to conform to FITS rules */
    fits_parse_template(newcard, card, &keytype, &status);

    /* overwrite the keyword with the new value */
    fits_update_card(fptr, argv[2], card, &status);

    fits_close_file(fptr, &status);
  }    /* open_file */

  /* if error occured, print out error message */
  if (status) {
    fits_report_error(stderr, status);
  }
  return (status);
}
int copykey( char *keyword, char *fromfile, char *tofile )
{
	fitsfile *fptr;         /* FITS file pointer, defined in fitsio.h */
	char fromcard[FLEN_CARD], tocard[FLEN_CARD], tempcard[FLEN_CARD];
	char oldvalue[FLEN_VALUE], comment[FLEN_COMMENT];
	int status = 0;   /*  CFITSIO status value MUST be initialized to zero!  */
	int keytype;


	/* Open fromfile and grab keyword and value */
	if (!fits_open_file(&fptr, fromfile, READONLY, &status))
	{
		if (fits_read_card(fptr, keyword, fromcard, &status))
			printf("Keyword does not exist in source.\n");
		else
		{
			printf("Copying the following keyword.\n%s\n",fromcard);
			fits_close_file(fptr, &status);

			/* Open tofile and check for keyword */
			if (!fits_open_file(&fptr, tofile, READWRITE, &status))
			{
				if (fits_read_card(fptr, keyword, tocard, &status))
					printf("Keyword does not exist in target.\nWriting.\n");
				else
					printf("Keyword exists in target.\nOverwriting.\n%s\n",tocard);
				status = 0;

				/* check if this is a protected keyword that must not be changed */
				if (*tocard && fits_get_keyclass(tocard) == TYP_STRUC_KEY)
					printf("Protected keyword cannot be modified.\n");
				else
				{
					/* overwrite the keyword with the new value */
					fits_update_card(fptr, keyword, fromcard, &status);
					printf("Keyword has been changed to:\n");
					printf("%s\n",fromcard);
				}
				fits_close_file(fptr, &status);
			}
		} /* open_target */ 
	}    /* open_source */

	/* if error occured, print out error message */
	if (status) fits_report_error(stderr, status);
	return(status);
}
int appendheader ( char *outfile, char *infile )
{
	fitsfile *infptr, *outfptr;         /* FITS file pointer, defined in fitsio.h */
	char card[FLEN_CARD];   /* Standard string lengths defined in fitsio.h */
	int status = 0;   /* CFITSIO status value MUST be initialized to zero! */
	int nkeys, ii;
	char keyword[FLEN_KEYWORD], keyvalue[FLEN_VALUE], keycomment[FLEN_COMMENT];
	char temp[FLEN_KEYWORD];

	strcpy(temp,"COMMENT");
	if (!fits_open_file(&infptr, infile, READONLY, &status))
	{
		if (!fits_open_file(&outfptr, outfile, READWRITE, &status))
		{
			fits_get_hdrspace(infptr, &nkeys, NULL, &status); /* get # of keywords */

			for (ii = 1; ii <= nkeys; ii++) { /* Read and write each keywords */

				if (fits_read_record(infptr, ii, card, &status))break;
				fits_read_keyn(infptr, ii, keyword, keyvalue, keycomment, &status);

                                /* check if this is a protected keyword that must not be changed */
				if (*card && fits_get_keyclass(card) == TYP_STRUC_KEY)
					printf("%s - Protected keyword cannot be modified.\n", keyword);
				else
				{	if (!strcmp(temp, keyword)) 
					{	/* do not overwrite COMMENTs */
						fits_write_record(outfptr, card, &status);
					}
					else
					{
						fits_update_card(outfptr, keyword, card, &status);
					}
                                        printf("Writing - %s\n", card);
				}

			}
			fits_close_file(outfptr, &status);
		}

		if (status == END_OF_FILE)  status = 0; /* Reset after normal error */

		fits_close_file(infptr, &status);
	}
}
Exemple #6
0
int main(int argc, char *argv[])
{
    fitsfile *infptr, *outfptr;   /* FITS file pointers defined in fitsio.h */
    int status = 0, ii = 1, iteration = 0, single = 0, hdupos;
    int hdutype, bitpix, bytepix, naxis = 0, nkeys, datatype = 0, anynul;
    long naxes[9] = {1, 1, 1, 1, 1, 1, 1, 1, 1};
    long first, totpix = 0, npix;
    double *array, bscale = 1.0, bzero = 0.0, nulval = 0.;
    char card[81];

