static void add_polynomial(qfits_header* hdr, const char* format, int order, const double* data, int datastride) { int i, j; char key[64]; for (i=0; i<=order; i++) for (j=0; (i+j)<=order; j++) { //if (i+j < 1) // continue; //if (drop_linear && (i+j < 2)) // continue; sprintf(key, format, i, j); fits_header_add_double(hdr, key, data[i*datastride + j], ""); } }
static void wcs_hdr_common(qfits_header* hdr, const tan_t* tan) { qfits_header_add(hdr, "WCSAXES", "2", NULL, NULL); qfits_header_add(hdr, "EQUINOX", "2000.0", "Equatorial coordinates definition (yr)", NULL); qfits_header_add(hdr, "LONPOLE", "180.0", NULL, NULL); qfits_header_add(hdr, "LATPOLE", "0.0", NULL, NULL); fits_header_add_double(hdr, "CRVAL1", tan->crval[0], "RA of reference point"); fits_header_add_double(hdr, "CRVAL2", tan->crval[1], "DEC of reference point"); fits_header_add_double(hdr, "CRPIX1", tan->crpix[0], "X reference pixel"); fits_header_add_double(hdr, "CRPIX2", tan->crpix[1], "Y reference pixel"); qfits_header_add(hdr, "CUNIT1", "deg", "X pixel scale units", NULL); qfits_header_add(hdr, "CUNIT2", "deg", "Y pixel scale units", NULL); fits_header_add_double(hdr, "CD1_1", tan->cd[0][0], "Transformation matrix"); fits_header_add_double(hdr, "CD1_2", tan->cd[0][1], ""); fits_header_add_double(hdr, "CD2_1", tan->cd[1][0], ""); fits_header_add_double(hdr, "CD2_2", tan->cd[1][1], ""); if (tan->imagew > 0.0) fits_header_add_double(hdr, "IMAGEW", tan->imagew, "Image width, in pixels."); if (tan->imageh > 0.0) fits_header_add_double(hdr, "IMAGEH", tan->imageh, "Image height, in pixels."); }
int uniformize_catalog(fitstable_t* intable, fitstable_t* outtable, const char* racol, const char* deccol, const char* sortcol, anbool sort_ascending, double sort_min_cut, // ? Or do this cut in a separate process? int bighp, int bignside, int nmargin, // uniformization nside. int Nside, double dedup_radius, int nsweeps, char** args, int argc) { anbool allsky; intmap_t* starlists; int NHP; anbool dense = FALSE; double dedupr2 = 0.0; tfits_type dubl; int N; int* inorder = NULL; int* outorder = NULL; int outi; double *ra = NULL, *dec = NULL; il* myhps = NULL; int i,j,k; int nkeep = nsweeps; int noob = 0; int ndup = 0; struct oh_token token; int* npersweep = NULL; qfits_header* outhdr = NULL; double *sortval = NULL; if (bignside == 0) bignside = 1; allsky = (bighp == -1); if (Nside % bignside) { ERROR("Fine healpixelization Nside must be a multiple of the coarse healpixelization Nside"); return -1; } if (Nside > HP_MAX_INT_NSIDE) { ERROR("Error: maximum healpix Nside = %i", HP_MAX_INT_NSIDE); return -1; } NHP = 12 * Nside * Nside; logverb("Healpix Nside: %i, # healpixes on the whole sky: %i\n", Nside, NHP); if (!allsky) { logverb("Creating index for healpix %i, nside %i\n", bighp, bignside); logverb("Number of healpixes: %i\n", ((Nside/bignside)*(Nside/bignside))); } logverb("Healpix side length: %g arcmin.\n", healpix_side_length_arcmin(Nside)); dubl = fitscolumn_double_type(); if (!racol) racol = "RA"; ra = fitstable_read_column(intable, racol, dubl); if (!ra) { ERROR("Failed to find RA column (%s) in table", racol); return -1; } if (!deccol) deccol = "DEC"; dec = fitstable_read_column(intable, deccol, dubl); if (!dec) { ERROR("Failed to find DEC column (%s) in table", deccol); free(ra); return -1; } N = fitstable_nrows(intable); logverb("Have %i objects\n", N); // FIXME -- argsort and seek around the input table, and append to // starlists in order; OR read from the input table in sequence and // sort in the starlists? if (sortcol) { logverb("Sorting by %s...