Exemple #1
0
void testFlower_builtBlocks(CuTest *testCase) {
    cactusFlowerTestSetup();

    CuAssertTrue(testCase, !flower_builtBlocks(flower));
    flower_setBuiltBlocks(flower, 0);
    CuAssertTrue(testCase, !flower_builtBlocks(flower));
    flower_setBuiltBlocks(flower, 1);
    CuAssertTrue(testCase, flower_builtBlocks(flower));
    flower_setBuiltBlocks(flower, 0);
    CuAssertTrue(testCase, !flower_builtBlocks(flower));

    cactusFlowerTestTeardown();
}
Exemple #2
0
void flower_check(Flower *flower) {
    eventTree_check(flower_getEventTree(flower));

    Flower_GroupIterator *groupIterator = flower_getGroupIterator(flower);
    Group *group;
    while ((group = flower_getNextGroup(groupIterator)) != NULL) {
        group_check(group);
    }
    flower_destructGroupIterator(groupIterator);

    Flower_ChainIterator *chainIterator = flower_getChainIterator(flower);
    Chain *chain;
    while ((chain = flower_getNextChain(chainIterator)) != NULL) {
        chain_check(chain);
    }
    flower_destructCapIterator(chainIterator);

    //We check built trees in here.
    Flower_EndIterator *endIterator = flower_getEndIterator(flower);
    End *end;
    while ((end = flower_getNextEnd(endIterator)) != NULL) {
        end_check(end);
        end_check(end_getReverse(end)); //We will test everything backwards also.
    }
    flower_destructEndIterator(endIterator);

    if (flower_builtFaces(flower)) {
        Flower_FaceIterator *faceIterator = flower_getFaceIterator(flower);
        Face *face;
        while ((face = flower_getNextFace(faceIterator)) != NULL) {
            face_check(face);
        }
        flower_destructFaceIterator(faceIterator);
        face_checkFaces(flower);
    } else {
        cactusCheck(flower_getFaceNumber(flower) == 0);
    }

    if (flower_builtBlocks(flower)) { //Note that a flower for which the blocks are not yet built must be a leaf.
        Flower_BlockIterator *blockIterator = flower_getBlockIterator(flower);
        Block *block;
        while ((block = flower_getNextBlock(blockIterator)) != NULL) {
            block_check(block);
            block_check(block_getReverse(block)); //We will test everything backwards also.
        }
        flower_destructBlockIterator(blockIterator);
    } else {
        cactusCheck(flower_isLeaf(flower)); //Defensive
        cactusCheck(flower_isTerminal(flower)); //Checks that a flower without built blocks is a leaf and does not
        //contain any blocks.
    }

    Flower_SequenceIterator *sequenceIterator = flower_getSequenceIterator(flower);
    Sequence *sequence;
    while ((sequence = flower_getNextSequence(sequenceIterator)) != NULL) {
        sequence_check(sequence);
    }
    flower_destructSequenceIterator(sequenceIterator);
}
Exemple #3
0
void flower_writeBinaryRepresentation(Flower *flower, void(*writeFn)(const void * ptr, size_t size, size_t count)) {
    Flower_SequenceIterator *sequenceIterator;
    Flower_EndIterator *endIterator;
    Flower_BlockIterator *blockIterator;
    Flower_GroupIterator *groupIterator;
    Flower_ChainIterator *chainIterator;
    Sequence *sequence;
    End *end;
    Block *block;
    Group *group;
    Chain *chain;

    binaryRepresentation_writeElementType(CODE_FLOWER, writeFn);
    binaryRepresentation_writeName(flower_getName(flower), writeFn);
    binaryRepresentation_writeBool(flower_builtBlocks(flower), writeFn);
    binaryRepresentation_writeBool(flower_builtTrees(flower), writeFn);
    binaryRepresentation_writeBool(flower_builtFaces(flower), writeFn);
    binaryRepresentation_writeName(flower->parentFlowerName, writeFn);

    if (flower_getEventTree(flower) != NULL) {
        eventTree_writeBinaryRepresentation(flower_getEventTree(flower), writeFn);
    }

    sequenceIterator = flower_getSequenceIterator(flower);
    while ((sequence = flower_getNextSequence(sequenceIterator)) != NULL) {
        sequence_writeBinaryRepresentation(sequence, writeFn);
    }
    flower_destructSequenceIterator(sequenceIterator);

    endIterator = flower_getEndIterator(flower);
    while ((end = flower_getNextEnd(endIterator)) != NULL) {
        end_writeBinaryRepresentation(end, writeFn);
    }
    flower_destructEndIterator(endIterator);

    blockIterator = flower_getBlockIterator(flower);
    while ((block = flower_getNextBlock(blockIterator)) != NULL) {
        block_writeBinaryRepresentation(block, writeFn);
    }
    flower_destructBlockIterator(blockIterator);

    groupIterator = flower_getGroupIterator(flower);
    while ((group = flower_getNextGroup(groupIterator)) != NULL) {
        group_writeBinaryRepresentation(group, writeFn);
    }
    flower_destructGroupIterator(groupIterator);

    chainIterator = flower_getChainIterator(flower);
    while ((chain = flower_getNextChain(chainIterator)) != NULL) {
        chain_writeBinaryRepresentation(chain, writeFn);
    }
    flower_destructChainIterator(chainIterator);

    binaryRepresentation_writeElementType(CODE_FLOWER, writeFn); //this avoids interpretting things wrong.
}
Exemple #4
0
void block_check(Block *block) {
	//Check is connected to flower properly
	cactusCheck(flower_getBlock(block_getFlower(block), block_getName(block)) == block_getPositiveOrientation(block));
	//Check we have actually set built blocks for the flower..
	cactusCheck(flower_builtBlocks(block_getFlower(block)));

