Exemple #1
0
/*!
 *  dewarpDestroy()
 *
 *      Input:  &dew (<will be set to null before returning>)
 *      Return: void
 */
void
dewarpDestroy(L_DEWARP  **pdew)
{
L_DEWARP  *dew;

    PROCNAME("dewarpDestroy");

    if (pdew == NULL) {
        L_WARNING("ptr address is null!", procName);
        return;
    }
    if ((dew = *pdew) == NULL)
        return;

    pixDestroy(&dew->pixs);
    pixDestroy(&dew->pixd);
    fpixDestroy(&dew->sampvdispar);
    fpixDestroy(&dew->samphdispar);
    fpixDestroy(&dew->fullvdispar);
    fpixDestroy(&dew->fullhdispar);
    numaDestroy(&dew->naflats);
    numaDestroy(&dew->nacurves);
    FREE(dew);
    *pdew = NULL;
    return;
}
Exemple #2
0
/*!
 *  dewarpMinimize()
 *
 *      Input:  dew
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This removes all data that is not needed for serialization.
 *          It keeps the subsampled disparity array(s), so the full
 *          resolution arrays can be reconstructed.
 */
l_int32
dewarpMinimize(L_DEWARP  *dew)
{
L_DEWARP  *dewt;

    PROCNAME("dewarpMinimize");

    if (!dew)
        return ERROR_INT("dew not defined", procName, 1);

        /* If dew is a ref, minimize the actual dewarp */
    if (dew->hasref)
        dewt = dewarpaGetDewarp(dew->dewa, dew->refpage);
    else
        dewt = dew;
    if (!dewt)
        return ERROR_INT("dewt not found", procName, 1);

    pixDestroy(&dewt->pixs);
    fpixDestroy(&dewt->fullvdispar);
    fpixDestroy(&dewt->fullhdispar);
    numaDestroy(&dewt->namidys);
    numaDestroy(&dewt->nacurves);
    return 0;
}
Exemple #3
0
int main(int    argc,
         char **argv)
{
char        *filein;
l_int32      ncontours;
FPIX        *fpix;
PIX         *pix;
static char  mainName[] = "fpixcontours";

    if (argc != 2 && argc != 3) {
        fprintf(stderr, "Syntax: fpixcontours filein [ncontours]\n");
        return 1;
    }
    filein = argv[1];
    if (argc == 2)
        ncontours = 40;
    else  /* argc == 3 */
        ncontours = atoi(argv[2]);

    setLeptDebugOK(1);
    lept_mkdir("lept/fpix");

    if ((fpix = fpixRead(filein)) == NULL)
        return ERROR_INT(mainName, "fpix not read", 1);
    pix = fpixAutoRenderContours(fpix, ncontours);
    pixWrite(fileout, pix, IFF_PNG);
    pixDisplay(pix, 100, 100);

    pixDestroy(&pix);
    fpixDestroy(&fpix);
    return 0;
}
Exemple #4
0
/*!
 *  dewarpMinimize()
 *
 *      Input:  dew
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This removes all data that is not needed for serialization.
 *          It keeps the subsampled disparity array(s), so the full
 *          resolution arrays can be reconstructed.
 */
l_int32
dewarpMinimize(L_DEWARP  *dew)
{
    PROCNAME("dewarpMinimize");

    if (!dew)
        return ERROR_INT("dew not defined", procName, 1);

    pixDestroy(&dew->pixs);
    pixDestroy(&dew->pixd);
    fpixDestroy(&dew->fullvdispar);
    fpixDestroy(&dew->fullhdispar);
    numaDestroy(&dew->naflats);
    numaDestroy(&dew->nacurves);
    return 0;
}
Exemple #5
0
/*!
 * \brief   fpixaDisplayQuadtree()
 *
 * \param[in]    fpixa     mean, variance or root variance
 * \param[in]    factor    replication factor at lowest level
 * \param[in]    fontsize  4, ... 20
 * \return  pixd 8 bpp, mosaic of quadtree images, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) The mean and root variance fall naturally in the 8 bpp range,
 *          but the variance is typically outside the range.  This
 *          function displays 8 bpp pix clipped to 255, so the image
 *          pixels will mostly be 255 (white).
 * </pre>
 */
PIX *
fpixaDisplayQuadtree(FPIXA   *fpixa,
                     l_int32  factor,
                     l_int32  fontsize)
{
char       buf[256];
l_int32    nlevels, i, mag, w;
L_BMF     *bmf;
FPIX      *fpix;
PIX       *pixt1, *pixt2, *pixt3, *pixt4, *pixd;
PIXA      *pixat;

    PROCNAME("fpixaDisplayQuadtree");

    if (!fpixa)
        return (PIX *)ERROR_PTR("fpixa not defined", procName, NULL);

    if ((nlevels = fpixaGetCount(fpixa)) == 0)
        return (PIX *)ERROR_PTR("pixas empty", procName, NULL);

    if ((bmf = bmfCreate(NULL, fontsize)) == NULL)
        L_ERROR("bmf not made; text will not be added", procName);
    pixat = pixaCreate(nlevels);
    for (i = 0; i < nlevels; i++) {
        fpix = fpixaGetFPix(fpixa, i, L_CLONE);
        pixt1 = fpixConvertToPix(fpix, 8, L_CLIP_TO_ZERO, 0);
        mag = factor * (1 << (nlevels - i - 1));
        pixt2 = pixExpandReplicate(pixt1, mag);
        pixt3 = pixConvertTo32(pixt2);
        snprintf(buf, sizeof(buf), "Level %d\n", i);
        pixt4 = pixAddSingleTextblock(pixt3, bmf, buf, 0xff000000,
                                      L_ADD_BELOW, NULL);
        pixaAddPix(pixat, pixt4, L_INSERT);
        fpixDestroy(&fpix);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
        pixDestroy(&pixt3);
    }
    w = pixGetWidth(pixt4);
    pixd = pixaDisplayTiledInRows(pixat, 32, nlevels * (w + 80), 1.0, 0, 30, 2);

    pixaDestroy(&pixat);
    bmfDestroy(&bmf);
    return pixd;
}
Exemple #6
0
l_int32 main(int    argc,
             char **argv)
{
l_int32       irval, igval, ibval;
l_float32     rval, gval, bval, fract, fgfract;
L_BMF        *bmf;
BOX          *box;
BOXA         *boxa;
FPIX         *fpix;
PIX          *pixs, *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7;
PIX          *pix8, *pix9, *pix10, *pix11, *pix12, *pix13, *pix14, *pix15;
PIXA         *pixa;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
              return 1;

    pixa = pixaCreate(0);
    pixs = pixRead("breviar38.150.jpg");
/*    pixs = pixRead("breviar32.150.jpg"); */
    pixaAddPix(pixa, pixs, L_CLONE);
    regTestWritePixAndCheck(rp, pixs, IFF_JFIF_JPEG);  /* 0 */
    pixDisplayWithTitle(pixs, 0, 0, "Input image", rp->display);

        /* Extract the blue component, which is small in all the text
         * regions, including in the highlight color region */
    pix1 = pixGetRGBComponent(pixs, COLOR_BLUE);
    pixaAddPix(pixa, pix1, L_CLONE);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 1 */
    pixDisplayWithTitle(pix1, 200, 0, "Blue component", rp->display);