    if (argc != 3)
    {
 printf("\n");
 printf("Usage:  imcopy inputImage outputImage[compress]\n");
 printf("\n");
 printf("Copy an input image to an output image, optionally compressing\n");
 printf("or uncompressing the image in the process.  If the [compress]\n");
 printf("qualifier is appended to the output file name then the input image\n");
 printf("will be compressed using the tile-compressed format.  In this format,\n");
 printf("the image is divided into rectangular tiles and each tile of pixels\n");
 printf("is compressed and stored in a variable-length row of a binary table.\n");
 printf("If the [compress] qualifier is omitted, and the input image is\n");
 printf("in tile-compressed format, then the output image will be uncompressed.\n");
 printf("\n");
 printf("If an extension name or number is appended to the input file name, \n");
 printf("enclosed in square brackets, then only that single extension will be\n");
 printf("copied to the output file.  Otherwise, every extension in the input file\n");
 printf("will be processed in turn and copied to the output file.\n");
 printf("\n");
 printf("Examples:\n");
 printf("\n");
 printf("1)  imcopy image.fit 'cimage.fit[compress]'\n");
 printf("\n");
 printf("    This compresses the input image using the default parameters, i.e.,\n");
 printf("    using the Rice compression algorithm and using row by row tiles.\n");
 printf("\n");
 printf("2)  imcopy cimage.fit image2.fit\n");
 printf("\n");
 printf("    This uncompress the image created in the first example.\n");
 printf("    image2.fit should be identical to image.fit if the image\n");
 printf("    has an integer datatype.  There will be small differences\n");
 printf("    in the pixel values if it is a floating point image.\n");
 printf("\n");
 printf("3)  imcopy image.fit 'cimage.fit[compress GZIP 100,100;4]'\n");
 printf("\n");
 printf("    This compresses the input image using the following parameters:\n");
 printf("         GZIP compression algorithm;\n");
 printf("         100 X 100 pixel compression tiles;\n");
 printf("         noise_bits = 4 (only used with floating point images)\n");
 printf("\n");
 printf("The full syntax of the compression qualifier is:\n");
 printf("    [compress ALGORITHM TDIM1,TDIM2,...; NOISE_BITS]\n");
 printf("where the allowed ALGORITHM values are Rice, GZIP, PLIO, \n");
 printf("and TDIMn is the size of the compression tile in each dimension,\n");
 printf("and NOISE_BITS = 1, 2, 3, or 4 and controls the amount of noise\n");
 printf("suppression when compressing floating point images. \n");
 printf("\n");
 printf("Note that it may be necessary to enclose the file names\n");
 printf("in single quote characters on the Unix command line.\n");
      return(0);
    }

    /* Open the input file and create output file */
    fits_open_file(&infptr, argv[1], READONLY, &status);
    fits_create_file(&outfptr, argv[2], &status);

    if (status != 0) {    
        fits_report_error(stderr, status);
        return(status);
    }

    fits_get_hdu_num(infptr, &hdupos);  /* Get the current HDU position */

    /* Copy only a single HDU if a specific extension was given */ 
    if (hdupos != 1 || strchr(argv[1], '[')) single = 1;

    for (; !status; hdupos++)  /* Main loop through each extension */
    {

      fits_get_hdu_type(infptr, &hdutype, &status);

      if (hdutype == IMAGE_HDU) {

          /* get image dimensions and total number of pixels in image */
          for (ii = 0; ii < 9; ii++)
              naxes[ii] = 1;

          fits_get_img_param(infptr, 9, &bitpix, &naxis, naxes, &status);

          totpix = naxes[0] * naxes[1] * naxes[2] * naxes[3] * naxes[4]
             * naxes[5] * naxes[6] * naxes[7] * naxes[8];
      }

      if (hdutype != IMAGE_HDU || naxis == 0 || totpix == 0) { 

          /* just copy tables and null images */
          fits_copy_hdu(infptr, outfptr, 0, &status);

      } else {

          /* Explicitly create new image, to support compression */
          fits_create_img(outfptr, bitpix, naxis, naxes, &status);
          if (status) {
                 fits_report_error(stderr, status);
                 return(status);
          }
	  	    
          /* copy all the user keywords (not the structural keywords) */
          fits_get_hdrspace(infptr, &nkeys, NULL, &status); 

          for (ii = 1; ii <= nkeys; ii++) {
              fits_read_record(infptr, ii, card, &status);
              if (fits_get_keyclass(card) > TYP_CMPRS_KEY)
                  fits_write_record(outfptr, card, &status);
          }

          switch(bitpix) {
              case BYTE_IMG:
                  datatype = TBYTE;
                  break;
              case SHORT_IMG:
                  datatype = TSHORT;
                  break;
              case LONG_IMG:
                  datatype = TINT;
                  break;
              case FLOAT_IMG:
                  datatype = TFLOAT;
                  break;
              case DOUBLE_IMG:
                  datatype = TDOUBLE;
                  break;
          }

          bytepix = abs(bitpix) / 8;

          npix = totpix;
          iteration = 0;

          /* try to allocate memory for the entire image */
          /* use double type to force memory alignment */
          array = (double *) calloc(npix, bytepix);

          /* if allocation failed, divide size by 2 and try again */
          while (!array && iteration < 10)  {
              iteration++;
              npix = npix / 2;
              array = (double *) calloc(npix, bytepix);
          }

          if (!array)  {
              printf("Memory allocation error\n");
              return(0);
          }