	//Checks the two ends are block ends.
	End *_5End = block_get5End(block);
	End *_3End = block_get3End(block);
	cactusCheck(end_isBlockEnd(_5End));
	cactusCheck(end_isBlockEnd(_3End));
	cactusCheck(end_getOrientation(_5End) == block_getOrientation(block));
	cactusCheck(end_getOrientation(_3End) == block_getOrientation(block));
	cactusCheck(end_getBlock(_5End) == block);
	cactusCheck(end_getBlock(_3End) == block);
	cactusCheck(end_getSide(_5End)); //Check the sides of the ends are consistent.
	cactusCheck(!end_getSide(_3End));

	cactusCheck(block_getLength(block) > 0); //check block has non-zero length

	//Check reverse
	Block *rBlock = block_getReverse(block);
	cactusCheck(rBlock != NULL);
	cactusCheck(block_getReverse(block) == rBlock);
	cactusCheck(block_getOrientation(block) == !block_getOrientation(rBlock));
	cactusCheck(block_getLength(block) == block_getLength(rBlock));
	cactusCheck(block_get5End(block) == end_getReverse(block_get3End(rBlock)));
	cactusCheck(block_get3End(block) == end_getReverse(block_get5End(rBlock)));
	cactusCheck(block_getInstanceNumber(block) == block_getInstanceNumber(rBlock));
	if(block_getInstanceNumber(block) > 0) {
		cactusCheck(block_getFirst(block) == segment_getReverse(block_getFirst(rBlock)));
		if(block_getRootInstance(block) == NULL) {
			cactusCheck(block_getRootInstance(rBlock) == NULL);
		}
		else {
			cactusCheck(block_getRootInstance(block) == segment_getReverse(block_getRootInstance(rBlock)));
		}
	}

	//For each segment calls segment_check.
	Block_InstanceIterator *iterator = block_getInstanceIterator(block);
	Segment *segment;
	while((segment = block_getNext(iterator)) != NULL) {
		segment_check(segment);
	}
	block_destructInstanceIterator(iterator);
}
Exemple #5
0
void flower_makeTerminalNormal(Flower *flower) {
    if (!flower_isTerminal(flower)) {
        Flower_GroupIterator *groupIterator;
        Group *group;
        groupIterator = flower_getGroupIterator(flower);
        while ((group = flower_getNextGroup(groupIterator)) != NULL) {
            if (group_isLeaf(group)) {
                //assert(group_getTotalBaseLength(group) == 0);
                Flower *nestedFlower = group_makeNestedFlower(group);
                flower_setBuiltBlocks(nestedFlower, flower_builtBlocks(flower));
                flower_setBuiltTrees(nestedFlower, flower_builtTrees(flower));
                flower_setBuildFaces(nestedFlower, flower_builtFaces(flower));
            }
        }
        flower_destructGroupIterator(groupIterator);
    }
}
void testGroup_makeNonLeaf(CuTest *testCase) {
    cactusGroupTestSetup();
    CuAssertTrue(testCase, group_isLeaf(group2));
    end_setGroup(end4, group2);
    group_makeNestedFlower(group2);
    CuAssertTrue(testCase, !group_isLeaf(group2));
    Flower *nestedFlower = group_getNestedFlower(group2);
    CuAssertTrue(testCase, nestedFlower != NULL);
    CuAssertTrue(testCase, !flower_builtBlocks(flower));
    CuAssertTrue(testCase, !flower_builtTrees(flower));
    CuAssertTrue(testCase, !flower_builtFaces(flower));
    CuAssertTrue(testCase, flower_getName(nestedFlower) == group_getName(group2));
    CuAssertTrue(testCase, flower_getParentGroup(nestedFlower) == group2);
    CuAssertTrue(testCase, flower_getEndNumber(nestedFlower) == 1);
    End *nestedEnd = flower_getFirstEnd(nestedFlower);
    CuAssertTrue(testCase, end_getName(end4) == end_getName(nestedEnd));
    CuAssertTrue(testCase, end_getGroup(nestedEnd) != NULL);
    CuAssertTrue(testCase, flower_getGroupNumber(nestedFlower) == 1);
    CuAssertTrue(testCase, flower_isTerminal(nestedFlower));
    cactusGroupTestTeardown();
}
Exemple #7
0
int main(int argc, char *argv[]) {
    /*
     * Open the database.
     * Construct a flower.
     * Construct an event tree representing the species tree.
     * For each sequence contruct two ends each containing an cap.
     * Make a file for the sequence.
     * Link the two caps.
     * Finish!
     */

    int64_t key, j;
    Group *group;
    Flower_EndIterator *endIterator;
    End *end;
    bool makeEventHeadersAlphaNumeric = 0;

    /*
     * Arguments/options
     */
    char * logLevelString = NULL;
    char * speciesTree = NULL;
    char * outgroupEvents = NULL;

    ///////////////////////////////////////////////////////////////////////////
    // (0) Parse the inputs handed by genomeCactus.py / setup stuff.
    ///////////////////////////////////////////////////////////////////////////

    while (1) {
        static struct option long_options[] = { { "logLevel", required_argument, 0, 'a' }, { "cactusDisk", required_argument, 0, 'b' }, {
                "speciesTree", required_argument, 0, 'f' }, { "outgroupEvents", required_argument, 0, 'g' },
                { "help", no_argument, 0, 'h' }, { "makeEventHeadersAlphaNumeric", no_argument, 0, 'i' }, { 0, 0, 0, 0 } };

        int option_index = 0;

        key = getopt_long(argc, argv, "a:b:f:hg:i", long_options, &option_index);

        if (key == -1) {
            break;
        }

        switch (key) {
            case 'a':
                logLevelString = optarg;
                break;
            case 'b':
                cactusDiskDatabaseString = optarg;
                break;
            case 'f':
                speciesTree = optarg;
                break;
            case 'g':
                outgroupEvents = optarg;
                break;
            case 'h':
                usage();
                return 0;
            case 'i':
                makeEventHeadersAlphaNumeric = 1;
                break;
            default:
                usage();
                return 1;
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    // (0) Check the inputs.
    ///////////////////////////////////////////////////////////////////////////

    //assert(logLevelString == NULL || strcmp(logLevelString, "CRITICAL") == 0 || strcmp(logLevelString, "INFO") == 0 || strcmp(logLevelString, "DEBUG") == 0);
    assert(cactusDiskDatabaseString != NULL);
    assert(speciesTree != NULL);