        /* Do a background normalization, with the background set to
         * approximately 200 */
    pix2 = pixBackgroundNormSimple(pix1, NULL, NULL);
    pixaAddPix(pixa, pix2, L_COPY);
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 2 */
    pixDisplayWithTitle(pix2, 400, 0, "BG normalized to 200", rp->display);

        /* Do a linear transform on the gray pixels, with 50 going to
         * black and 160 going to white.  50 is sufficiently low to
         * make both the red and black print quite dark.  Quantize
         * to a few equally spaced gray levels.  This is the image
         * to which highlight color will be applied. */
    pixGammaTRC(pix2, pix2, 1.0, 50, 160);
    pix3 = pixThresholdOn8bpp(pix2, 7, 1);
    pixaAddPix(pixa, pix3, L_CLONE);
    regTestWritePixAndCheck(rp, pix3, IFF_JFIF_JPEG);  /* 3 */
    pixDisplayWithTitle(pix3, 600, 0, "Basic quantized with white bg",
                        rp->display);

        /* Identify the regions of red text.  First, make a mask
         * consisting of all pixels such that (R-B)/B is larger
         * than 2.0.  This will have all the red, plus a lot of
         * the dark pixels. */
    fpix = pixComponentFunction(pixs, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0);
    pix4 = fpixThresholdToPix(fpix, 2.0);
    pixInvert(pix4, pix4);  /* red plus some dark text */
    pixaAddPix(pixa, pix4, L_CLONE);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pix4, 800, 0, "Red plus dark pixels", rp->display);

        /* Make a mask consisting of all the red and background pixels */
    pix5 = pixGetRGBComponent(pixs, COLOR_RED);
    pix6 = pixThresholdToBinary(pix5, 128);
    pixInvert(pix6, pix6);  /* red plus background (white) */

        /* Intersect the two masks to get a mask consisting of pixels
         * that are almost certainly red.  This is the seed. */
    pix7 = pixAnd(NULL, pix4, pix6);  /* red only (seed) */
    pixaAddPix(pixa, pix7, L_COPY);
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pix7, 0, 600, "Seed for red color", rp->display);

        /* Make the clipping mask by thresholding the image with
         * the background cleaned to white. */
    pix8 =  pixThresholdToBinary(pix2, 230);  /* mask */
    pixaAddPix(pixa, pix8, L_CLONE);
    regTestWritePixAndCheck(rp, pix8, IFF_PNG);  /* 6 */
    pixDisplayWithTitle(pix8, 200, 600, "Clipping mask for red components",
                        rp->display);

        /* Fill into the mask from the seed */
    pixSeedfillBinary(pix7, pix7, pix8, 8);  /* filled: red plus touching */
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 7 */
    pixDisplayWithTitle(pix7, 400, 600, "Red component mask filled",
                        rp->display);

        /* Remove long horizontal and vertical lines from the filled result */
    pix9 = pixMorphSequence(pix7, "o40.1", 0);
    pixSubtract(pix7, pix7, pix9);  /* remove long horizontal lines */
    pixDestroy(&pix9);
    pix9 = pixMorphSequence(pix7, "o1.40", 0);
    pixSubtract(pix7, pix7, pix9);  /* remove long vertical lines */

        /* Close the regions to be colored  */
    pix10 = pixMorphSequence(pix7, "c5.1", 0);
    pixaAddPix(pixa, pix10, L_CLONE);
    regTestWritePixAndCheck(rp, pix10, IFF_PNG);  /* 8 */
    pixDisplayWithTitle(pix10, 600, 600,
                        "Components defining regions allowing coloring",
                        rp->display);

        /* Sanity check on amount to be colored.  Only accept images
         * with less than 10% of all the pixels with highlight color */
    pixForegroundFraction(pix10, &fgfract);
    if (fgfract >= 0.10) {
        L_INFO("too much highlighting: fract = %6.3f; removing it\n",
               rp->testname, fgfract);
        pixClearAll(pix10);
        pixSetPixel(pix10, 0, 0, 1);
    }

        /* Get the bounding boxes of the regions to be colored */
    boxa = pixConnCompBB(pix10, 8);

        /* Get a color to paint that is representative of the
         * actual highlight color in the image.  Scale each
         * color component up from the average by an amount necessary
         * to saturate the red.  Then divide the green and
         * blue components by 2.0.  */
    pixGetAverageMaskedRGB(pixs, pix7, 0, 0, 1, L_MEAN_ABSVAL,
                           &rval, &gval, &bval);
    fract = 255.0 / rval;
    irval = lept_roundftoi(fract * rval);
    igval = lept_roundftoi(fract * gval / 2.0);
    ibval = lept_roundftoi(fract * bval / 2.0);
    fprintf(stderr, "(r,g,b) = (%d,%d,%d)\n", irval, igval, ibval);

        /* Color the quantized gray version in the selected regions */
    pix11 = pixColorGrayRegions(pix3, boxa, L_PAINT_DARK, 220, irval,
                                igval, ibval);
    pixaAddPix(pixa, pix11, L_CLONE);
    regTestWritePixAndCheck(rp, pix11, IFF_PNG);  /* 9 */
    pixDisplayWithTitle(pix11, 800, 600, "Final colored result", rp->display);
    pixaAddPix(pixa, pixs, L_CLONE);

        /* Test colorization on gray and cmapped gray */
    pix12 = pixColorGrayRegions(pix2, boxa, L_PAINT_DARK, 220, 0, 255, 0);
    pixaAddPix(pixa, pix12, L_CLONE);
    regTestWritePixAndCheck(rp, pix12, IFF_PNG);  /* 10 */
    pixDisplayWithTitle(pix12, 900, 600, "Colorizing boxa gray", rp->display);

    box = boxCreate(200, 200, 250, 350);
    pix13 = pixCopy(NULL, pix2);
    pixColorGray(pix13, box, L_PAINT_DARK, 220, 0, 0, 255);
    pixaAddPix(pixa, pix13, L_CLONE);
    regTestWritePixAndCheck(rp, pix13, IFF_PNG);  /* 11 */
    pixDisplayWithTitle(pix13, 1000, 600, "Colorizing box gray", rp->display);

    pix14 = pixThresholdTo4bpp(pix2, 6, 1);
    pix15 = pixColorGrayRegions(pix14, boxa, L_PAINT_DARK, 220, 0, 0, 255);
    pixaAddPix(pixa, pix15, L_CLONE);
    regTestWritePixAndCheck(rp, pix15, IFF_PNG);  /* 12 */
    pixDisplayWithTitle(pix15, 1100, 600, "Colorizing boxa cmap", rp->display);

    pixColorGrayCmap(pix14, box, L_PAINT_DARK, 0, 255, 255);
    pixaAddPix(pixa, pix14, L_CLONE);
    regTestWritePixAndCheck(rp, pix14, IFF_PNG);  /* 13 */
    pixDisplayWithTitle(pix14, 1200, 600, "Colorizing box cmap", rp->display);
    boxDestroy(&box);

