Exemple #1
0
void nav_catapult_highrate_module(void)
{
  if (nav_catapult.status == NAV_CATAPULT_UNINIT || nav_catapult.status == NAV_CATAPULT_ARMED) {
    nav_catapult.timer = 0;
    // nothing more to do
    return;
  }

  // increase timer
  nav_catapult.timer++;

  // wait for acceleration
  if (nav_catapult.status == NAV_CATAPULT_WAIT_ACCEL) {

    // launch detection filter
    if (nav_catapult.timer < NAV_CATAPULT_ACCELERATION_DETECTION) {
      // several consecutive measurements above threshold
#ifndef SITL
      struct FloatVect3 *accel_ned = (struct FloatVect3 *)stateGetAccelNed_f();
      struct FloatRMat *ned_to_body = stateGetNedToBodyRMat_f();
      struct FloatVect3 accel_body;
      float_rmat_transp_vmult(&accel_body, ned_to_body, accel_ned);
      if (accel_body.x < nav_catapult.accel_threshold * 9.81) {
        // accel is low, reset timer
        nav_catapult.timer = 0;
        return;
      }
#else
      if (launch != 1) {
        // wait for simulated launch
        nav_catapult.timer = 0;
        return;
      }
#endif
    }
    // launch was detected: Motor Delay Counter
    else if (nav_catapult.timer >= nav_catapult.motor_delay * NAV_CATAPULT_HIGHRATE_MODULE_FREQ) {
      // turn on motor
      NavVerticalThrottleMode(MAX_PPRZ * nav_catapult.initial_throttle);
      launch = 1;
      // go to next stage
      nav_catapult.status = NAV_CATAPULT_MOTOR_ON;
    }
  }

  // reaching timeout and function still running
  // shuting it down
  if (nav_catapult.timer > NAV_CATAPULT_TIMEOUT * NAV_CATAPULT_HIGHRATE_MODULE_FREQ) {
    nav_catapult.status = NAV_CATAPULT_UNINIT;
    nav_catapult_nav_catapult_highrate_module_status = MODULES_STOP;
  }
}
void ahrs_fc_update_mag_2d(struct Int32Vect3 *mag, float dt)
{

  struct FloatVect2 expected_ltp;
  VECT2_COPY(expected_ltp, ahrs_fc.mag_h);
  // normalize expected ltp in 2D (x,y)
  float_vect2_normalize(&expected_ltp);

  struct FloatVect3 measured_imu;
  MAGS_FLOAT_OF_BFP(measured_imu, *mag);
  struct FloatVect3 measured_ltp;
  float_rmat_transp_vmult(&measured_ltp, &ahrs_fc.ltp_to_imu_rmat, &measured_imu);

  struct FloatVect2 measured_ltp_2d = {measured_ltp.x, measured_ltp.y};

  // normalize measured ltp in 2D (x,y)
  float_vect2_normalize(&measured_ltp_2d);

  struct FloatVect3 residual_ltp = {
    0,
    0,
    measured_ltp_2d.x *expected_ltp.y - measured_ltp_2d.y * expected_ltp.x
  };

  //  printf("res : %f\n", residual_ltp.z);

  struct FloatVect3 residual_imu;
  float_rmat_vmult(&residual_imu, &ahrs_fc.ltp_to_imu_rmat, &residual_ltp);


  /* Complementary filter proportional gain.
   * Kp = 2 * zeta * omega * weight * ahrs_fc.mag_cnt
   * with ahrs_fc.mag_cnt beeing the number of propagations since last update
   */
  const float mag_rate_update_gain = 2 * ahrs_fc.mag_zeta * ahrs_fc.mag_omega * ahrs_fc.mag_cnt;
  RATES_ADD_SCALED_VECT(ahrs_fc.rate_correction, residual_imu, mag_rate_update_gain);

  /* Complementary filter integral gain
   * Correct the gyro bias.
   * Ki = (omega*weight)^2 * dt
   */
  const float mag_bias_update_gain = -(ahrs_fc.mag_omega * ahrs_fc.mag_omega) * dt;
  RATES_ADD_SCALED_VECT(ahrs_fc.gyro_bias, residual_imu, mag_bias_update_gain);
}
/**
 *  Propagate the received states into the vehicle
 *  state machine
 */
void ins_vectornav_propagate()
{
  // Acceleration [m/s^2]
  // in fixed point for sending as ABI and telemetry msgs
  ACCELS_BFP_OF_REAL(ins_vn.accel_i, ins_vn.accel);

  // Rates [rad/s]
  static struct FloatRates body_rate;
  // in fixed point for sending as ABI and telemetry msgs
  RATES_BFP_OF_REAL(ins_vn.gyro_i, ins_vn.gyro);
  float_rmat_ratemult(&body_rate, orientationGetRMat_f(&ins_vn.body_to_imu), &ins_vn.gyro); // compute body rates
  stateSetBodyRates_f(&body_rate);   // Set state [rad/s]

  // Attitude [deg]
  ins_vectornav_yaw_pitch_roll_to_attitude(&ins_vn.attitude); // convert to correct units and axis [rad]
  static struct FloatQuat imu_quat; // convert from euler to quat
  float_quat_of_eulers(&imu_quat, &ins_vn.attitude);
  static struct FloatRMat imu_rmat; // convert from quat to rmat
  float_rmat_of_quat(&imu_rmat, &imu_quat);
  static struct FloatRMat ltp_to_body_rmat; // rotate to body frame
  float_rmat_comp(&ltp_to_body_rmat, &imu_rmat, orientationGetRMat_f(&ins_vn.body_to_imu));
  stateSetNedToBodyRMat_f(&ltp_to_body_rmat); // set body states [rad]