    //////////////////////////////////////////////
    //Set up logging
    //////////////////////////////////////////////

    st_setLogLevelFromString(logLevelString);

    //////////////////////////////////////////////
    //Log (some of) the inputs
    //////////////////////////////////////////////

    st_logInfo("Flower disk name : %s\n", cactusDiskDatabaseString);

    for (j = optind; j < argc; j++) {
        st_logInfo("Sequence file/directory %s\n", argv[j]);
    }

    //////////////////////////////////////////////
    //Load the database
    //////////////////////////////////////////////

    stKVDatabaseConf *kvDatabaseConf = kvDatabaseConf = stKVDatabaseConf_constructFromString(cactusDiskDatabaseString);
    if (stKVDatabaseConf_getType(kvDatabaseConf) == stKVDatabaseTypeTokyoCabinet || stKVDatabaseConf_getType(kvDatabaseConf)
            == stKVDatabaseTypeKyotoTycoon) {
        assert(stKVDatabaseConf_getDir(kvDatabaseConf) != NULL);
        cactusDisk = cactusDisk_construct2(kvDatabaseConf, "cactusSequences");
    } else {
        cactusDisk = cactusDisk_construct(kvDatabaseConf, 1);
    }
    st_logInfo("Set up the flower disk\n");

    //////////////////////////////////////////////
    //Construct the flower
    //////////////////////////////////////////////

    if (cactusDisk_getFlower(cactusDisk, 0) != NULL) {
        cactusDisk_destruct(cactusDisk);
        st_logInfo("The first flower already exists\n");
        return 0;
    }
    flower = flower_construct2(0, cactusDisk);
    assert(flower_getName(flower) == 0);
    st_logInfo("Constructed the flower\n");

    //////////////////////////////////////////////
    //Construct the event tree
    //////////////////////////////////////////////

    st_logInfo("Going to build the event tree with newick string: %s\n", speciesTree);
    stTree *tree = stTree_parseNewickString(speciesTree);
    st_logInfo("Parsed the tree\n");
    if (makeEventHeadersAlphaNumeric) {
        makeEventHeadersAlphaNumericFn(tree);
    }
    stTree_setBranchLength(tree, INT64_MAX);
    checkBranchLengthsAreDefined(tree);
    eventTree = eventTree_construct2(flower); //creates the event tree and the root even
    totalEventNumber = 1;
    st_logInfo("Constructed the basic event tree\n");

    // Construct a set of outgroup names so that ancestral outgroups
    // get recognized.
    stSet *outgroupNameSet = stSet_construct3(stHash_stringKey,
                                              stHash_stringEqualKey,
                                              free);
    if(outgroupEvents != NULL) {
        stList *outgroupNames = stString_split(outgroupEvents);
        for(int64_t i = 0; i < stList_length(outgroupNames); i++) {
            char *outgroupName = stList_get(outgroupNames, i);
            stSet_insert(outgroupNameSet, stString_copy(outgroupName));
        }
        stList_destruct(outgroupNames);
    }

    //now traverse the tree
    j = optind;
    assignEventsAndSequences(eventTree_getRootEvent(eventTree), tree,
                             outgroupNameSet, argv, &j);

    char *eventTreeString = eventTree_makeNewickString(eventTree);
    st_logInfo(
            "Constructed the initial flower with %" PRIi64 " sequences and %" PRIi64 " events with string: %s\n",
            totalSequenceNumber, totalEventNumber, eventTreeString);
    assert(event_getSubTreeBranchLength(eventTree_getRootEvent(eventTree)) >= 0.0);
    free(eventTreeString);
    //assert(0);

    //////////////////////////////////////////////
    //Label any outgroup events.
    //////////////////////////////////////////////

    if (outgroupEvents != NULL) {
        stList *outgroupEventsList = stString_split(outgroupEvents);
        for (int64_t i = 0; i < stList_length(outgroupEventsList); i++) {
            char *outgroupEvent = makeEventHeadersAlphaNumeric ? makeAlphaNumeric(stList_get(outgroupEventsList, i)) : stString_copy(stList_get(outgroupEventsList, i));
            Event *event = eventTree_getEventByHeader(eventTree, outgroupEvent);
            if (event == NULL) {
                st_errAbort("Got an outgroup string that does not match an event, outgroup string %s", outgroupEvent);
            }
            assert(!event_isOutgroup(event));
            event_setOutgroupStatus(event, 1);
            assert(event_isOutgroup(event));
            free(outgroupEvent);
        }
        stList_destruct(outgroupEventsList);
    }

    //////////////////////////////////////////////
    //Construct the terminal group.
    //////////////////////////////////////////////

    if (flower_getEndNumber(flower) > 0) {
        group = group_construct2(flower);
        endIterator = flower_getEndIterator(flower);
        while ((end = flower_getNextEnd(endIterator)) != NULL) {
            end_setGroup(end, group);
        }
        flower_destructEndIterator(endIterator);
        assert(group_isLeaf(group));

        // Create a one link chain if there is only one pair of attached ends..
        group_constructChainForLink(group);
        assert(!flower_builtBlocks(flower));
    } else {
        flower_setBuiltBlocks(flower, 1);
    }

    ///////////////////////////////////////////////////////////////////////////
    // Write the flower to disk.
    ///////////////////////////////////////////////////////////////////////////

    //flower_check(flower);
    cactusDisk_write(cactusDisk);
    st_logInfo("Updated the flower on disk\n");

    ///////////////////////////////////////////////////////////////////////////
    // Cleanup.
    ///////////////////////////////////////////////////////////////////////////

    cactusDisk_destruct(cactusDisk);

    return 0; //Exit without clean up is quicker, enable cleanup when doing memory leak detection.

    stSet_destruct(outgroupNameSet);
    stTree_destruct(tree);
    stKVDatabaseConf_destruct(kvDatabaseConf);

    return 0;
}
Exemple #8
0
int main(int argc, char *argv[]) {
    /*
     * Script for adding alignments to cactus tree.
     */
    int64_t startTime;
    stKVDatabaseConf *kvDatabaseConf;
    CactusDisk *cactusDisk;
    int key, k;

    bool (*filterFn)(stPinchSegment *, stPinchSegment *) = NULL;
    stSet *outgroupThreads = NULL;

