// For static images, frameIsCompleteAtIndex(0) should return true if and only // if the frame is successfully decoded, not when it is fully received. TEST(StaticPNGTests, VerifyFrameCompleteBehavior) { auto decoder = createDecoderWithPngData("/LayoutTests/images/resources/png-simple.png"); EXPECT_EQ(1u, decoder->frameCount()); EXPECT_FALSE(decoder->frameIsCompleteAtIndex(0)); EXPECT_EQ(ImageFrame::FrameComplete, decoder->frameBufferAtIndex(0)->getStatus()); EXPECT_TRUE(decoder->frameIsCompleteAtIndex(0)); }
bool WEBPImageDecoder::decodeSingleFrame(const uint8_t* dataBytes, size_t dataSize, size_t frameIndex) { if (failed()) return false; ASSERT(isDecodedSizeAvailable()); ASSERT(m_frameBufferCache.size() > frameIndex); ImageFrame& buffer = m_frameBufferCache[frameIndex]; ASSERT(buffer.status() != ImageFrame::FrameComplete); if (buffer.status() == ImageFrame::FrameEmpty) { if (!buffer.setSize(size().width(), size().height())) return setFailed(); buffer.setStatus(ImageFrame::FramePartial); // The buffer is transparent outside the decoded area while the image is loading. // The correct value of 'hasAlpha' for the frame will be set when it is fully decoded. buffer.setHasAlpha(true); buffer.setOriginalFrameRect(IntRect(IntPoint(), size())); } const IntRect& frameRect = buffer.originalFrameRect(); if (!m_decoder) { WEBP_CSP_MODE mode = outputMode(m_formatFlags & ALPHA_FLAG); if (!m_premultiplyAlpha) mode = outputMode(false); #if USE(QCMSLIB) if (colorTransform()) mode = MODE_RGBA; // Decode to RGBA for input to libqcms. #endif WebPInitDecBuffer(&m_decoderBuffer); m_decoderBuffer.colorspace = mode; m_decoderBuffer.u.RGBA.stride = size().width() * sizeof(ImageFrame::PixelData); m_decoderBuffer.u.RGBA.size = m_decoderBuffer.u.RGBA.stride * frameRect.height(); m_decoderBuffer.is_external_memory = 1; m_decoder = WebPINewDecoder(&m_decoderBuffer); if (!m_decoder) return setFailed(); } m_decoderBuffer.u.RGBA.rgba = reinterpret_cast<uint8_t*>(buffer.getAddr(frameRect.x(), frameRect.y())); switch (WebPIUpdate(m_decoder, dataBytes, dataSize)) { case VP8_STATUS_OK: applyPostProcessing(frameIndex); buffer.setHasAlpha((m_formatFlags & ALPHA_FLAG) || m_frameBackgroundHasAlpha); buffer.setStatus(ImageFrame::FrameComplete); clearDecoder(); return true; case VP8_STATUS_SUSPENDED: if (!isAllDataReceived() && !frameIsCompleteAtIndex(frameIndex)) { applyPostProcessing(frameIndex); return false; } // FALLTHROUGH default: clear(); return setFailed(); } }
bool ImageSource::frameHasAlphaAtIndex(size_t index) { // When a frame has not finished decoding, always mark it as having alpha. // Ports that check the result of this function to determine their // compositing op need this in order to not draw the undecoded portion as // black. // TODO: Perhaps we should ensure that each individual decoder returns true // in this case. return !frameIsCompleteAtIndex(index) || m_decoder->frameBufferAtIndex(index)->hasAlpha(); }
bool ImageSource::frameHasAlphaAtIndex(size_t index) { // When a frame has not finished decoding, always mark it as having alpha, // so we don't get a black background for the undecoded sections. // TODO: A better solution is probably to have the underlying buffer's // hasAlpha() return true in these cases, since it is, in fact, technically // true. if (!frameIsCompleteAtIndex(index)) return true; return m_decoder->frameBufferAtIndex(index)->hasAlpha(); }
bool ImageDecoder::frameHasAlphaAtIndex(size_t index) const { if (!frameIsCompleteAtIndex(index)) return true; CFStringRef imageType = CGImageSourceGetType(m_nativeDecoder.get()); // Return false if there is no image type or the image type is JPEG, because // JPEG does not support alpha transparency. if (!imageType || CFEqual(imageType, CFSTR("public.jpeg"))) return false; // FIXME: Could return false for other non-transparent image formats. // FIXME: Could maybe return false for a GIF Frame if we have enough info in the GIF properties dictionary // to determine whether or not a transparent color was defined. return true; }