          /* turn off any scaling so that we copy the raw pixel values */
          fits_set_bscale(infptr,  bscale, bzero, &status);
          fits_set_bscale(outfptr, bscale, bzero, &status);

          first = 1;
          while (totpix > 0 && !status)
          {
             /* read all or part of image then write it back to the output file */
             fits_read_img(infptr, datatype, first, npix, 
                     &nulval, array, &anynul, &status);

             fits_write_img(outfptr, datatype, first, npix, array, &status);
             totpix = totpix - npix;
             first  = first  + npix;
          }
          free(array);
      }

      if (single) break;  /* quit if only copying a single HDU */
      fits_movrel_hdu(infptr, 1, NULL, &status);  /* try to move to next HDU */
    }

    if (status == END_OF_FILE)  status = 0; /* Reset after normal error */

    fits_close_file(outfptr,  &status);
    fits_close_file(infptr, &status);

    /* if error occurred, print out error message */
    if (status)
       fits_report_error(stderr, status);
    return(status);
}
Exemple #7
0
/* copy image section from input to putput, with binning */
int copyImageSection(fitsfile *ifptr, fitsfile *ofptr,
		     int *dims, double *cens, int bin, char *slice,
		     int *status)
{
  void *buf;
  char card[FLEN_CARD];
  char tbuf[SZ_LINE];
  int numkeys, nkey, bitpix, dtype;
  int start[2];
  int end[2];
  int naxis = 2;
  long nelements;
  long naxes[2];
  long fpixel[2] = {1,1};
  buf = getImageToArray(ifptr, dims, cens, bin, slice, start, end, &bitpix,
			status);
  if( !buf || *status ){
    fits_get_errstatus(*status, tbuf);
    fprintf(stderr, "ERROR: could not create section for output image: %s\n",
	    tbuf);
    return *status;
  }
  /* get image size and total number of elements */
  naxes[0] = (int)((end[0] - start[0] + 1) / bin);
  naxes[1] = (int)((end[1] - start[1] + 1) / bin);
  nelements = naxes[0] * naxes[1];
  /* convert bitpix to cfitio data type */
  switch(bitpix){
  case 8:
    dtype = TBYTE;
    break;
  case 16:
    dtype = TSHORT;
    break;
  case -16:
    dtype = TUSHORT;
    break;
  case 32:
    dtype = TINT;
    break;
  case 64:
    dtype = TLONGLONG;
    break;
  case -32:
    dtype = TFLOAT;
    break;
  case -64:
    dtype = TDOUBLE;
    break;
  default:
    fprintf(stderr, "ERROR: unknown data type for image section\n");
    return -1;
  }
  /* this code is modeled after cfitsio/cfileio.c/fits_copy_image_section() */
  fits_create_img(ofptr, bitpix, naxis, naxes, status);
  /* copy all other non-structural keywords from the input to output file */
  fits_get_hdrspace(ifptr, &numkeys, NULL, status);
  for(nkey=4; nkey<=numkeys; nkey++) {
    fits_read_record(ifptr, nkey, card, status);
    if (fits_get_keyclass(card) > TYP_CMPRS_KEY){
      /* write the record to the output file */
      fits_write_record(ofptr, card, status);
    }
  }
  if( *status > 0 ){
    fprintf(stderr,
	    "ERROR: can't copy header from input image to output section");
    return(*status);
  }
  /* write image to FITS file */
  fits_write_pix(ofptr, dtype, fpixel, nelements, buf, status);
  /* update LTM/TLV values in header */
  updateLTM(ifptr, ofptr,
	    (int)((end[0] + start[0]) / 2), (int)((end[1] + start[1]) / 2), 
	    (int)(end[0] - start[0] + 1), (int)(end[1] - start[1] + 1),
	    bin, 1);
  /* free up space */
  if( buf ){
    free(buf);
  }
  /* return status */
  return *status;
}
Exemple #8
0
int main(int argc, char *argv[])
{
    fitsfile *fptr;         /* FITS file pointer, defined in fitsio.h */
    char card[FLEN_CARD], newcard[FLEN_CARD];
    char oldvalue[FLEN_VALUE], comment[FLEN_COMMENT];
    int status = 0;   /*  CFITSIO status value MUST be initialized to zero!  */
    int iomode, keytype;

    if (argc == 3) 
      iomode = READONLY;
    else if (argc == 4)
      iomode = READWRITE;
    else {
      printf("Usage:  modhead filename[ext] keyword newvalue\n");
      printf("\n");
      printf("Write or modify the value of a header keyword.\n");
      printf("If 'newvalue' is not specified then just print \n");
      printf("the current value. \n");
      printf("\n");
      printf("Examples: \n");
      printf("  modhead file.fits dec      - list the DEC keyword \n");
      printf("  modhead file.fits dec 30.0 - set DEC = 30.0 \n");
      return(0);
    }

    if (!fits_open_file(&fptr, argv[1], iomode, &status))
    {
      if (fits_read_card(fptr,argv[2], card, &status))
      {
        printf("Keyword does not exist\n");
        card[0] = '\0';
        comment[0] = '\0';
        status = 0;  /* reset status after error */
      }
      else
        printf("%s\n",card);

      if (argc == 4)  /* write or overwrite the keyword */
      {
          /* check if this is a protected keyword that must not be changed */
          if (*card && fits_get_keyclass(card) == TYP_STRUC_KEY)
          {
            printf("Protected keyword cannot be modified.\n");
          }
          else
          {
            /* get the comment string */
            if (*card)fits_parse_value(card, oldvalue, comment, &status);