    /*
     * Arguments/options
     */
    char * logLevelString = NULL;
    char * alignmentsFile = NULL;
    char * constraintsFile = NULL;
    char * cactusDiskDatabaseString = NULL;
    char * lastzArguments = "";
    int64_t minimumSequenceLengthForBlast = 1;

    //Parameters for annealing/melting rounds
    int64_t *annealingRounds = NULL;
    int64_t annealingRoundsLength = 0;
    int64_t *meltingRounds = NULL;
    int64_t meltingRoundsLength = 0;

    //Parameters for melting
    float maximumAdjacencyComponentSizeRatio = 10;
    int64_t blockTrim = 0;
    int64_t alignmentTrimLength = 0;
    int64_t *alignmentTrims = NULL;
    int64_t chainLengthForBigFlower = 1000000;
    int64_t longChain = 2;
    int64_t minLengthForChromosome = 1000000;
    float proportionOfUnalignedBasesForNewChromosome = 0.8;
    bool breakChainsAtReverseTandems = 1;
    int64_t maximumMedianSequenceLengthBetweenLinkedEnds = INT64_MAX;
    bool realign = 0;
    char *realignArguments = "";
    bool removeRecoverableChains = false;
    bool (*recoverableChainsFilter)(stCactusEdgeEnd *, Flower *) = NULL;
    int64_t maxRecoverableChainsIterations = 1;
    int64_t maxRecoverableChainLength = INT64_MAX;

    //Parameters for removing ancient homologies
    bool doPhylogeny = false;
    int64_t phylogenyNumTrees = 1;
    enum stCaf_RootingMethod phylogenyRootingMethod = BEST_RECON;
    enum stCaf_ScoringMethod phylogenyScoringMethod = COMBINED_LIKELIHOOD;
    double breakpointScalingFactor = 1.0;
    bool phylogenySkipSingleCopyBlocks = 0;
    int64_t phylogenyMaxBaseDistance = 1000;
    int64_t phylogenyMaxBlockDistance = 100;
    bool phylogenyKeepSingleDegreeBlocks = 0;
    stList *phylogenyTreeBuildingMethods = stList_construct();
    enum stCaf_TreeBuildingMethod defaultMethod = GUIDED_NEIGHBOR_JOINING;
    stList_append(phylogenyTreeBuildingMethods, &defaultMethod);
    double phylogenyCostPerDupPerBase = 0.2;
    double phylogenyCostPerLossPerBase = 0.2;
    const char *debugFileName = NULL;
    const char *referenceEventHeader = NULL;
    double phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce = 1.0;
    int64_t numTreeBuildingThreads = 2;
    int64_t minimumBlockDegreeToCheckSupport = 10;
    double minimumBlockHomologySupport = 0.7;
    double nucleotideScalingFactor = 1.0;
    HomologyUnitType phylogenyHomologyUnitType = BLOCK;
    enum stCaf_DistanceCorrectionMethod phylogenyDistanceCorrectionMethod = JUKES_CANTOR;
    bool sortAlignments = false;

    ///////////////////////////////////////////////////////////////////////////
    // (0) Parse the inputs handed by genomeCactus.py / setup stuff.
    ///////////////////////////////////////////////////////////////////////////

    while (1) {
        static struct option long_options[] = { { "logLevel", required_argument, 0, 'a' }, { "alignments", required_argument, 0, 'b' }, {
                "cactusDisk", required_argument, 0, 'c' }, { "lastzArguments", required_argument, 0, 'd' },
                { "help", no_argument, 0, 'h' }, { "annealingRounds", required_argument, 0, 'i' }, { "trim", required_argument, 0, 'k' }, {
                        "trimChange", required_argument, 0, 'l', }, { "minimumTreeCoverage", required_argument, 0, 'm' }, { "blockTrim",
                        required_argument, 0, 'n' }, { "deannealingRounds", required_argument, 0, 'o' }, { "minimumDegree",
                        required_argument, 0, 'p' }, { "minimumIngroupDegree", required_argument, 0, 'q' }, {
                        "minimumOutgroupDegree", required_argument, 0, 'r' }, { "alignmentFilter", required_argument, 0, 't' }, {
                        "minimumSequenceLengthForBlast", required_argument, 0, 'v' }, { "maxAdjacencyComponentSizeRatio",
                        required_argument, 0, 'w' }, { "constraints", required_argument, 0, 'x' }, { "minLengthForChromosome",
                        required_argument, 0, 'y' }, { "proportionOfUnalignedBasesForNewChromosome", required_argument, 0, 'z' },
                        { "maximumMedianSequenceLengthBetweenLinkedEnds", required_argument, 0, 'A' },
                        { "realign", no_argument, 0, 'B' }, { "realignArguments", required_argument, 0, 'C' },
                        { "phylogenyNumTrees", required_argument, 0, 'D' },
                        { "phylogenyRootingMethod", required_argument, 0, 'E' },
                        { "phylogenyScoringMethod", required_argument, 0, 'F' },
                        { "phylogenyBreakpointScalingFactor", required_argument, 0, 'G' },
                        { "phylogenySkipSingleCopyBlocks", no_argument, 0, 'H' },
                        { "phylogenyMaxBaseDistance", required_argument, 0, 'I' },
                        { "phylogenyMaxBlockDistance", required_argument, 0, 'J' },
                        { "phylogenyDebugFile", required_argument, 0, 'K' },
                        { "phylogenyKeepSingleDegreeBlocks", no_argument, 0, 'L' },
                        { "phylogenyTreeBuildingMethod", required_argument, 0, 'M' },
                        { "phylogenyCostPerDupPerBase", required_argument, 0, 'N' },
                        { "phylogenyCostPerLossPerBase", required_argument, 0, 'O' },
                        { "referenceEventHeader", required_argument, 0, 'P' },
                        { "phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce", required_argument, 0, 'Q' },
                        { "numTreeBuildingThreads", required_argument, 0, 'R' },
                        { "phylogeny", no_argument, 0, 'S' },
                        { "minimumBlockHomologySupport", required_argument, 0, 'T' },
                        { "phylogenyNucleotideScalingFactor", required_argument, 0, 'U' },
                        { "minimumBlockDegreeToCheckSupport", required_argument, 0, 'V' },
                        { "removeRecoverableChains", required_argument, 0, 'W' },
                        { "minimumNumberOfSpecies", required_argument, 0, 'X' },
                        { "phylogenyHomologyUnitType", required_argument, 0, 'Y' },
                        { "phylogenyDistanceCorrectionMethod", required_argument, 0, 'Z' },
                        { "maxRecoverableChainsIterations", required_argument, 0, '1' },
                        { "maxRecoverableChainLength", required_argument, 0, '2' },
                        { 0, 0, 0, 0 } };