  // NED (LTP) velocity [m/s]
  // North east down (NED), also known as local tangent plane (LTP),
  // is a geographical coordinate system for representing state vectors that is commonly used in aviation.
  // It consists of three numbers: one represents the position along the northern axis,
  // one along the eastern axis, and one represents vertical position. Down is chosen as opposed to
  // up in order to comply with the right-hand rule.
  // The origin of this coordinate system is usually chosen to be the aircraft's center of gravity.
  // x = North
  // y = East
  // z = Down
  stateSetSpeedNed_f(&ins_vn.vel_ned); // set state

  // NED (LTP) acceleration [m/s^2]
  static struct FloatVect3 accel_meas_ltp;// first we need to rotate linear acceleration from imu-frame to body-frame
  float_rmat_transp_vmult(&accel_meas_ltp, orientationGetRMat_f(&ins_vn.body_to_imu), &(ins_vn.lin_accel));
  static struct NedCoor_f ltp_accel; // assign to NedCoord_f struct
  VECT3_ASSIGN(ltp_accel, accel_meas_ltp.x, accel_meas_ltp.y, accel_meas_ltp.z);
  stateSetAccelNed_f(&ltp_accel); // then set the states
  ins_vn.ltp_accel_f = ltp_accel;

  // LLA position [rad, rad, m]
  //static struct LlaCoor_f lla_pos; // convert from deg to rad, and from double to float
  ins_vn.lla_pos.lat = RadOfDeg((float)ins_vn.pos_lla[0]); // ins_impl.pos_lla[0] = lat
  ins_vn.lla_pos.lon = RadOfDeg((float)ins_vn.pos_lla[1]); // ins_impl.pos_lla[1] = lon
  ins_vn.lla_pos.alt = ((float)ins_vn.pos_lla[2]); // ins_impl.pos_lla[2] = alt
  LLA_BFP_OF_REAL(gps.lla_pos, ins_vn.lla_pos);
  stateSetPositionLla_i(&gps.lla_pos);

  // ECEF position
  struct LtpDef_f def;
  ltp_def_from_lla_f(&def, &ins_vn.lla_pos);
  struct EcefCoor_f ecef_vel;
  ecef_of_ned_point_f(&ecef_vel, &def, &ins_vn.vel_ned);
  ECEF_BFP_OF_REAL(gps.ecef_vel, ecef_vel);

  // ECEF velocity
  gps.ecef_pos.x = stateGetPositionEcef_i()->x;
  gps.ecef_pos.y = stateGetPositionEcef_i()->y;
  gps.ecef_pos.z = stateGetPositionEcef_i()->z;


#if GPS_USE_LATLONG
  // GPS UTM
  /* Computes from (lat, long) in the referenced UTM zone */
  struct UtmCoor_f utm_f;
  utm_f.zone = nav_utm_zone0;
  /* convert to utm */
  //utm_of_lla_f(&utm_f, &lla_f);
  utm_of_lla_f(&utm_f, &ins_vn.lla_pos);
  /* copy results of utm conversion */
  gps.utm_pos.east = (int32_t)(utm_f.east * 100);
  gps.utm_pos.north = (int32_t)(utm_f.north * 100);
  gps.utm_pos.alt = (int32_t)(utm_f.alt * 1000);
  gps.utm_pos.zone = (uint8_t)nav_utm_zone0;
#endif

  // GPS Ground speed
  float speed = sqrt(ins_vn.vel_ned.x * ins_vn.vel_ned.x + ins_vn.vel_ned.y * ins_vn.vel_ned.y);
  gps.gspeed = ((uint16_t)(speed * 100));

  // GPS course
  gps.course = (int32_t)(1e7 * (atan2(ins_vn.vel_ned.y, ins_vn.vel_ned.x)));

  // Because we have not HMSL data from Vectornav, we are using LLA-Altitude
  // as a workaround
  gps.hmsl = (uint32_t)(gps.lla_pos.alt);

  // set position uncertainty
  ins_vectornav_set_pacc();

  // set velocity uncertainty
  ins_vectornav_set_sacc();

  // check GPS status
  gps.last_msg_time = sys_time.nb_sec;
  gps.last_msg_ticks = sys_time.nb_sec_rem;
  if (gps.fix == GPS_FIX_3D) {
    gps.last_3dfix_time = sys_time.nb_sec;
    gps.last_3dfix_ticks = sys_time.nb_sec_rem;
  }

  // read INS status
  ins_vectornav_check_status();

  // update internal states for telemetry purposes
  // TODO: directly convert vectornav output instead of using state interface
  // to support multiple INS running at the same time
  ins_vn.ltp_pos_i = *stateGetPositionNed_i();
  ins_vn.ltp_speed_i = *stateGetSpeedNed_i();
  ins_vn.ltp_accel_i = *stateGetAccelNed_i();

  // send ABI messages
  uint32_t now_ts = get_sys_time_usec();
  AbiSendMsgGPS(GPS_UBX_ID, now_ts, &gps);
  AbiSendMsgIMU_GYRO_INT32(IMU_ASPIRIN_ID, now_ts, &ins_vn.gyro_i);
  AbiSendMsgIMU_ACCEL_INT32(IMU_ASPIRIN_ID, now_ts, &ins_vn.accel_i);
}