        /* Generate a pdf of the intermediate results */
    lept_mkdir("lept");
    L_INFO("Writing to /tmp/lept/colorize.pdf\n", rp->testname);
    pixaConvertToPdf(pixa, 90, 1.0, 0, 0, "Colorizing highlighted text",
                     "/tmp/lept/colorize.pdf");


    pixaDestroy(&pixa);
    fpixDestroy(&fpix);
    boxDestroy(&box);
    boxaDestroy(&boxa);
    pixDestroy(&pixs);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixDestroy(&pix8);
    pixDestroy(&pix9);
    pixDestroy(&pix10);
    pixDestroy(&pix11);
    pixDestroy(&pix12);
    pixDestroy(&pix13);
    pixDestroy(&pix14);
    pixDestroy(&pix15);

        /* Test the color detector */
    pixa = pixaCreate(7);
    bmf = bmfCreate("./fonts", 4);
    pix1 = TestForRedColor(rp, "brev06.75.jpg", 1, bmf);  /* 14 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev10.75.jpg", 0, bmf);  /* 15 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev14.75.jpg", 1, bmf);  /* 16 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev20.75.jpg", 1, bmf);  /* 17 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev36.75.jpg", 0, bmf);  /* 18 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev53.75.jpg", 1, bmf);  /* 19 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev56.75.jpg", 1, bmf);  /* 20 */
    pixaAddPix(pixa, pix1, L_INSERT);

        /* Generate a pdf of the color detector results */
    L_INFO("Writing to /tmp/lept/colordetect.pdf\n", rp->testname);
    pixaConvertToPdf(pixa, 45, 1.0, 0, 0, "Color detection",
                     "/tmp/lept/colordetect.pdf");
    pixaDestroy(&pixa);
    bmfDestroy(&bmf);

    return regTestCleanup(rp);
}
Exemple #7
0
main(int    argc,
char **argv)
{
l_float32     sum, sumx, sumy, diff;
L_DEWARP     *dew;
L_DEWARPA    *dewa;
FPIX         *fpixs, *fpixs2, *fpixs3, *fpixs4, *fpixg, *fpixd;
FPIX         *fpix1, *fpix2, *fpixt1, *fpixt2;
DPIX         *dpix, *dpix2;
L_KERNEL     *kel, *kelx, *kely;
PIX          *pixs, *pixs2, *pixs3, *pixt, *pixd, *pixg, *pixb, *pixn;
PIX          *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6;
PIXA         *pixa;
PTA          *ptas, *ptad;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixa = pixaCreate(0);

        /* Gaussian kernel */
    kel = makeGaussianKernel(5, 5, 3.0, 4.0);
    kernelGetSum(kel, &sum);
    if (rp->display) fprintf(stderr, "Sum for 2d gaussian kernel = %f\n", sum);
    pixt = kernelDisplayInPix(kel, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 0 */
    pixSaveTiled(pixt, pixa, 1, 1, 20, 8);
    pixDestroy(&pixt);

        /* Separable gaussian kernel */
    makeGaussianKernelSep(5, 5, 3.0, 4.0, &kelx, &kely);
    kernelGetSum(kelx, &sumx);
    if (rp->display) fprintf(stderr, "Sum for x gaussian kernel = %f\n", sumx);
    kernelGetSum(kely, &sumy);
    if (rp->display) fprintf(stderr, "Sum for y gaussian kernel = %f\n", sumy);
    if (rp->display) fprintf(stderr, "Sum for x * y gaussian kernel = %f\n",
                         sumx * sumy);
    pixt = kernelDisplayInPix(kelx, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 1 */
    pixSaveTiled(pixt, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt);
    pixt = kernelDisplayInPix(kely, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 2 */
    pixSaveTiled(pixt, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt);

        /* Use pixRasterop() to generate source image */
    pixs = pixRead("test8.jpg");
    pixs2 = pixRead("karen8.jpg");
    pixRasterop(pixs, 150, 125, 150, 100, PIX_SRC, pixs2, 75, 100);
    regTestWritePixAndCheck(rp, pixs, IFF_JFIF_JPEG);  /* 3 */

        /* Convolution directly with pix */
    pixt1 = pixConvolve(pixs, kel, 8, 1);
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 4 */
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 8);
    pixt2 = pixConvolveSep(pixs, kelx, kely, 8, 1);
    regTestWritePixAndCheck(rp, pixt2, IFF_JFIF_JPEG);  /* 5 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 8);

        /* Convolution indirectly with fpix, using fpixRasterop()
         * to generate the source image. */
    fpixs = pixConvertToFPix(pixs, 3);
    fpixs2 = pixConvertToFPix(pixs2, 3);
    fpixRasterop(fpixs, 150, 125, 150, 100, fpixs2, 75, 100);
    fpixt1 = fpixConvolve(fpixs, kel, 1);
    pixt3 = fpixConvertToPix(fpixt1, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixt3, IFF_JFIF_JPEG);  /* 6 */
    pixSaveTiled(pixt3, pixa, 1, 1, 20, 8);
    fpixt2 = fpixConvolveSep(fpixs, kelx, kely, 1);
    pixt4 = fpixConvertToPix(fpixt2, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixt4, IFF_JFIF_JPEG);  /* 7 */
    pixSaveTiled(pixt4, pixa, 1, 0, 20, 8);
    pixDestroy(&pixs2);
    fpixDestroy(&fpixs2);
    fpixDestroy(&fpixt1);
    fpixDestroy(&fpixt2);

        /* Comparison of results */
    pixCompareGray(pixt1, pixt2, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolve and pixConvolveSep: %f\n",
                diff);
    pixCompareGray(pixt3, pixt4, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of fpixConvolve and fpixConvolveSep: %f\n",
                diff);
    pixCompareGray(pixt1, pixt3, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolve and fpixConvolve: %f\n", diff);
    pixCompareGray(pixt2, pixt4, L_COMPARE_ABS_DIFF, GPLOT_PNG, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolveSep and fpixConvolveSep: %f\n",
                diff);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);

        /* Test arithmetic operations; add in a fraction rotated by 180 */
    pixs3 = pixRotate180(NULL, pixs);
    regTestWritePixAndCheck(rp, pixs3, IFF_JFIF_JPEG);  /* 8 */
    pixSaveTiled(pixs3, pixa, 1, 1, 20, 8);
    fpixs3 = pixConvertToFPix(pixs3, 3);
    fpixd = fpixLinearCombination(NULL, fpixs, fpixs3, 20.0, 5.0);
    fpixAddMultConstant(fpixd, 0.0, 23.174);   /* multiply up in magnitude */
    pixd = fpixDisplayMaxDynamicRange(fpixd);  /* bring back to 8 bpp */
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 9 */
    pixSaveTiled(pixd, pixa, 1, 0, 20, 8);
    pixDestroy(&pixs3);
    fpixDestroy(&fpixs3);
    fpixDestroy(&fpixd);
    pixDestroy(&pixd);
    pixDestroy(&pixs);
    fpixDestroy(&fpixs);

        /* Save the comparison graph; gnuplot should have made it by now! */
#ifndef _WIN32
    sleep(2);
#else
    Sleep(2000);
#endif  /* _WIN32 */
    pixt5 = pixRead("/tmp/grayroot.png");
    regTestWritePixAndCheck(rp, pixt5, IFF_PNG);  /* 10 */
    pixSaveTiled(pixt5, pixa, 1, 1, 20, 8);
    pixDestroy(&pixt5);