        int option_index = 0;

        key = getopt_long(argc, argv, "a:b:c:hi:k:m:n:o:p:q:r:stv:w:x:y:z:A:BC:D:E:", long_options, &option_index);

        if (key == -1) {
            break;
        }

        switch (key) {
            case 'a':
                logLevelString = stString_copy(optarg);
                st_setLogLevelFromString(logLevelString);
                break;
            case 'b':
                alignmentsFile = stString_copy(optarg);
                break;
            case 'c':
                cactusDiskDatabaseString = stString_copy(optarg);
                break;
            case 'd':
                lastzArguments = stString_copy(optarg);
                break;
            case 'h':
                usage();
                return 0;
            case 'i':
                annealingRounds = getInts(optarg, &annealingRoundsLength);
                break;
            case 'o':
                meltingRounds = getInts(optarg, &meltingRoundsLength);
                break;
            case 'k':
                alignmentTrims = getInts(optarg, &alignmentTrimLength);
                break;
            case 'm':
                k = sscanf(optarg, "%f", &minimumTreeCoverage);
                assert(k == 1);
                break;
            case 'n':
                k = sscanf(optarg, "%" PRIi64 "", &blockTrim);
                assert(k == 1);
                break;
            case 'p':
                k = sscanf(optarg, "%" PRIi64 "", &minimumDegree);
                assert(k == 1);
                break;
            case 'q':
                k = sscanf(optarg, "%" PRIi64 "", &minimumIngroupDegree);
                assert(k == 1);
                break;
            case 'r':
                k = sscanf(optarg, "%" PRIi64 "", &minimumOutgroupDegree);
                assert(k == 1);
                break;
            case 't':
                if (strcmp(optarg, "singleCopyOutgroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_filterByOutgroup;
                } else if (strcmp(optarg, "relaxedSingleCopyOutgroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_relaxedFilterByOutgroup;
                } else if (strcmp(optarg, "singleCopy") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_filterByRepeatSpecies;
                } else if (strcmp(optarg, "relaxedSingleCopy") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_relaxedFilterByRepeatSpecies;
                } else if (strcmp(optarg, "singleCopyChr") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_singleCopyChr;
                } else if (strcmp(optarg, "singleCopyIngroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_singleCopyIngroup;
                } else if (strcmp(optarg, "relaxedSingleCopyIngroup") == 0) {
                    sortAlignments = true;
                    filterFn = stCaf_relaxedSingleCopyIngroup;
                } else if (strcmp(optarg, "none") == 0) {
                    sortAlignments = false;
                    filterFn = NULL;
                } else {
                    st_errAbort("Could not recognize alignmentFilter option %s", optarg);
                }
                break;
            case 'v':
                k = sscanf(optarg, "%" PRIi64 "", &minimumSequenceLengthForBlast);
                assert(k == 1);
                break;
            case 'w':
                k = sscanf(optarg, "%f", &maximumAdjacencyComponentSizeRatio);
                assert(k == 1);
                break;
            case 'x':
                constraintsFile = stString_copy(optarg);
                break;
            case 'y':
                k = sscanf(optarg, "%" PRIi64 "", &minLengthForChromosome);
                assert(k == 1);
                break;
            case 'z':
                k = sscanf(optarg, "%f", &proportionOfUnalignedBasesForNewChromosome);
                assert(k == 1);
                break;
            case 'A':
                k = sscanf(optarg, "%" PRIi64 "", &maximumMedianSequenceLengthBetweenLinkedEnds);
                assert(k == 1);
                break;
            case 'B':
                realign = 1;
                break;
            case 'C':
                realignArguments = stString_copy(optarg);
                break;
            case 'D':
                k = sscanf(optarg, "%" PRIi64, &phylogenyNumTrees);
                assert(k == 1);
                break;
            case 'E':
                if (!strcmp(optarg, "outgroupBranch")) {
                    phylogenyRootingMethod = OUTGROUP_BRANCH;
                } else if (!strcmp(optarg, "longestBranch")) {
                    phylogenyRootingMethod = LONGEST_BRANCH;
                } else if (!strcmp(optarg, "bestRecon")) {
                    phylogenyRootingMethod = BEST_RECON;
                } else {
                    st_errAbort("Invalid tree rooting method: %s", optarg);
                }
                break;
            case 'F':
                if (!strcmp(optarg, "reconCost")) {
                    phylogenyScoringMethod = RECON_COST;
                } else if (!strcmp(optarg, "nucLikelihood")) {
                    phylogenyScoringMethod = NUCLEOTIDE_LIKELIHOOD;
                } else if (!strcmp(optarg, "reconLikelihood")) {
                    phylogenyScoringMethod = RECON_LIKELIHOOD;
                } else if (!strcmp(optarg, "combinedLikelihood")) {
                    phylogenyScoringMethod = COMBINED_LIKELIHOOD;
                } else {
                    st_errAbort("Invalid tree scoring method: %s", optarg);
                }
                break;
            case 'G':
                k = sscanf(optarg, "%lf", &breakpointScalingFactor);
                assert(k == 1);
                break;
            case 'H':
                phylogenySkipSingleCopyBlocks = true;
                break;
            case 'I':
                k = sscanf(optarg, "%" PRIi64, &phylogenyMaxBaseDistance);
                assert(k == 1);
                break;
            case 'J':
                k = sscanf(optarg, "%" PRIi64, &phylogenyMaxBlockDistance);
                assert(k == 1);
                break;
            case 'K':
                debugFileName = stString_copy(optarg);
                break;
            case 'L':
                phylogenyKeepSingleDegreeBlocks = true;
                break;
            case 'M':
                // clear the default setting of the list
                stList_destruct(phylogenyTreeBuildingMethods);
                phylogenyTreeBuildingMethods = stList_construct();
                stList *methodStrings = stString_splitByString(optarg, ",");