            /* construct template for new keyword */
            strcpy(newcard, argv[2]);     /* copy keyword name */
            strcat(newcard, " = ");       /* '=' value delimiter */
            strcat(newcard, argv[3]);     /* new value */
            if (*comment) {
              strcat(newcard, " / ");  /* comment delimiter */
              strcat(newcard, comment);     /* append the comment */
            }

            /* reformat the keyword string to conform to FITS rules */
            fits_parse_template(newcard, card, &keytype, &status);

            /* overwrite the keyword with the new value */
            fits_update_card(fptr, argv[2], card, &status);

            printf("Keyword has been changed to:\n");
            printf("%s\n",card);
          }
      }  /* if argc == 4 */
      fits_close_file(fptr, &status);
    }    /* open_file */

    /* if error occured, print out error message */
    if (status) fits_report_error(stderr, status);
    return(status);
}
Exemple #9
0
/*--------------------------------------------------------------------------*/
int ffhist(fitsfile **fptr,  /* IO - pointer to table with X and Y cols;    */
                             /*     on output, points to histogram image    */
           char *outfile,    /* I - name for the output histogram file      */
           int imagetype,    /* I - datatype for image: TINT, TSHORT, etc   */
           int naxis,        /* I - number of axes in the histogram image   */
           char colname[4][FLEN_VALUE],   /* I - column names               */
           double *minin,     /* I - minimum histogram value, for each axis */
           double *maxin,     /* I - maximum histogram value, for each axis */
           double *binsizein, /* I - bin size along each axis               */
           char minname[4][FLEN_VALUE], /* I - optional keywords for min    */
           char maxname[4][FLEN_VALUE], /* I - optional keywords for max    */
           char binname[4][FLEN_VALUE], /* I - optional keywords for binsize */
           double weightin,        /* I - binning weighting factor          */
           char wtcol[FLEN_VALUE], /* I - optional keyword or col for weight*/
           int recip,              /* I - use reciprocal of the weight?     */
           char *selectrow,        /* I - optional array (length = no. of   */
                             /* rows in the table).  If the element is true */
                             /* then the corresponding row of the table will*/
                             /* be included in the histogram, otherwise the */
                             /* row will be skipped.  Ingnored if *selectrow*/
                             /* is equal to NULL.                           */
           int *status)
{
    int ii, datatype, repeat, imin, imax, ibin, bitpix, tstatus, use_datamax = 0;
    long haxes[4];
    fitsfile *histptr;
    char errmsg[FLEN_ERRMSG], keyname[FLEN_KEYWORD], card[FLEN_CARD];
    tcolumn *colptr;
    iteratorCol imagepars[1];
    int n_cols = 1, nkeys;
    long  offset = 0;
    long n_per_loop = -1;  /* force whole array to be passed at one time */
    histType histData;    /* Structure holding histogram info for iterator */
    
    float amin[4], amax[4], binsize[4], maxbin[4];
    float datamin = FLOATNULLVALUE, datamax = FLOATNULLVALUE;
    char svalue[FLEN_VALUE];
    double dvalue;
    char cpref[4][FLEN_VALUE];
    char *cptr;

    if (*status > 0)
        return(*status);

    if (naxis > 4)
    {
        ffpmsg("histogram has more than 4 dimensions");
        return(*status = BAD_DIMEN);
    }

    /* reset position to the correct HDU if necessary */
    if ((*fptr)->HDUposition != ((*fptr)->Fptr)->curhdu)
        ffmahd(*fptr, ((*fptr)->HDUposition) + 1, NULL, status);

    histData.tblptr     = *fptr;
    histData.himagetype = imagetype;
    histData.haxis      = naxis;
    histData.rowselector = selectrow;

    if (imagetype == TBYTE)
        bitpix = BYTE_IMG;
    else if (imagetype == TSHORT)
        bitpix = SHORT_IMG;
    else if (imagetype == TINT)
        bitpix = LONG_IMG;
    else if (imagetype == TFLOAT)
        bitpix = FLOAT_IMG;
    else if (imagetype == TDOUBLE)
        bitpix = DOUBLE_IMG;
    else
        return(*status = BAD_DATATYPE);

    /* The CPREF keyword, if it exists, gives the preferred columns. */
    /* Otherwise, assume "X", "Y", "Z", and "T"  */

    tstatus = 0;
    ffgky(*fptr, TSTRING, "CPREF", cpref[0], NULL, &tstatus);

    if (!tstatus)
    {
        /* Preferred column names are given;  separate them */
        cptr = cpref[0];