        /* Display results */
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Test some more convolutions, with sampled output. First on pix */
    pixa = pixaCreate(0);
    pixs = pixRead("1555-7.jpg");
    pixg = pixConvertTo8(pixs, 0);
    l_setConvolveSampling(5, 5);
    pixt1 = pixConvolve(pixg, kel, 8, 1);
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 12 */
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 32);
    pixt2 = pixConvolveSep(pixg, kelx, kely, 8, 1);
    regTestWritePixAndCheck(rp, pixt2, IFF_JFIF_JPEG);  /* 13 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 32);
    pixt3 = pixConvolveRGB(pixs, kel);
    regTestWritePixAndCheck(rp, pixt3, IFF_JFIF_JPEG);  /* 14 */
    pixSaveTiled(pixt3, pixa, 1, 0, 20, 32);
    pixt4 = pixConvolveRGBSep(pixs, kelx, kely);
    regTestWritePixAndCheck(rp, pixt4, IFF_JFIF_JPEG);  /* 15 */
    pixSaveTiled(pixt4, pixa, 1, 0, 20, 32);

        /* Then on fpix */
    fpixg = pixConvertToFPix(pixg, 1);
    fpixt1 = fpixConvolve(fpixg, kel, 1);
    pixt5 = fpixConvertToPix(fpixt1, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt5, IFF_JFIF_JPEG);  /* 16 */
    pixSaveTiled(pixt5, pixa, 1, 1, 20, 32);
    fpixt2 = fpixConvolveSep(fpixg, kelx, kely, 1);
    pixt6 = fpixConvertToPix(fpixt2, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt6, IFF_JFIF_JPEG);  /* 17 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 32);
    regTestCompareSimilarPix(rp, pixt1, pixt5, 2, 0.00, 0);  /* 18 */
    regTestCompareSimilarPix(rp, pixt2, pixt6, 2, 0.00, 0);  /* 19 */
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    pixDestroy(&pixt5);
    pixDestroy(&pixt6);
    fpixDestroy(&fpixg);
    fpixDestroy(&fpixt1);
    fpixDestroy(&fpixt2);

    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 20 */
    pixDisplayWithTitle(pixd, 600, 100, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixg);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Test extension (continued and slope).
         * First, build a smooth vertical disparity array;
         * then extend and show the contours. */
    pixs = pixRead("cat-35.jpg");
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    dewa = dewarpaCreate(1, 30, 1, 15, 0);
    dew = dewarpCreate(pixb, 35);
    dewarpaInsertDewarp(dewa, dew);
    dewarpBuildModel(dew, NULL);
    dewarpPopulateFullRes(dew, NULL);
    fpixs = dew->fullvdispar;
    fpixs2 = fpixAddContinuedBorder(fpixs, 200, 200, 100, 300);
    fpixs3 = fpixAddSlopeBorder(fpixs, 200, 200, 100, 300);
    dpix = fpixConvertToDPix(fpixs3);
    fpixs4 = dpixConvertToFPix(dpix);
    pixt1 = fpixRenderContours(fpixs, 2.0, 0.2);
    pixt2 = fpixRenderContours(fpixs2, 2.0, 0.2);
    pixt3 = fpixRenderContours(fpixs3, 2.0, 0.2);
    pixt4 = fpixRenderContours(fpixs4, 2.0, 0.2);
    pixt5 = pixRead("karen8.jpg");
    dpix2 = pixConvertToDPix(pixt5, 1);
    pixt6 = dpixConvertToPix(dpix2, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 21 */
    pixDisplayWithTitle(pixt1, 0, 100, NULL, rp->display);
    regTestWritePixAndCheck(rp, pixt2, IFF_PNG);  /* 22 */
    pixDisplayWithTitle(pixt2, 470, 100, NULL, rp->display);
    regTestWritePixAndCheck(rp, pixt3, IFF_PNG);  /* 23 */
    pixDisplayWithTitle(pixt3, 1035, 100, NULL, rp->display);
    regTestComparePix(rp, pixt3, pixt4);  /* 24 */
    regTestComparePix(rp, pixt5, pixt6);  /* 25 */
    pixDestroy(&pixs);
    pixDestroy(&pixn);
    pixDestroy(&pixg);
    pixDestroy(&pixb);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    pixDestroy(&pixt5);
    pixDestroy(&pixt6);
    fpixDestroy(&fpixs2);
    fpixDestroy(&fpixs3);
    fpixDestroy(&fpixs4);
    dpixDestroy(&dpix);
    dpixDestroy(&dpix2);

        /* Test affine and projective transforms on fpix */
    fpixWrite("/tmp/fpix1.fp", dew->fullvdispar);
    fpix1 = fpixRead("/tmp/fpix1.fp");
    pixt1 = fpixAutoRenderContours(fpix1, 40);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 26 */
    pixDisplayWithTitle(pixt1, 0, 500, NULL, rp->display);
    pixDestroy(&pixt1);

    MakePtasAffine(1, &ptas, &ptad);
    fpix2 = fpixAffinePta(fpix1, ptad, ptas, 200, 0.0);
    pixt2 = fpixAutoRenderContours(fpix2, 40);
    regTestWritePixAndCheck(rp, pixt2, IFF_PNG);  /* 27 */
    pixDisplayWithTitle(pixt2, 400, 500, NULL, rp->display);
    fpixDestroy(&fpix2);
    pixDestroy(&pixt2);
    ptaDestroy(&ptas);
    ptaDestroy(&ptad);

    MakePtas(1, &ptas, &ptad);
    fpix2 = fpixProjectivePta(fpix1, ptad, ptas, 200, 0.0);
    pixt3 = fpixAutoRenderContours(fpix2, 40);
    regTestWritePixAndCheck(rp, pixt3, IFF_PNG);  /* 28 */
    pixDisplayWithTitle(pixt3, 400, 500, NULL, rp->display);
    fpixDestroy(&fpix2);
    pixDestroy(&pixt3);
    ptaDestroy(&ptas);
    ptaDestroy(&ptad);
    fpixDestroy(&fpix1);
    dewarpaDestroy(&dewa);

    kernelDestroy(&kel);
    kernelDestroy(&kelx);
    kernelDestroy(&kely);
    return regTestCleanup(rp);
}
int main(int    argc,
         char **argv)
{
l_int32       i, j, sizex, sizey, bias;
FPIX         *fpixv, *fpixrv;
L_KERNEL     *kel1, *kel2, *kel3x, *kel3y;
PIX          *pixs, *pixacc, *pixg, *pixt, *pixd;
PIX          *pixb, *pixm, *pixms, *pixrv, *pix1, *pix2, *pix3, *pix4;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

        /* Test pixBlockconvGray() on 8 bpp */
    pixs = pixRead("test8.jpg");
    pixacc = pixBlockconvAccum(pixs);
    pixd = pixBlockconvGray(pixs, pixacc, 3, 5);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 0 */
    pixDisplayWithTitle(pixd, 100, 0, NULL, rp->display);
    pixDestroy(&pixacc);
    pixDestroy(&pixd);

        /* Test pixBlockconv() on 8 bpp */
    pixd = pixBlockconv(pixs, 9, 8);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 1 */
    pixDisplayWithTitle(pixd, 200, 0, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixs);

        /* Test pixBlockrank() on 1 bpp */
    pixs = pixRead("test1.png");
    pixacc = pixBlockconvAccum(pixs);
    for (i = 0; i < 3; i++) {
        pixd = pixBlockrank(pixs, pixacc, 4, 4, 0.25 + 0.25 * i);
        regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 2 - 4 */
        pixDisplayWithTitle(pixd, 300 + 100 * i, 0, NULL, rp->display);
        pixDestroy(&pixd);
    }