                for (int64_t i = 0; i < stList_length(methodStrings); i++) {
                    char *methodString = stList_get(methodStrings, i);
                    enum stCaf_TreeBuildingMethod *method = st_malloc(sizeof(enum stCaf_TreeBuildingMethod));
                    if (strcmp(methodString, "neighborJoining") == 0) {
                        *method = NEIGHBOR_JOINING;
                    } else if (strcmp(methodString, "guidedNeighborJoining") == 0) {
                        *method = GUIDED_NEIGHBOR_JOINING;
                    } else if (strcmp(methodString, "splitDecomposition") == 0) {
                        *method = SPLIT_DECOMPOSITION;
                    } else if (strcmp(methodString, "strictSplitDecomposition") == 0) {
                        *method = STRICT_SPLIT_DECOMPOSITION;
                    } else if (strcmp(methodString, "removeBadChains") == 0) {
                        *method = REMOVE_BAD_CHAINS;
                    } else {
                        st_errAbort("Unknown tree building method: %s", methodString);
                    }
                    stList_append(phylogenyTreeBuildingMethods, method);
                }
                stList_destruct(methodStrings);
                break;
            case 'N':
                k = sscanf(optarg, "%lf", &phylogenyCostPerDupPerBase);
                assert(k == 1);
                break;
            case 'O':
                k = sscanf(optarg, "%lf", &phylogenyCostPerLossPerBase);
                assert(k == 1);
                break;
            case 'P':
                referenceEventHeader = stString_copy(optarg);
                break;
            case 'Q':
                k = sscanf(optarg, "%lf", &phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce);
                assert(k == 1);
                break;
            case 'R':
                k = sscanf(optarg, "%" PRIi64, &numTreeBuildingThreads);
                assert(k == 1);
                break;
            case 'S':
                doPhylogeny = true;
                break;
            case 'T':
                k = sscanf(optarg, "%lf", &minimumBlockHomologySupport);
                assert(k == 1);
                assert(minimumBlockHomologySupport <= 1.0);
                assert(minimumBlockHomologySupport >= 0.0);
                break;
            case 'U':
                k = sscanf(optarg, "%lf", &nucleotideScalingFactor);
                assert(k == 1);
                break;
            case 'V':
                k = sscanf(optarg, "%" PRIi64, &minimumBlockDegreeToCheckSupport);
                assert(k == 1);
                break;
            case 'W':
                if (strcmp(optarg, "1") == 0) {
                    removeRecoverableChains = true;
                    recoverableChainsFilter = NULL;
                } else if (strcmp(optarg, "unequalNumberOfIngroupCopies") == 0) {
                    removeRecoverableChains = true;
                    recoverableChainsFilter = stCaf_chainHasUnequalNumberOfIngroupCopies;
                } else if (strcmp(optarg, "unequalNumberOfIngroupCopiesOrNoOutgroup") == 0) {
                    removeRecoverableChains = true;
                    recoverableChainsFilter = stCaf_chainHasUnequalNumberOfIngroupCopiesOrNoOutgroup;
                } else if (strcmp(optarg, "0") == 0) {
                    removeRecoverableChains = false;
                } else {
                    st_errAbort("Could not parse removeRecoverableChains argument");
                }
                break;
            case 'X':
                k = sscanf(optarg, "%" PRIi64, &minimumNumberOfSpecies);
                if (k != 1) {
                    st_errAbort("Error parsing the minimumNumberOfSpecies argument");
                }
                break;
            case 'Y':
                if (strcmp(optarg, "chain") == 0) {
                    phylogenyHomologyUnitType = CHAIN;
                } else if (strcmp(optarg, "block") == 0) {
                    phylogenyHomologyUnitType = BLOCK;
                } else {
                    st_errAbort("Could not parse the phylogenyHomologyUnitType argument");
                }
                break;
            case 'Z':
                if (strcmp(optarg, "jukesCantor") == 0) {
                    phylogenyDistanceCorrectionMethod = JUKES_CANTOR;
                } else if (strcmp(optarg, "none") == 0 ) {
                    phylogenyDistanceCorrectionMethod = NONE;
                } else {
                    st_errAbort("Could not parse the phylogenyDistanceCorrectionMethod argument");
                }
                break;
            case '1':
                k = sscanf(optarg, "%" PRIi64, &maxRecoverableChainsIterations);
                if (k != 1) {
                    st_errAbort("Error parsing the maxRecoverableChainsIterations argument");
                }
                break;
            case '2':
                k = sscanf(optarg, "%" PRIi64, &maxRecoverableChainLength);
                if (k != 1) {
                    st_errAbort("Error parsing the maxRecoverableChainLength argument");
                }
                break;
            default:
                usage();
                return 1;
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    // (0) Check the inputs.
    ///////////////////////////////////////////////////////////////////////////

    assert(cactusDiskDatabaseString != NULL);
    assert(minimumTreeCoverage >= 0.0);
    assert(minimumTreeCoverage <= 1.0);
    assert(blockTrim >= 0);
    assert(annealingRoundsLength >= 0);
    for (int64_t i = 0; i < annealingRoundsLength; i++) {
        assert(annealingRounds[i] >= 0);
    }
    assert(meltingRoundsLength >= 0);
    for (int64_t i = 1; i < meltingRoundsLength; i++) {
        assert(meltingRounds[i - 1] < meltingRounds[i]);
        assert(meltingRounds[i - 1] >= 1);
    }
    assert(alignmentTrimLength >= 0);
    for (int64_t i = 0; i < alignmentTrimLength; i++) {
        assert(alignmentTrims[i] >= 0);
    }
    assert(minimumOutgroupDegree >= 0);
    assert(minimumIngroupDegree >= 0);