        /* the first preferred axis... */
        while (*cptr != ',' && *cptr != '\0')
           cptr++;

        if (*cptr != '\0')
        {
           *cptr = '\0';
           cptr++;
           while (*cptr == ' ')
               cptr++;

           strcpy(cpref[1], cptr);
           cptr = cpref[1];

          /* the second preferred axis... */
          while (*cptr != ',' && *cptr != '\0')
             cptr++;

          if (*cptr != '\0')
          {
             *cptr = '\0';
             cptr++;
             while (*cptr == ' ')
                 cptr++;

             strcpy(cpref[2], cptr);
             cptr = cpref[2];

            /* the third preferred axis... */
            while (*cptr != ',' && *cptr != '\0')
               cptr++;

            if (*cptr != '\0')
            {
               *cptr = '\0';
               cptr++;
               while (*cptr == ' ')
                   cptr++;

               strcpy(cpref[3], cptr);

            }
          }
        }
    }

    for (ii = 0; ii < naxis; ii++)
    {

      /* get the min, max, and binsize values from keywords, if specified */

      if (*minname[ii])
      {
         if (ffgky(*fptr, TDOUBLE, minname[ii], &minin[ii], NULL, status) )
         {
             ffpmsg("error reading histogramming minimum keyword");
             ffpmsg(minname[ii]);
             return(*status);
         }
      }

      if (*maxname[ii])
      {
         if (ffgky(*fptr, TDOUBLE, maxname[ii], &maxin[ii], NULL, status) )
         {
             ffpmsg("error reading histogramming maximum keyword");
             ffpmsg(maxname[ii]);
             return(*status);
         }
      }

      if (*binname[ii])
      {
         if (ffgky(*fptr, TDOUBLE, binname[ii], &binsizein[ii], NULL, status) )
         {
             ffpmsg("error reading histogramming binsize keyword");
             ffpmsg(binname[ii]);
             return(*status);
         }
      }

      if (binsizein[ii] == 0.)
      {
        ffpmsg("error: histogram binsize = 0");
        return(*status = ZERO_SCALE);
      }

      if (*colname[ii] == '\0')
      {
         strcpy(colname[ii], cpref[ii]); /* try using the preferred column */
         if (*colname[ii] == '\0')
         {
           if (ii == 0)
              strcpy(colname[ii], "X");
           else if (ii == 1)
              strcpy(colname[ii], "Y");
           else if (ii == 2)
              strcpy(colname[ii], "Z");
           else if (ii == 3)
              strcpy(colname[ii], "T");
         }
      }

      /* get the column number in the table */
      if (ffgcno(*fptr, CASEINSEN, colname[ii], histData.hcolnum+ii, status)
              > 0)
      {
        strcpy(errmsg, "column for histogram axis doesn't exist: ");
        strcat(errmsg, colname[ii]);
        ffpmsg(errmsg);
        return(*status);
      }

      colptr = ((*fptr)->Fptr)->tableptr;
      colptr += (histData.hcolnum[ii] - 1);

      repeat = (int) colptr->trepeat;  /* vector repeat factor of the column */
      if (repeat > 1)
      {
        strcpy(errmsg, "Can't bin a vector column: ");
        strcat(errmsg, colname[ii]);
        ffpmsg(errmsg);
        return(*status = BAD_DATATYPE);
      }

      /* get the datatype of the column */
      fits_get_coltype(*fptr, histData.hcolnum[ii], &datatype,
         NULL, NULL, status);

      if (datatype < 0 || datatype == TSTRING)
      {
        strcpy(errmsg, "Inappropriate datatype; can't bin this column: ");
        strcat(errmsg, colname[ii]);
        ffpmsg(errmsg);
        return(*status = BAD_DATATYPE);
      }

      /* use TLMINn and TLMAXn keyword values if min and max were not given */
      /* else use actual data min and max if TLMINn and TLMAXn don't exist */
 
      if (minin[ii] == DOUBLENULLVALUE)
      {
        ffkeyn("TLMIN", histData.hcolnum[ii], keyname, status);
        if (ffgky(*fptr, TFLOAT, keyname, amin+ii, NULL, status) > 0)
        {
            /* use actual data minimum value for the histogram minimum */
            *status = 0;
            if (fits_get_col_minmax(*fptr, histData.hcolnum[ii], amin+ii, &datamax, status) > 0)
            {
                strcpy(errmsg, "Error calculating datamin and datamax for column: ");
                strcat(errmsg, colname[ii]);
                ffpmsg(errmsg);
                return(*status);
            }
         }
      }
      else
      {
        amin[ii] = (float) minin[ii];
      }

      if (maxin[ii] == DOUBLENULLVALUE)
      {
        ffkeyn("TLMAX", histData.hcolnum[ii], keyname, status);
        if (ffgky(*fptr, TFLOAT, keyname, &amax[ii], NULL, status) > 0)
        {
          *status = 0;
          if(datamax != FLOATNULLVALUE)  /* already computed max value */
          {
             amax[ii] = datamax;
          }
          else
          {
             /* use actual data maximum value for the histogram maximum */
             if (fits_get_col_minmax(*fptr, histData.hcolnum[ii], &datamin, &amax[ii], status) > 0)
             {
                 strcpy(errmsg, "Error calculating datamin and datamax for column: ");
                 strcat(errmsg, colname[ii]);
                 ffpmsg(errmsg);
                 return(*status);
             }
          }
        }
        use_datamax = 1;  /* flag that the max was determined by the data values */
                          /* and not specifically set by the calling program */
      }
      else
      {
        amax[ii] = (float) maxin[ii];
      }