        /* Test pixBlocksum() on 1 bpp */
    pixd = pixBlocksum(pixs, pixacc, 16, 16);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 5 */
    pixDisplayWithTitle(pixd, 700, 0, NULL, rp->display);
    pixDestroy(&pixd);
    pixDestroy(&pixacc);
    pixDestroy(&pixs);

        /* Test pixCensusTransform() */
    pixs = pixRead("test24.jpg");
    pixg = pixScaleRGBToGrayFast(pixs, 2, COLOR_GREEN);
    pixd = pixCensusTransform(pixg, 10, NULL);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 6 */
    pixDisplayWithTitle(pixd, 800, 0, NULL, rp->display);
    pixDestroy(&pixd);

        /* Test generic convolution with kel1 */
    kel1 = kernelCreateFromString(5, 5, 2, 2, kel1str);
    pixd = pixConvolve(pixg, kel1, 8, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 7 */
    pixDisplayWithTitle(pixd, 100, 500, NULL, rp->display);
    pixDestroy(&pixd);

        /* Test convolution with flat rectangular kel */
    kel2 = kernelCreate(11, 11);
    kernelSetOrigin(kel2, 5, 5);
    for (i = 0; i < 11; i++) {
        for (j = 0; j < 11; j++)
            kernelSetElement(kel2, i, j, 1);
    }
    pixd = pixConvolve(pixg, kel2, 8, 1);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 8 */
    pixDisplayWithTitle(pixd, 200, 500, NULL, rp->display);
    pixDestroy(&pixd);
    kernelDestroy(&kel1);
    kernelDestroy(&kel2);

        /* Test pixBlockconv() on 32 bpp */
    pixt = pixScaleBySampling(pixs, 0.5, 0.5);
    pixd = pixBlockconv(pixt, 4, 6);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 9 */
    pixDisplayWithTitle(pixd, 300, 500, NULL, rp->display);
    pixDestroy(&pixt);
    pixDestroy(&pixs);
    pixDestroy(&pixg);
    pixDestroy(&pixd);

        /* Test bias convolution non-separable with kel2 */
    pixs = pixRead("marge.jpg");
    pixg = pixScaleRGBToGrayFast(pixs, 2, COLOR_GREEN);
    kel2 = kernelCreateFromString(5, 5, 2, 2, kel2str);
    pixd = pixConvolveWithBias(pixg, kel2, NULL, TRUE, &bias);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 10 */
    pixDisplayWithTitle(pixd, 400, 500, NULL, rp->display);
    fprintf(stderr, "bias = %d\n", bias);
    kernelDestroy(&kel2);
    pixDestroy(&pixd);

        /* Test bias convolution separable with kel3x and kel3y */
    kel3x = kernelCreateFromString(1, 5, 0, 2, kel3xstr);
    kel3y = kernelCreateFromString(7, 1, 3, 0, kel3ystr);
    pixd = pixConvolveWithBias(pixg, kel3x, kel3y, TRUE, &bias);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 500, 500, NULL, rp->display);
    fprintf(stderr, "bias = %d\n", bias);
    kernelDestroy(&kel3x);
    kernelDestroy(&kel3y);
    pixDestroy(&pixd);
    pixDestroy(&pixs);
    pixDestroy(&pixg);

        /* Test pixWindowedMean() and pixWindowedMeanSquare() on 8 bpp */
    pixs = pixRead("feyn-fract2.tif");
    pixg = pixConvertTo8(pixs, 0);
    sizex = 5;
    sizey = 20;
    pixb = pixAddBorderGeneral(pixg, sizex + 1, sizex + 1,
                               sizey + 1, sizey + 1, 0);
    pixm = pixWindowedMean(pixb, sizex, sizey, 1, 1);
    pixms = pixWindowedMeanSquare(pixb, sizex, sizey, 1);
    regTestWritePixAndCheck(rp, pixm, IFF_JFIF_JPEG);  /* 12 */
    pixDisplayWithTitle(pixm, 100, 0, NULL, rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixb);

        /* Test pixWindowedVariance() on 8 bpp */
    pixWindowedVariance(pixm, pixms, &fpixv, &fpixrv);
    pixrv = fpixConvertToPix(fpixrv, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixrv, IFF_JFIF_JPEG);  /* 13 */
    pixDisplayWithTitle(pixrv, 100, 250, NULL, rp->display);
    pix1 = fpixDisplayMaxDynamicRange(fpixv);
    pix2 = fpixDisplayMaxDynamicRange(fpixrv);
    pixDisplayWithTitle(pix1, 100, 500, "Variance", rp->display);
    pixDisplayWithTitle(pix2, 100, 750, "RMS deviation", rp->display);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 14 */
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 15 */
    fpixDestroy(&fpixv);
    fpixDestroy(&fpixrv);
    pixDestroy(&pixm);
    pixDestroy(&pixms);
    pixDestroy(&pixrv);

        /* Test again all windowed functions with simpler interface */
    pixWindowedStats(pixg, sizex, sizey, 0, NULL, NULL, &fpixv, &fpixrv);
    pix3 = fpixDisplayMaxDynamicRange(fpixv);
    pix4 = fpixDisplayMaxDynamicRange(fpixrv);
    regTestComparePix(rp, pix1, pix3);  /* 16 */
    regTestComparePix(rp, pix2, pix4);  /* 17 */
    pixDestroy(&pixg);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    fpixDestroy(&fpixv);
    fpixDestroy(&fpixrv);

    return regTestCleanup(rp);
}
Exemple #9
0
int main(int    argc,
         char **argv)
{
FPIX         *fpix1, *fpix2, *fpix3, *fpix4;
PIX          *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7, *pix8;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

        /* Test orthogonal rotations */
    pix1 = pixRead("marge.jpg");
    pix2 = pixConvertTo8(pix1, 0);
    fpix1 = pixConvertToFPix(pix2, 1);

    fpix2 = fpixRotateOrth(fpix1, 1);
    pix3 = fpixConvertToPix(fpix2, 8, L_CLIP_TO_ZERO, 0);
    pix4 = pixRotateOrth(pix2, 1);
    regTestComparePix(rp, pix3, pix4);  /* 0 */
    pixDisplayWithTitle(pix3, 100, 100, NULL, rp->display);

    fpix3 = fpixRotateOrth(fpix1, 2);
    pix5 = fpixConvertToPix(fpix3, 8, L_CLIP_TO_ZERO, 0);
    pix6 = pixRotateOrth(pix2, 2);
    regTestComparePix(rp, pix5, pix6);  /* 1 */
    pixDisplayWithTitle(pix5, 560, 100, NULL, rp->display);

    fpix4 = fpixRotateOrth(fpix1, 3);
    pix7 = fpixConvertToPix(fpix4, 8, L_CLIP_TO_ZERO, 0);
    pix8 = pixRotateOrth(pix2, 3);
    regTestComparePix(rp, pix7, pix8);  /* 2 */
    pixDisplayWithTitle(pix7, 1170, 100, NULL, rp->display);
    pixDisplayWithTitle(pix2, 560, 580, NULL, rp->display);