\n", sortcol); sortval = fitstable_read_column(intable, sortcol, dubl); if (!sortval) { ERROR("Failed to read sorting column \"%s\"", sortcol); free(ra); free(dec); return -1; } inorder = permuted_sort(sortval, sizeof(double), sort_ascending ? compare_doubles_asc : compare_doubles_desc, NULL, N); if (sort_min_cut > -HUGE_VAL) { logverb("Cutting to %s > %g...\n", sortcol, sort_min_cut); // Cut objects with sortval < sort_min_cut. if (sort_ascending) { // skipped objects are at the front -- find the first obj // to keep for (i=0; i<N; i++) if (sortval[inorder[i]] > sort_min_cut) break; // move the "inorder" indices down. if (i) memmove(inorder, inorder+i, (N-i)*sizeof(int)); N -= i; } else { // skipped objects are at the end -- find the last obj to keep. for (i=N-1; i>=0; i--) if (sortval[inorder[i]] > sort_min_cut) break; N = i+1; } logverb("Cut to %i objects\n", N); } //free(sortval); } token.nside = bignside; token.finenside = Nside; token.hp = bighp; if (!allsky && nmargin) { int bigbighp, bighpx, bighpy; //int ninside; il* seeds = il_new(256); logverb("Finding healpixes in range...\n"); healpix_decompose_xy(bighp, &bigbighp, &bighpx, &bighpy, bignside); //ninside = (Nside/bignside)*(Nside/bignside); // Prime the queue with the fine healpixes that are on the // boundary of the big healpix. for (i=0; i<((Nside / bignside) - 1); i++) { // add (i,0), (i,max), (0,i), and (0,max) healpixes int xx = i + bighpx * (Nside / bignside); int yy = i + bighpy * (Nside / bignside); int y0 = bighpy * (Nside / bignside); // -1 prevents us from double-adding the corners. int y1 =(1 + bighpy)* (Nside / bignside) - 1; int x0 = bighpx * (Nside / bignside); int x1 =(1 + bighpx)* (Nside / bignside) - 1; assert(xx < Nside); assert(yy < Nside); assert(x0 < Nside); assert(x1 < Nside); assert(y0 < Nside); assert(y1 < Nside); il_append(seeds, healpix_compose_xy(bigbighp, xx, y0, Nside)); il_append(seeds, healpix_compose_xy(bigbighp, xx, y1, Nside)); il_append(seeds, healpix_compose_xy(bigbighp, x0, yy, Nside)); il_append(seeds, healpix_compose_xy(bigbighp, x1, yy, Nside)); } logmsg("Number of boundary healpixes: %zu (Nside/bignside = %i)\n", il_size(seeds), Nside/bignside); myhps = healpix_region_search(-1, seeds, Nside, NULL, NULL, outside_healpix, &token, nmargin); logmsg("Number of margin healpixes: %zu\n", il_size(myhps)); il_free(seeds); il_sort(myhps, TRUE); // DEBUG il_check_consistency(myhps); il_check_sorted_ascending(myhps, TRUE); } dedupr2 = arcsec2distsq(dedup_radius); starlists = intmap_new(sizeof(int32_t), nkeep, 0, dense); logverb("Placing stars in grid cells...\n"); for (i=0; i<N; i++) { int hp; bl* lst; int32_t j32; anbool oob; if (inorder) { j = inorder[i]; //printf("Placing star %i (%i): sort value %s = %g, RA,Dec=%g,%g\n", i, j, sortcol, sortval[j], ra[j], dec[j]); } else j = i; hp = radecdegtohealpix(ra[j], dec[j], Nside); //printf("HP %i\n", hp); // in bounds? oob = FALSE; if (myhps) { oob = (outside_healpix(hp, &token) && !il_sorted_contains(myhps, hp)); } else if (!allsky) { oob = (outside_healpix(hp, &token)); } if (oob) { //printf("out of bounds.\n"); noob++; continue; } lst = intmap_find(starlists, hp, TRUE); /* printf("list has %i existing entries.\n", bl_size(lst)); for (k=0; k<bl_size(lst); k++) { bl_get(lst, k, &j32); printf(" %i: index %i, %s = %g\n", k, j32, sortcol, sortval[j32]); } */ // is this list full? if (nkeep && (bl_size(lst) >= nkeep)) { // Here we assume we're working in sorted order: once the list is full we're done. //printf("Skipping: list is full.