      /* use TDBINn keyword or else 1 if bin size is not given */
      if (binsizein[ii] == DOUBLENULLVALUE)
      {
         tstatus = 0;
         ffkeyn("TDBIN", histData.hcolnum[ii], keyname, &tstatus);

         if (ffgky(*fptr, TDOUBLE, keyname, binsizein + ii, NULL, &tstatus) > 0)
         {
	    /* make at least 10 bins */
            binsizein[ii] = (amax[ii] - amin[ii]) / 10. ;
            if (binsizein[ii] > 1.)
                binsizein[ii] = 1.;  /* use default bin size */
         }
      }

      if ( (amin[ii] > amax[ii] && binsizein[ii] > 0. ) ||
           (amin[ii] < amax[ii] && binsizein[ii] < 0. ) )
          binsize[ii] = (float) -binsizein[ii];  /* reverse the sign of binsize */
      else
          binsize[ii] =  (float) binsizein[ii];  /* binsize has the correct sign */

      ibin = (int) binsize[ii];
      imin = (int) amin[ii];
      imax = (int) amax[ii];

      /* Determine the range and number of bins in the histogram. This  */
      /* depends on whether the input columns are integer or floats, so */
      /* treat each case separately.                                    */

      if (datatype <= TLONG && (float) imin == amin[ii] &&
                               (float) imax == amax[ii] &&
                               (float) ibin == binsize[ii] )
      {
        /* This is an integer column and integer limits were entered. */
        /* Shift the lower and upper histogramming limits by 0.5, so that */
        /* the values fall in the center of the bin, not on the edge. */

        haxes[ii] = (imax - imin) / ibin + 1;  /* last bin may only */
                                               /* be partially full */
        maxbin[ii] = (float) (haxes[ii] + 1.);  /* add 1. instead of .5 to avoid roundoff */

        if (amin[ii] < amax[ii])
        {
          amin[ii] = (float) (amin[ii] - 0.5);
          amax[ii] = (float) (amax[ii] + 0.5);
        }
        else
        {
          amin[ii] = (float) (amin[ii] + 0.5);
          amax[ii] = (float) (amax[ii] - 0.5);
        }
      }
      else if (use_datamax)  
      {
        /* Either the column datatype and/or the limits are floating point, */
        /* and the histogram limits are being defined by the min and max */
        /* values of the array.  Add 1 to the number of histogram bins to */
        /* make sure that pixels that are equal to the maximum or are */
        /* in the last partial bin are included.  */

        maxbin[ii] = (amax[ii] - amin[ii]) / binsize[ii]; 
        haxes[ii] = (long) (maxbin[ii] + 1);
      }
      else  
      {
        /*  float datatype column and/or limits, and the maximum value to */
        /*  include in the histogram is specified by the calling program. */
        /*  The lower limit is inclusive, but upper limit is exclusive    */
        maxbin[ii] = (amax[ii] - amin[ii]) / binsize[ii];
        haxes[ii] = (long) maxbin[ii];

        if (amin[ii] < amax[ii])
        {
          if (amin[ii] + (haxes[ii] * binsize[ii]) < amax[ii])
            haxes[ii]++;   /* need to include another partial bin */
        }
        else
        {
          if (amin[ii] + (haxes[ii] * binsize[ii]) > amax[ii])
            haxes[ii]++;   /* need to include another partial bin */
        }
      }
    }

       /* get the histogramming weighting factor */
    if (*wtcol)
    {
        /* first, look for a keyword with the weight value */
        if (ffgky(*fptr, TFLOAT, wtcol, &histData.weight, NULL, status) )
        {
            /* not a keyword, so look for column with this name */
            *status = 0;

            /* get the column number in the table */
            if (ffgcno(*fptr, CASEINSEN, wtcol, &histData.wtcolnum, status) > 0)
            {
               ffpmsg(
               "keyword or column for histogram weights doesn't exist: ");
               ffpmsg(wtcol);
               return(*status);
            }

            histData.weight = FLOATNULLVALUE;
        }
    }
    else
        histData.weight = (float) weightin;

    if (histData.weight <= 0. && histData.weight != FLOATNULLVALUE)
    {
        ffpmsg("Illegal histogramming weighting factor <= 0.");
        return(*status = URL_PARSE_ERROR);
    }

    if (recip && histData.weight != FLOATNULLVALUE)
       /* take reciprocal of weight */
       histData.weight = (float) (1.0 / histData.weight);

    histData.wtrecip = recip;
        