    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixDestroy(&pix8);
    fpixDestroy(&fpix1);
    fpixDestroy(&fpix2);
    fpixDestroy(&fpix3);
    fpixDestroy(&fpix4);

        /* Test adding various borders */
    pix1 = pixRead("marge.jpg");
    pix2 = pixConvertTo8(pix1, 0);
    fpix1 = pixConvertToFPix(pix2, 1);

    fpix2 = fpixAddMirroredBorder(fpix1, 21, 21, 25, 25);
    pix3 = fpixConvertToPix(fpix2, 8, L_CLIP_TO_ZERO, 0);
    pix4 = pixAddMirroredBorder(pix2, 21, 21, 25, 25);
    regTestComparePix(rp, pix3, pix4);  /* 3 */
    pixDisplayWithTitle(pix3, 100, 1000, NULL, rp->display);

    fpix3 = fpixAddContinuedBorder(fpix1, 21, 21, 25, 25);
    pix5 = fpixConvertToPix(fpix3, 8, L_CLIP_TO_ZERO, 0);
    pix6 = pixAddContinuedBorder(pix2, 21, 21, 25, 25);
    regTestComparePix(rp, pix5, pix6);  /* 4 */
    pixDisplayWithTitle(pix5, 750, 1000, NULL, rp->display);

    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    fpixDestroy(&fpix1);
    fpixDestroy(&fpix2);
    fpixDestroy(&fpix3);
    return regTestCleanup(rp);
}
Exemple #10
0
main(int    argc,
char **argv)
{
l_float32     sum, sumx, sumy, diff;
FPIX         *fpixs, *fpixs2, *fpixs3, *fpixt1, *fpixt2, *fpixg, *fpixd;
L_KERNEL     *kel, *kelx, *kely;
PIX          *pixs, *pixs2, *pixs3, *pixt, *pixd, *pixg;
PIX          *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6;
PIXA         *pixa;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixa = pixaCreate(0);

        /* Gaussian kernel */
    kel = makeGaussianKernel(5, 5, 3.0, 4.0);
    kernelGetSum(kel, &sum);
    if (rp->display) fprintf(stderr, "Sum for 2d gaussian kernel = %f\n", sum);
    pixt = kernelDisplayInPix(kel, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 0 */
    pixSaveTiled(pixt, pixa, 1, 1, 20, 8);
    pixDestroy(&pixt);

        /* Separable gaussian kernel */
    makeGaussianKernelSep(5, 5, 3.0, 4.0, &kelx, &kely);
    kernelGetSum(kelx, &sumx);
    if (rp->display) fprintf(stderr, "Sum for x gaussian kernel = %f\n", sumx);
    kernelGetSum(kely, &sumy);
    if (rp->display) fprintf(stderr, "Sum for y gaussian kernel = %f\n", sumy);
    if (rp->display) fprintf(stderr, "Sum for x * y gaussian kernel = %f\n",
                         sumx * sumy);
    pixt = kernelDisplayInPix(kelx, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 1 */
    pixSaveTiled(pixt, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt);
    pixt = kernelDisplayInPix(kely, 41, 2);
    regTestWritePixAndCheck(rp, pixt, IFF_PNG);  /* 2 */
    pixSaveTiled(pixt, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt);

        /* Use pixRasterop() to generate source image */
    pixs = pixRead("test8.jpg");
    pixs2 = pixRead("karen8.jpg");
    pixRasterop(pixs, 150, 125, 150, 100, PIX_SRC, pixs2, 75, 100);
    regTestWritePixAndCheck(rp, pixs, IFF_JFIF_JPEG);  /* 3 */

        /* Convolution directly with pix */
    pixt1 = pixConvolve(pixs, kel, 8, 1);
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 4 */
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 8);
    pixt2 = pixConvolveSep(pixs, kelx, kely, 8, 1);
    regTestWritePixAndCheck(rp, pixt2, IFF_JFIF_JPEG);  /* 5 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 8);

        /* Convolution indirectly with fpix, using fpixRasterop()
         * to generate the source image. */
    fpixs = pixConvertToFPix(pixs, 3);
    fpixs2 = pixConvertToFPix(pixs2, 3);
    fpixRasterop(fpixs, 150, 125, 150, 100, fpixs2, 75, 100);
    fpixt1 = fpixConvolve(fpixs, kel, 1);
    pixt3 = fpixConvertToPix(fpixt1, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixt3, IFF_JFIF_JPEG);  /* 6 */
    pixSaveTiled(pixt3, pixa, 1, 1, 20, 8);
    fpixt2 = fpixConvolveSep(fpixs, kelx, kely, 1);
    pixt4 = fpixConvertToPix(fpixt2, 8, L_CLIP_TO_ZERO, 1);
    regTestWritePixAndCheck(rp, pixt4, IFF_JFIF_JPEG);  /* 7 */
    pixSaveTiled(pixt4, pixa, 1, 0, 20, 8);
    pixDestroy(&pixs2);
    fpixDestroy(&fpixs2);
    fpixDestroy(&fpixt1);
    fpixDestroy(&fpixt2);

        /* Comparison of results */
    pixCompareGray(pixt1, pixt2, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolve and pixConvolveSep: %f\n",
                diff);
    pixCompareGray(pixt3, pixt4, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of fpixConvolve and fpixConvolveSep: %f\n",
                diff);
    pixCompareGray(pixt1, pixt3, L_COMPARE_ABS_DIFF, 0, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolve and fpixConvolve: %f\n", diff);
    pixCompareGray(pixt2, pixt4, L_COMPARE_ABS_DIFF, GPLOT_PNG, NULL,
                   &diff, NULL, NULL);
    if (rp->display)
        fprintf(stderr, "Ave diff of pixConvolveSep and fpixConvolveSep: %f\n",
                diff);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);

        /* Test arithmetic operations; add in a fraction rotated by 180 */
    pixs3 = pixRotate180(NULL, pixs);
    regTestWritePixAndCheck(rp, pixs3, IFF_JFIF_JPEG);  /* 8 */
    pixSaveTiled(pixs3, pixa, 1, 1, 20, 8);
    fpixs3 = pixConvertToFPix(pixs3, 3);
    fpixd = fpixLinearCombination(NULL, fpixs, fpixs3, 20.0, 5.0);
    fpixAddMultConstant(fpixd, 0.0, 23.174);   /* multiply up in magnitude */
    pixd = fpixDisplayMaxDynamicRange(fpixd);  /* bring back to 8 bpp */
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 9 */
    pixSaveTiled(pixd, pixa, 1, 0, 20, 8);
    pixDestroy(&pixs3);
    fpixDestroy(&fpixs3);
    fpixDestroy(&fpixd);
    pixDestroy(&pixd);
    pixDestroy(&pixs);
    fpixDestroy(&fpixs);

        /* Save the comparison graph; gnuplot should have made it by now! */
#ifndef _WIN32
    sleep(2);
#else
    Sleep(2000);
#endif  /* _WIN32 */
    pixt5 = pixRead("/tmp/grayroot.png");
    regTestWritePixAndCheck(rp, pixt5, IFF_PNG);  /* 10 */
    pixSaveTiled(pixt5, pixa, 1, 1, 20, 8);
    pixDestroy(&pixt5);

        /* Display results */
    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 11 */
    pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