    //////////////////////////////////////////////
    //Set up logging
    //////////////////////////////////////////////

    st_setLogLevelFromString(logLevelString);

    //////////////////////////////////////////////
    //Log (some of) the inputs
    //////////////////////////////////////////////

    st_logInfo("Flower disk name : %s\n", cactusDiskDatabaseString);

    //////////////////////////////////////////////
    //Load the database
    //////////////////////////////////////////////

    kvDatabaseConf = stKVDatabaseConf_constructFromString(cactusDiskDatabaseString);
    cactusDisk = cactusDisk_construct(kvDatabaseConf, 0);
    st_logInfo("Set up the flower disk\n");

    ///////////////////////////////////////////////////////////////////////////
    // Sort the constraints
    ///////////////////////////////////////////////////////////////////////////

    stPinchIterator *pinchIteratorForConstraints = NULL;
    if (constraintsFile != NULL) {
        pinchIteratorForConstraints = stPinchIterator_constructFromFile(constraintsFile);
        st_logInfo("Created an iterator for the alignment constaints from file: %s\n", constraintsFile);
    }

    ///////////////////////////////////////////////////////////////////////////
    // Do the alignment
    ///////////////////////////////////////////////////////////////////////////

    startTime = time(NULL);

    stList *flowers = flowerWriter_parseFlowersFromStdin(cactusDisk);
    if (alignmentsFile == NULL) {
        cactusDisk_preCacheStrings(cactusDisk, flowers);
    }
    char *tempFile1 = NULL;
    for (int64_t i = 0; i < stList_length(flowers); i++) {
        flower = stList_get(flowers, i);
        if (!flower_builtBlocks(flower)) { // Do nothing if the flower already has defined blocks
            st_logDebug("Processing flower: %lli\n", flower_getName(flower));

            stCaf_setFlowerForAlignmentFiltering(flower);

            //Set up the graph and add the initial alignments
            stPinchThreadSet *threadSet = stCaf_setup(flower);

            //Build the set of outgroup threads
            outgroupThreads = stCaf_getOutgroupThreads(flower, threadSet);

            //Setup the alignments
            stPinchIterator *pinchIterator;
            stList *alignmentsList = NULL;
            if (alignmentsFile != NULL) {
                assert(i == 0);
                assert(stList_length(flowers) == 1);
                if (sortAlignments) {
                    tempFile1 = getTempFile();
                    stCaf_sortCigarsFileByScoreInDescendingOrder(alignmentsFile, tempFile1);
                    pinchIterator = stPinchIterator_constructFromFile(tempFile1);
                } else {
                    pinchIterator = stPinchIterator_constructFromFile(alignmentsFile);
                }
            } else {
                if (tempFile1 == NULL) {
                    tempFile1 = getTempFile();
                }
                alignmentsList = stCaf_selfAlignFlower(flower, minimumSequenceLengthForBlast, lastzArguments, realign, realignArguments, tempFile1);
                if (sortAlignments) {
                    stCaf_sortCigarsByScoreInDescendingOrder(alignmentsList);
                }
                st_logDebug("Ran lastz and have %" PRIi64 " alignments\n", stList_length(alignmentsList));
                pinchIterator = stPinchIterator_constructFromList(alignmentsList);
            }

            for (int64_t annealingRound = 0; annealingRound < annealingRoundsLength; annealingRound++) {
                int64_t minimumChainLength = annealingRounds[annealingRound];
                int64_t alignmentTrim = annealingRound < alignmentTrimLength ? alignmentTrims[annealingRound] : 0;
                st_logDebug("Starting annealing round with a minimum chain length of %" PRIi64 " and an alignment trim of %" PRIi64 "\n", minimumChainLength, alignmentTrim);
                stPinchIterator_setTrim(pinchIterator, alignmentTrim);

                //Add back in the constraints
                if (pinchIteratorForConstraints != NULL) {
                    stCaf_anneal(threadSet, pinchIteratorForConstraints, filterFn);
                }

                //Do the annealing
                if (annealingRound == 0) {
                    stCaf_anneal(threadSet, pinchIterator, filterFn);
                } else {
                    stCaf_annealBetweenAdjacencyComponents(threadSet, pinchIterator, filterFn);
                }

                // Dump the block degree and length distribution to a file
                if (debugFileName != NULL) {
                    dumpBlockInfo(threadSet, stString_print("%s-blockStats-preMelting", debugFileName));
                }

                printf("Sequence graph statistics after annealing:\n");
                printThreadSetStatistics(threadSet, flower, stdout);

                // Check for poorly-supported blocks--those that have
                // been transitively aligned together but with very
                // few homologies supporting the transitive
                // alignment. These "megablocks" can snarl up the
                // graph so that a lot of extra gets thrown away in
                // the first melting step.
                stPinchThreadSetBlockIt blockIt = stPinchThreadSet_getBlockIt(threadSet);
                stPinchBlock *block;
                while ((block = stPinchThreadSetBlockIt_getNext(&blockIt)) != NULL) {
                    if (stPinchBlock_getDegree(block) > minimumBlockDegreeToCheckSupport) {
                        uint64_t supportingHomologies = stPinchBlock_getNumSupportingHomologies(block);
                        uint64_t possibleSupportingHomologies = numPossibleSupportingHomologies(block, flower);
                        double support = ((double) supportingHomologies) / possibleSupportingHomologies;
                        if (support < minimumBlockHomologySupport) {
                            fprintf(stdout, "Destroyed a megablock with degree %" PRIi64
                                    " and %" PRIi64 " supporting homologies out of a maximum "
                                    "of %" PRIi64 " (%lf%%).\n", stPinchBlock_getDegree(block),
                                    supportingHomologies, possibleSupportingHomologies, support);
                            stPinchBlock_destruct(block);
                        }
                    }
                }