    /* size of histogram is now known, so create temp output file */
    if (ffinit(&histptr, outfile, status) > 0)
    {
        ffpmsg("failed to create temp output file for histogram");
        return(*status);
    }

    if (ffcrim(histptr, bitpix, histData.haxis, haxes, status) > 0)
    {
        ffpmsg("failed to create primary array histogram in temp file");
        ffclos(histptr, status);
        return(*status);
    }

    /* copy all non-structural keywords from the table to the image */
    fits_get_hdrspace(*fptr, &nkeys, NULL, status);
    for (ii = 1; ii <= nkeys; ii++)
    {
       fits_read_record(*fptr, ii, card, status);
       if (fits_get_keyclass(card) >= 120)
           fits_write_record(histptr, card, status);
    }           

    /* Set global variables with histogram parameter values.    */
    /* Use separate scalar variables rather than arrays because */
    /* it is more efficient when computing the histogram.       */

    histData.amin1 = amin[0];
    histData.maxbin1 = maxbin[0];
    histData.binsize1 = binsize[0];
    histData.haxis1 = haxes[0];

    if (histData.haxis > 1)
    {
      histData.amin2 = amin[1];
      histData.maxbin2 = maxbin[1];
      histData.binsize2 = binsize[1];
      histData.haxis2 = haxes[1];

      if (histData.haxis > 2)
      {
        histData.amin3 = amin[2];
        histData.maxbin3 = maxbin[2];
        histData.binsize3 = binsize[2];
        histData.haxis3 = haxes[2];

        if (histData.haxis > 3)
        {
          histData.amin4 = amin[3];
          histData.maxbin4 = maxbin[3];
          histData.binsize4 = binsize[3];
          histData.haxis4 = haxes[3];
        }
      }
    }

    /* define parameters of image for the iterator function */
    fits_iter_set_file(imagepars, histptr);        /* pointer to image */
    fits_iter_set_datatype(imagepars, imagetype);  /* image datatype   */
    fits_iter_set_iotype(imagepars, OutputCol);    /* image is output  */

    /* call the iterator function to write out the histogram image */
    if (fits_iterate_data(n_cols, imagepars, offset, n_per_loop,
                          ffwritehisto, (void*)&histData, status) )
         return(*status);

    /* write the World Coordinate System (WCS) keywords */
    /* create default values if WCS keywords are not present in the table */
    for (ii = 0; ii < histData.haxis; ii++)
    {
     /*  CTYPEn  */
       tstatus = 0;
       ffkeyn("TCTYP", histData.hcolnum[ii], keyname, &tstatus);
       ffgky(*fptr, TSTRING, keyname, svalue, NULL, &tstatus);
       if (tstatus)
       {               /* just use column name as the type */
          tstatus = 0;
          ffkeyn("TTYPE", histData.hcolnum[ii], keyname, &tstatus);
          ffgky(*fptr, TSTRING, keyname, svalue, NULL, &tstatus);
       }

       if (!tstatus)
       {
        ffkeyn("CTYPE", ii + 1, keyname, &tstatus);
        ffpky(histptr, TSTRING, keyname, svalue, "Coordinate Type", &tstatus);
       }
       else
          tstatus = 0;

     /*  CUNITn  */
       ffkeyn("TCUNI", histData.hcolnum[ii], keyname, &tstatus);
       ffgky(*fptr, TSTRING, keyname, svalue, NULL, &tstatus);
       if (tstatus)
       {         /* use the column units */
          tstatus = 0;
          ffkeyn("TUNIT", histData.hcolnum[ii], keyname, &tstatus);
          ffgky(*fptr, TSTRING, keyname, svalue, NULL, &tstatus);
       }

       if (!tstatus)
       {
        ffkeyn("CUNIT", ii + 1, keyname, &tstatus);
        ffpky(histptr, TSTRING, keyname, svalue, "Coordinate Units", &tstatus);
       }
       else
         tstatus = 0;

     /*  CRPIXn  - Reference Pixel  */
       ffkeyn("TCRPX", histData.hcolnum[ii], keyname, &tstatus);
       ffgky(*fptr, TDOUBLE, keyname, &dvalue, NULL, &tstatus);
       if (tstatus)
       {
         dvalue = 1.0; /* choose first pixel in new image as ref. pix. */
         tstatus = 0;
       }
       else
       {
           /* calculate locate of the ref. pix. in the new image */
           dvalue = (dvalue - amin[ii]) / binsize[ii] + .5;
       }

       ffkeyn("CRPIX", ii + 1, keyname, &tstatus);
       ffpky(histptr, TDOUBLE, keyname, &dvalue, "Reference Pixel", &tstatus);

     /*  CRVALn - Value at the location of the reference pixel */
       ffkeyn("TCRVL", histData.hcolnum[ii], keyname, &tstatus);
       ffgky(*fptr, TDOUBLE, keyname, &dvalue, NULL, &tstatus);
       if (tstatus)
       {
         /* calculate value at ref. pix. location (at center of 1st pixel) */
         dvalue = amin[ii] + binsize[ii]/2.;
         tstatus = 0;
       }

       ffkeyn("CRVAL", ii + 1, keyname, &tstatus);
       ffpky(histptr, TDOUBLE, keyname, &dvalue, "Reference Value", &tstatus);