        /* Test some more convolutions, with sampled output. First on pix */
    pixa = pixaCreate(0);
    pixs = pixRead("1555-7.jpg");
    pixg = pixConvertTo8(pixs, 0);
    l_setConvolveSampling(5, 5);
    pixt1 = pixConvolve(pixg, kel, 8, 1);
    regTestWritePixAndCheck(rp, pixt1, IFF_JFIF_JPEG);  /* 12 */
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 32);
    pixt2 = pixConvolveSep(pixg, kelx, kely, 8, 1);
    regTestWritePixAndCheck(rp, pixt2, IFF_JFIF_JPEG);  /* 13 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 32);
    pixt3 = pixConvolveRGB(pixs, kel);
    regTestWritePixAndCheck(rp, pixt3, IFF_JFIF_JPEG);  /* 14 */
    pixSaveTiled(pixt3, pixa, 1, 0, 20, 32);
    pixt4 = pixConvolveRGBSep(pixs, kelx, kely);
    regTestWritePixAndCheck(rp, pixt4, IFF_JFIF_JPEG);  /* 15 */
    pixSaveTiled(pixt4, pixa, 1, 0, 20, 32);

        /* Then on fpix */
    fpixg = pixConvertToFPix(pixg, 1);
    fpixt1 = fpixConvolve(fpixg, kel, 1);
    pixt5 = fpixConvertToPix(fpixt1, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt5, IFF_JFIF_JPEG);  /* 16 */
    pixSaveTiled(pixt5, pixa, 1, 1, 20, 32);
    fpixt2 = fpixConvolveSep(fpixg, kelx, kely, 1);
    pixt6 = fpixConvertToPix(fpixt2, 8, L_CLIP_TO_ZERO, 0);
    regTestWritePixAndCheck(rp, pixt6, IFF_JFIF_JPEG);  /* 17 */
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 32);
    regTestCompareSimilarPix(rp, pixt1, pixt5, 2, 0.00, 0);  /* 18 */
    regTestCompareSimilarPix(rp, pixt2, pixt6, 2, 0.00, 0);  /* 19 */
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);
    pixDestroy(&pixt4);
    pixDestroy(&pixt5);
    pixDestroy(&pixt6);
    fpixDestroy(&fpixg);
    fpixDestroy(&fpixt1);
    fpixDestroy(&fpixt2);

    pixd = pixaDisplay(pixa, 0, 0);
    regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG);  /* 20 */
    pixDisplayWithTitle(pixd, 600, 100, NULL, rp->display);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);

    regTestCleanup(rp);
    pixDestroy(&pixs);
    pixDestroy(&pixg);
    kernelDestroy(&kel);
    kernelDestroy(&kelx);
    kernelDestroy(&kely);
    return 0;
}
Exemple #11
0
/*!
 *  dewarpPopulateFullRes()
 *
 *      Input:  dew
 *              pix (<optional>, to give size of actual image)
 *              x, y (origin for generation of disparity arrays)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) If the full resolution vertical and horizontal disparity
 *          arrays do not exist, they are built from the subsampled ones.
 *      (2) If pixs is not given, the size of the arrays is determined
 *          by the original image from which the sampled version was
 *          generated.  Any values of (x,y) are ignored.
 *      (3) If pixs is given, the full resolution disparity arrays must
 *          be large enough to accommodate it.
 *          (a) If the arrays do not exist, the value of (x,y) determines
 *              the origin of the full resolution arrays without extension,
 *              relative to pixs.  Thus, (x,y) gives the amount of
 *              slope extension in (left, top).  The (right, bottom)
 *              extension is then determined by the size of pixs and
 *              (x,y); the values should never be < 0.
 *          (b) If the arrays exist and pixs is too large, the existing
 *              full res arrays are destroyed and new ones are made,
 *              again using (x,y) to determine the extension in the
 *              four directions.
 */
l_int32
dewarpPopulateFullRes(L_DEWARP  *dew,
                      PIX       *pix,
                      l_int32    x,
                      l_int32    y)
{
l_int32     width, height, fw, fh, deltaw, deltah, redfactor;
FPIX       *fpixt1, *fpixt2;

    PROCNAME("dewarpPopulateFullRes");

    if (!dew)
        return ERROR_INT("dew not defined", procName, 1);
    if (!dew->sampvdispar)
        return ERROR_INT("no sampled vert disparity", procName, 1);
    if (x < 0) x = 0;
    if (y < 0) y = 0;

        /* Establish the target size for the full res arrays */
    if (pix)
        pixGetDimensions(pix, &width, &height, NULL);
    else {
        width = dew->w;
        height = dew->h;
    }

        /* Destroy the existing arrays if they are too small */
    if (dew->fullvdispar) {
        fpixGetDimensions(dew->fullvdispar, &fw, &fh);
        if (width > fw || height > fw)
            fpixDestroy(&dew->fullvdispar);
    }
    if (dew->fullhdispar) {
        fpixGetDimensions(dew->fullhdispar, &fw, &fh);
        if (width > fw || height > fw)
            fpixDestroy(&dew->fullhdispar);
    }

        /* Find the required width and height expansion deltas */
    deltaw = width - dew->sampling * (dew->nx - 1) + 2;
    deltah = height - dew->sampling * (dew->ny - 1) + 2;
    redfactor = dew->redfactor;
    deltaw = redfactor * L_MAX(0, deltaw);
    deltah = redfactor * L_MAX(0, deltah);

        /* Generate the full res vertical array if it doesn't exist,
         * extending it as required to make it big enough.  Use x,y
         * to determine the amounts on each side. */
    if (!dew->fullvdispar) {
        fpixt1 = fpixCopy(NULL, dew->sampvdispar);
        if (redfactor == 2)
            fpixAddMultConstant(fpixt1, 0.0, (l_float32)redfactor);
        fpixt2 = fpixScaleByInteger(fpixt1, dew->sampling * redfactor);
        fpixDestroy(&fpixt1);
        if (deltah == 0 && deltaw == 0) {
            dew->fullvdispar = fpixt2;
        }
        else {
            dew->fullvdispar = fpixAddSlopeBorder(fpixt2, x, deltaw - x,
                                                  y, deltah - y);
            fpixDestroy(&fpixt2);
        }
    }

        /* Similarly, generate the full res horizontal array if it
         * doesn't exist.  Do this even if useboth == 0. */
    if (!dew->fullhdispar && dew->samphdispar) {
        fpixt1 = fpixCopy(NULL, dew->samphdispar);
        if (redfactor == 2)
            fpixAddMultConstant(fpixt1, 0.0, (l_float32)redfactor);
        fpixt2 = fpixScaleByInteger(fpixt1, dew->sampling * redfactor);
        fpixDestroy(&fpixt1);
        if (deltah == 0 && deltaw == 0) {
            dew->fullhdispar = fpixt2;
        }
        else {
            dew->fullhdispar = fpixAddSlopeBorder(fpixt2, x, deltaw - x,
                                                  y, deltah - y);
            fpixDestroy(&fpixt2);
        }
    }

    return 0;
}
l_int32 main(int    argc,
             char **argv)
{
l_int32       i, n;
l_float32     a, b, c;
L_DEWARP     *dew, *dew2;
DPIX         *dpix1, *dpix2, *dpix3;
FPIX         *fpix1, *fpix2, *fpix3;
NUMA         *nax, *nafit;
PIX          *pixs, *pixn, *pixg, *pixb, *pixt1, *pixt2;
PIX          *pixs2, *pixn2, *pixg2, *pixb2;
PTA          *pta, *ptad;
PTAA         *ptaa1, *ptaa2;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
              return 1;

    pixs = pixRead("1555-7.jpg");
    