                //Do the melting rounds
                for (int64_t meltingRound = 0; meltingRound < meltingRoundsLength; meltingRound++) {
                    int64_t minimumChainLengthForMeltingRound = meltingRounds[meltingRound];
                    st_logDebug("Starting melting round with a minimum chain length of %" PRIi64 " \n", minimumChainLengthForMeltingRound);
                    if (minimumChainLengthForMeltingRound >= minimumChainLength) {
                        break;
                    }
                    stCaf_melt(flower, threadSet, NULL, 0, minimumChainLengthForMeltingRound, 0, INT64_MAX);
                } st_logDebug("Last melting round of cycle with a minimum chain length of %" PRIi64 " \n", minimumChainLength);
                stCaf_melt(flower, threadSet, NULL, 0, minimumChainLength, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds);
                //This does the filtering of blocks that do not have the required species/tree-coverage/degree.
                stCaf_melt(flower, threadSet, blockFilterFn, blockTrim, 0, 0, INT64_MAX);
            }

            if (removeRecoverableChains) {
                stCaf_meltRecoverableChains(flower, threadSet, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds, recoverableChainsFilter, maxRecoverableChainsIterations, maxRecoverableChainLength);
            }
            if (debugFileName != NULL) {
                dumpBlockInfo(threadSet, stString_print("%s-blockStats-postMelting", debugFileName));
            }

            printf("Sequence graph statistics after melting:\n");
            printThreadSetStatistics(threadSet, flower, stdout);

            // Build a tree for each block, then use each tree to
            // partition the homologies between the ingroups sequences
            // into those that occur before the speciation with the
            // outgroup and those which occur late.

            if (stSet_size(outgroupThreads) > 0 && doPhylogeny) {
                st_logDebug("Starting to build trees and partition ingroup homologies\n");
                stHash *threadStrings = stCaf_getThreadStrings(flower, threadSet);
                st_logDebug("Got sets of thread strings and set of threads that are outgroups\n");
                stCaf_PhylogenyParameters params;
                params.distanceCorrectionMethod = phylogenyDistanceCorrectionMethod;
                params.treeBuildingMethods = phylogenyTreeBuildingMethods;
                params.rootingMethod = phylogenyRootingMethod;
                params.scoringMethod = phylogenyScoringMethod;
                params.breakpointScalingFactor = breakpointScalingFactor;
                params.nucleotideScalingFactor = nucleotideScalingFactor;
                params.skipSingleCopyBlocks = phylogenySkipSingleCopyBlocks;
                params.keepSingleDegreeBlocks = phylogenyKeepSingleDegreeBlocks;
                params.costPerDupPerBase = phylogenyCostPerDupPerBase;
                params.costPerLossPerBase = phylogenyCostPerLossPerBase;
                params.maxBaseDistance = phylogenyMaxBaseDistance;
                params.maxBlockDistance = phylogenyMaxBlockDistance;
                params.numTrees = phylogenyNumTrees;
                params.ignoreUnalignedBases = 1;
                params.onlyIncludeCompleteFeatureBlocks = 0;
                params.doSplitsWithSupportHigherThanThisAllAtOnce = phylogenyDoSplitsWithSupportHigherThanThisAllAtOnce;
                params.numTreeBuildingThreads = numTreeBuildingThreads;

                assert(params.numTreeBuildingThreads >= 1);

                stCaf_buildTreesToRemoveAncientHomologies(
                    threadSet, phylogenyHomologyUnitType, threadStrings, outgroupThreads, flower, &params,
                    debugFileName == NULL ? NULL : stString_print("%s-phylogeny", debugFileName), referenceEventHeader);
                stHash_destruct(threadStrings);
                st_logDebug("Finished building trees\n");

                if (removeRecoverableChains) {
                    // We melt recoverable chains after splitting, as
                    // well as before, to alleviate coverage loss
                    // caused by bad splits.
                    stCaf_meltRecoverableChains(flower, threadSet, breakChainsAtReverseTandems, maximumMedianSequenceLengthBetweenLinkedEnds, recoverableChainsFilter, maxRecoverableChainsIterations, maxRecoverableChainLength);
                }

                // Enforce the block constraints on minimum degree,
                // etc. after splitting.
                stCaf_melt(flower, threadSet, blockFilterFn, 0, 0, 0, INT64_MAX);
            }

            //Sort out case when we allow blocks of degree 1
            if (minimumDegree < 2) {
                st_logDebug("Creating degree 1 blocks\n");
                stCaf_makeDegreeOneBlocks(threadSet);
                stCaf_melt(flower, threadSet, blockFilterFn, blockTrim, 0, 0, INT64_MAX);
            } else if (maximumAdjacencyComponentSizeRatio < INT64_MAX) { //Deal with giant components
                st_logDebug("Breaking up components greedily\n");
                stCaf_breakupComponentsGreedily(threadSet, maximumAdjacencyComponentSizeRatio);
            }

            //Finish up
            stCaf_finish(flower, threadSet, chainLengthForBigFlower, longChain, minLengthForChromosome,
                    proportionOfUnalignedBasesForNewChromosome); //Flower is then destroyed at this point.
            st_logInfo("Ran the cactus core script\n");

            //Cleanup
            stPinchThreadSet_destruct(threadSet);
            stPinchIterator_destruct(pinchIterator);
            stSet_destruct(outgroupThreads);

            if (alignmentsList != NULL) {
                stList_destruct(alignmentsList);
            }
            st_logInfo("Cleaned up from main loop\n");
        } else {
            st_logInfo("We've already built blocks / alignments for this flower\n");
        }
    }
    stList_destruct(flowers);
    if (tempFile1 != NULL) {
        st_system("rm %s", tempFile1);
    }

    if (constraintsFile != NULL) {
        stPinchIterator_destruct(pinchIteratorForConstraints);
    }

    ///////////////////////////////////////////////////////////////////////////
    // Write the flower to disk.
    ///////////////////////////////////////////////////////////////////////////
    st_logDebug("Writing the flowers to disk\n");
    cactusDisk_write(cactusDisk);
    st_logInfo("Updated the flower on disk and %" PRIi64 " seconds have elapsed\n", time(NULL) - startTime);

    ///////////////////////////////////////////////////////////////////////////
    // Clean up.
    ///////////////////////////////////////////////////////////////////////////

    cactusDisk_destruct(cactusDisk);
}