\n"); continue; } if ((dedupr2 > 0.0) && is_duplicate(hp, ra[j], dec[j], Nside, starlists, ra, dec, dedupr2)) { //printf("Skipping: duplicate\n"); ndup++; continue; } // Add the new star (by index) j32 = j; bl_append(lst, &j32); } logverb("%i outside the healpix\n", noob); logverb("%i duplicates\n", ndup); il_free(myhps); myhps = NULL; free(inorder); inorder = NULL; free(ra); ra = NULL; free(dec); dec = NULL; outorder = malloc(N * sizeof(int)); outi = 0; npersweep = calloc(nsweeps, sizeof(int)); for (k=0; k<nsweeps; k++) { int starti = outi; int32_t j32; for (i=0;; i++) { bl* lst; int hp; if (!intmap_get_entry(starlists, i, &hp, &lst)) break; if (bl_size(lst) <= k) continue; bl_get(lst, k, &j32); outorder[outi] = j32; //printf("sweep %i, cell #%i, hp %i, star %i, %s = %g\n", k, i, hp, j32, sortcol, sortval[j32]); outi++; } logmsg("Sweep %i: %i stars\n", k+1, outi - starti); npersweep[k] = outi - starti; if (sortcol) { // Re-sort within this sweep. permuted_sort(sortval, sizeof(double), sort_ascending ? compare_doubles_asc : compare_doubles_desc, outorder + starti, npersweep[k]); /* for (i=0; i<npersweep[k]; i++) { printf(" within sweep %i: star %i, j=%i, %s=%g\n", k, i, outorder[starti + i], sortcol, sortval[outorder[starti + i]]); } */ } } intmap_free(starlists); starlists = NULL; ////// free(sortval); sortval = NULL; logmsg("Total: %i stars\n", outi); N = outi; outhdr = fitstable_get_primary_header(outtable); if (allsky) qfits_header_add(outhdr, "ALLSKY", "T", "All-sky catalog.", NULL); BOILERPLATE_ADD_FITS_HEADERS(outhdr); qfits_header_add(outhdr, "HISTORY", "This file was generated by the command-line:", NULL, NULL); fits_add_args(outhdr, args, argc); qfits_header_add(outhdr, "HISTORY", "(end of command line)", NULL, NULL); fits_add_long_history(outhdr, "uniformize-catalog args:"); fits_add_long_history(outhdr, " RA,Dec columns: %s,%s", racol, deccol); fits_add_long_history(outhdr, " sort column: %s", sortcol); fits_add_long_history(outhdr, " sort direction: %s", sort_ascending ? "ascending" : "descending"); if (sort_ascending) fits_add_long_history(outhdr, " (ie, for mag-like sort columns)"); else fits_add_long_history(outhdr, " (ie, for flux-like sort columns)"); fits_add_long_history(outhdr, " uniformization nside: %i", Nside); fits_add_long_history(outhdr, " (ie, side length ~ %g arcmin)", healpix_side_length_arcmin(Nside)); fits_add_long_history(outhdr, " deduplication scale: %g arcsec", dedup_radius); fits_add_long_history(outhdr, " number of sweeps: %i", nsweeps); fits_header_add_int(outhdr, "NSTARS", N, "Number of stars."); fits_header_add_int(outhdr, "HEALPIX", bighp, "Healpix covered by this catalog, with Nside=HPNSIDE"); fits_header_add_int(outhdr, "HPNSIDE", bignside, "Nside of HEALPIX."); fits_header_add_int(outhdr, "CUTNSIDE", Nside, "uniformization scale (healpix nside)"); fits_header_add_int(outhdr, "CUTMARG", nmargin, "margin size, in healpixels"); //qfits_header_add(outhdr, "CUTBAND", cutband, "band on which the cut was made", NULL); fits_header_add_double(outhdr, "CUTDEDUP", dedup_radius, "deduplication radius [arcsec]"); fits_header_add_int(outhdr, "CUTNSWEP", nsweeps, "number of sweeps"); //fits_header_add_double(outhdr, "CUTMINMG", minmag, "minimum magnitude"); //fits_header_add_double(outhdr, "CUTMAXMG", maxmag, "maximum magnitude"); for (k=0; k<nsweeps; k++) { char key[64]; sprintf(key, "SWEEP%i", (k+1)); fits_header_add_int(outhdr, key, npersweep[k], "# stars added"); } free(npersweep); if (fitstable_write_primary_header(outtable)) { ERROR("Failed to write primary header"); return -1; } // Write output. fitstable_add_fits_columns_as_struct2(intable, outtable); if (fitstable_write_header(outtable)) { ERROR("Failed to write output table header"); return -1; } logmsg("Writing output...\n"); logverb("Row size: %i\n", fitstable_row_size(intable)); if (fitstable_copy_rows_data(intable, outorder, N, outtable)) { ERROR("Failed to copy rows from input table to output"); return -1; } if (fitstable_fix_header(outtable)) { ERROR("Failed to fix output table header"); return -1; } free(outorder); return 0; }