        /* Normalize for varying background and binarize */
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    pixDestroy(&pixn);
    pixDestroy(&pixg);
    regTestWritePixAndCheck(rp, pixb, IFF_PNG);  /* 0 */
    pixDisplayWithTitle(pixb, 0, 0, "binarized input", rp->display);

        /* Get the textline centers */
    ptaa1 = pixGetTextlineCenters(pixb, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixt2 = pixDisplayPtaa(pixt1, ptaa1);
    regTestWritePixAndCheck(rp, pixt2, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixt2, 0, 500, "textline centers", rp->display);
    pixDestroy(&pixt1);

        /* Remove short lines */
    ptaa2 = ptaaRemoveShortLines(pixb, ptaa1, 0.8, 0);

        /* Fit to quadratic */
    n = ptaaGetCount(ptaa2);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuadraticLSF(pta, &a, &b, &c, &nafit);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt2, pixt2, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    regTestWritePixAndCheck(rp, pixt2, IFF_PNG);  /* 2 */
    pixDisplayWithTitle(pixt2, 300, 500, "fitted lines superimposed",
                        rp->display);
    ptaaDestroy(&ptaa1);
    ptaaDestroy(&ptaa2);
    pixDestroy(&pixt2);

        /* Run with only vertical disparity correction */
    if ((dew = dewarpCreate(pixb, 7, 30, 15, 0)) == NULL)
        return ERROR_INT("\n\n\n FAILURE !!! \n\n\n", rp->testname, 1);
    dewarpBuildModel(dew, 0);
    dewarpApplyDisparity(dew, pixb, 0);
    regTestWritePixAndCheck(rp, dew->pixd, IFF_PNG);  /* 3 */
    pixDisplayWithTitle(dew->pixd, 400, 0, "fixed for vert disparity",
                        rp->display);
    dewarpDestroy(&dew);

        /* Run with both vertical and horizontal disparity correction */
    if ((dew = dewarpCreate(pixb, 7, 30, 15, 1)) == NULL)
        return ERROR_INT("\n\n\n FAILURE !!! \n\n\n", rp->testname, 1);
    dewarpBuildModel(dew, 0);
    dewarpApplyDisparity(dew, pixb, 0);
    regTestWritePixAndCheck(rp, dew->pixd, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(dew->pixd, 800, 0, "fixed for both disparities",
                        rp->display);

        /* Read another image, normalize background and binarize */
    pixs2 = pixRead("1555-3.jpg");
    pixn2 = pixBackgroundNormSimple(pixs2, NULL, NULL);
    pixg2 = pixConvertRGBToGray(pixn2, 0.5, 0.3, 0.2);
    pixb2 = pixThresholdToBinary(pixg2, 130);
    pixDestroy(&pixn2);
    pixDestroy(&pixg2);
    regTestWritePixAndCheck(rp, pixb, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pixb, 0, 400, "binarized input (2)", rp->display);

        /* Minimize and re-apply previous disparity to this image */
    dewarpMinimize(dew);
    dewarpApplyDisparity(dew, pixb2, 0);
    regTestWritePixAndCheck(rp, dew->pixd, IFF_PNG);  /* 6 */
    pixDisplayWithTitle(dew->pixd, 400, 400, "fixed (2) for both disparities",
                        rp->display);

        /* Write and read back minimized dewarp struct */
    dewarpWrite("/tmp/dewarp.7.dew", dew);
    regTestCheckFile(rp, "/tmp/dewarp.7.dew");  /* 7 */
    dew2 = dewarpRead("/tmp/dewarp.7.dew");
    dewarpWrite("/tmp/dewarp.8.dew", dew2);
    regTestCheckFile(rp, "/tmp/dewarp.8.dew");  /* 8 */
    regTestCompareFiles(rp, 7, 8);  /* 9 */

        /* Apply dew2 to pixb2 */
    dewarpApplyDisparity(dew2, pixb2, 0);
    regTestWritePixAndCheck(rp, dew2->pixd, IFF_PNG);  /* 10 */
    pixDisplayWithTitle(dew->pixd, 800, 400, "fixed (3) for both disparities",
                        rp->display);

        /* Minimize, repopulate disparity arrays, and apply again */
    dewarpMinimize(dew2);
    dewarpApplyDisparity(dew2, pixb2, 0);
    regTestWritePixAndCheck(rp, dew2->pixd, IFF_PNG);  /* 11 */
    regTestCompareFiles(rp, 10, 11);  /* 12 */
    pixDisplayWithTitle(dew->pixd, 900, 400, "fixed (4) for both disparities",
                        rp->display);

        /* Test a few of the fpix functions */
    fpix1 = fpixClone(dew->sampvdispar);
    fpixWrite("/tmp/sampv.13.fpix", fpix1);
    regTestCheckFile(rp, "/tmp/sampv.13.fpix");  /* 13 */
    fpix2 = fpixRead("/tmp/sampv.13.fpix");
    fpixWrite("/tmp/sampv.14.fpix", fpix2);
    regTestCheckFile(rp, "/tmp/sampv.14.fpix");  /* 14 */
    regTestCompareFiles(rp, 13, 14);  /* 15 */
    fpix3 = fpixScaleByInteger(fpix2, 30);
    pixt1 = fpixRenderContours(fpix3, -2., 2.0, 0.2);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 16 */
    pixDisplayWithTitle(pixt1, 0, 800, "v. disparity contours", rp->display);
    fpixDestroy(&fpix1);
    fpixDestroy(&fpix2);
    fpixDestroy(&fpix3);
    pixDestroy(&pixt1);

        /* Test a few of the dpix functions */
    dpix1 = fpixConvertToDPix(dew->sampvdispar);
    dpixWrite("/tmp/sampv.17.dpix", dpix1);
    regTestCheckFile(rp, "/tmp/sampv.17.dpix");  /* 17 */
    dpix2 = dpixRead("/tmp/sampv.17.dpix");
    dpixWrite("/tmp/sampv.18.dpix", dpix2);
    regTestCheckFile(rp, "/tmp/sampv.18.dpix");  /* 18 */
    regTestCompareFiles(rp, 17, 18);  /* 19 */
    dpix3 = dpixScaleByInteger(dpix2, 30);
    fpix3 = dpixConvertToFPix(dpix3);
    pixt1 = fpixRenderContours(fpix3, -2., 2.0, 0.2);
    regTestWritePixAndCheck(rp, pixt1, IFF_PNG);  /* 20 */
    pixDisplayWithTitle(pixt1, 400, 800, "v. disparity contours", rp->display);
    regTestCompareFiles(rp, 16, 20);  /* 21 */
    dpixDestroy(&dpix1);
    dpixDestroy(&dpix2);
    dpixDestroy(&dpix3);
    fpixDestroy(&fpix3);
    pixDestroy(&pixt1);

    dewarpDestroy(&dew);
    dewarpDestroy(&dew2);
    pixDestroy(&pixs);
    pixDestroy(&pixb);
    pixDestroy(&pixs2);
    pixDestroy(&pixb2);
    regTestCleanup(rp);
    return 0;
}