     /*  CDELTn - unit size of pixels  */
       ffkeyn("TCDLT", histData.hcolnum[ii], keyname, &tstatus);
       ffgky(*fptr, TDOUBLE, keyname, &dvalue, NULL, &tstatus);
       if (tstatus)
       {
         dvalue = 1.0;  /* use default pixel size */
         tstatus = 0;
       }

       dvalue = dvalue * binsize[ii];
       ffkeyn("CDELT", ii + 1, keyname, &tstatus);
       ffpky(histptr, TDOUBLE, keyname, &dvalue, "Pixel size", &tstatus);

     /*  CROTAn - Rotation angle (degrees CCW)  */
     /*  There should only be a CROTA2 keyword, and only for 2+ D images */
       if (ii == 1)
       {
         ffkeyn("TCROT", histData.hcolnum[ii], keyname, &tstatus);
         ffgky(*fptr, TDOUBLE, keyname, &dvalue, NULL, &tstatus);
         if (!tstatus && dvalue != 0.)  /* only write keyword if angle != 0 */
         {
           ffkeyn("CROTA", ii + 1, keyname, &tstatus);
           ffpky(histptr, TDOUBLE, keyname, &dvalue,
                 "Rotation angle", &tstatus);
         }
         else
         {
            /* didn't find CROTA for the 2nd axis, so look for one */
            /* on the first axis */
           tstatus = 0;
           ffkeyn("TCROT", histData.hcolnum[0], keyname, &tstatus);
           ffgky(*fptr, TDOUBLE, keyname, &dvalue, NULL, &tstatus);
           if (!tstatus && dvalue != 0.)  /* only write keyword if angle != 0 */
           {
             dvalue *= -1.;   /* negate the value, because mirror image */
             ffkeyn("CROTA", ii + 1, keyname, &tstatus);
             ffpky(histptr, TDOUBLE, keyname, &dvalue,
                   "Rotation angle", &tstatus);
           }
         }
       }
    }

    /* convert any TPn_k keywords to PCi_j; the value remains unchanged */
    /* also convert any TCn_k to CDi_j; the value is modified by n binning size */
    /* This is a bit of a kludge, and only works for 2D WCS */

    if (histData.haxis == 2) {

      /* PC1_1 */
      tstatus = 0;
      ffkeyn("TP", histData.hcolnum[0], card, &tstatus);
      strcat(card,"_");
      ffkeyn(card, histData.hcolnum[0], keyname, &tstatus);
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) 
         ffpky(histptr, TDOUBLE, "PC1_1", &dvalue, card, &tstatus);

      tstatus = 0;
      keyname[1] = 'C';
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) {
         dvalue *=  binsize[0];
         ffpky(histptr, TDOUBLE, "CD1_1", &dvalue, card, &tstatus);
      }

      /* PC1_2 */
      tstatus = 0;
      ffkeyn("TP", histData.hcolnum[0], card, &tstatus);
      strcat(card,"_");
      ffkeyn(card, histData.hcolnum[1], keyname, &tstatus);
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) 
         ffpky(histptr, TDOUBLE, "PC1_2", &dvalue, card, &tstatus);
 
      tstatus = 0;
      keyname[1] = 'C';
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) {
        dvalue *=  binsize[0];
        ffpky(histptr, TDOUBLE, "CD1_2", &dvalue, card, &tstatus);
      }
       
      /* PC2_1 */
      tstatus = 0;
      ffkeyn("TP", histData.hcolnum[1], card, &tstatus);
      strcat(card,"_");
      ffkeyn(card, histData.hcolnum[0], keyname, &tstatus);
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) 
         ffpky(histptr, TDOUBLE, "PC2_1", &dvalue, card, &tstatus);
 
      tstatus = 0;
      keyname[1] = 'C';
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) {
         dvalue *=  binsize[1];
         ffpky(histptr, TDOUBLE, "CD2_1", &dvalue, card, &tstatus);
      }
       
       /* PC2_2 */
      tstatus = 0;
      ffkeyn("TP", histData.hcolnum[1], card, &tstatus);
      strcat(card,"_");
      ffkeyn(card, histData.hcolnum[1], keyname, &tstatus);
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) 
         ffpky(histptr, TDOUBLE, "PC2_2", &dvalue, card, &tstatus);
        
      tstatus = 0;
      keyname[1] = 'C';
      ffgky(*fptr, TDOUBLE, keyname, &dvalue, card, &tstatus);
      if (!tstatus) {
         dvalue *=  binsize[1];
         ffpky(histptr, TDOUBLE, "CD2_2", &dvalue, card, &tstatus);
      }
    }   
       
    /* finally, close the original file and return ptr to the new image */
    ffclos(*fptr, status);
    *fptr = histptr;

    return(*status);
}