void BitmapImage::startAnimation(bool catchUpIfNecessary) { if (m_frameTimer || !shouldAnimate() || frameCount() <= 1) return; // If we aren't already animating, set now as the animation start time. const double time = monotonicallyIncreasingTime(); if (!m_desiredFrameStartTime) m_desiredFrameStartTime = time; // Don't advance the animation to an incomplete frame. size_t nextFrame = (m_currentFrame + 1) % frameCount(); if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame)) return; // Don't advance past the last frame if we haven't decoded the whole image // yet and our repetition count is potentially unset. The repetition count // in a GIF can potentially come after all the rest of the image data, so // wait on it. if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1)) return; // Determine time for next frame to start. By ignoring paint and timer lag // in this calculation, we make the animation appear to run at its desired // rate regardless of how fast it's being repainted. const double currentDuration = frameDurationAtIndex(m_currentFrame); m_desiredFrameStartTime += currentDuration; // When an animated image is more than five minutes out of date, the // user probably doesn't care about resyncing and we could burn a lot of // time looping through frames below. Just reset the timings. const double cAnimationResyncCutoff = 5 * 60; if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff) m_desiredFrameStartTime = time + currentDuration; // The image may load more slowly than it's supposed to animate, so that by // the time we reach the end of the first repetition, we're well behind. // Clamp the desired frame start time in this case, so that we don't skip // frames (or whole iterations) trying to "catch up". This is a tradeoff: // It guarantees users see the whole animation the second time through and // don't miss any repetitions, and is closer to what other browsers do; on // the other hand, it makes animations "less accurate" for pages that try to // sync an image and some other resource (e.g. audio), especially if users // switch tabs (and thus stop drawing the animation, which will pause it) // during that initial loop, then switch back later. if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time) m_desiredFrameStartTime = time; if (!catchUpIfNecessary || time < m_desiredFrameStartTime) { // Haven't yet reached time for next frame to start; delay until then. m_frameTimer = new Timer<BitmapImage>(this, &BitmapImage::advanceAnimation); m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.)); } else { // We've already reached or passed the time for the next frame to start. // See if we've also passed the time for frames after that to start, in // case we need to skip some frames entirely. Remember not to advance // to an incomplete frame. for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) { // Should we skip the next frame? double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame); if (time < frameAfterNextStartTime) break; // Yes; skip over it without notifying our observers. if (!internalAdvanceAnimation(true)) return; m_desiredFrameStartTime = frameAfterNextStartTime; nextFrame = frameAfterNext; } // Draw the next frame immediately. Note that m_desiredFrameStartTime // may be in the past, meaning the next time through this function we'll // kick off the next advancement sooner than this frame's duration would // suggest. if (internalAdvanceAnimation(false)) { // The image region has been marked dirty, but once we return to our // caller, draw() will clear it, and nothing will cause the // animation to advance again. We need to start the timer for the // next frame running, or the animation can hang. (Compare this // with when advanceAnimation() is called, and the region is dirtied // while draw() is not in the callstack, meaning draw() gets called // to update the region and thus startAnimation() is reached again.) // NOTE: For large images with slow or heavily-loaded systems, // throwing away data as we go (see destroyDecodedData()) means we // can spend so much time re-decoding data above that by the time we // reach here we're behind again. If we let startAnimation() run // the catch-up code again, we can get long delays without painting // as we race the timer, or even infinite recursion. In this // situation the best we can do is to simply change frames as fast // as possible, so force startAnimation() to set a zero-delay timer // and bail out if we're not caught up. startAnimation(false); } } }
bool ImageDecoder::frameHasAlphaAtIndex(size_t index) const { return !frameIsCompleteAtIndex(index) || m_frameBufferCache[index].hasAlpha(); }
bool BitmapImage::currentFrameIsComplete() { return frameIsCompleteAtIndex(currentFrame()); }
void BitmapImage::startAnimation(CatchUpAnimation catchUpIfNecessary) { if (m_frameTimer || !shouldAnimate() || frameCount() <= 1) return; // If we aren't already animating, set now as the animation start time. const double time = monotonicallyIncreasingTime(); if (!m_desiredFrameStartTime) m_desiredFrameStartTime = time; // Don't advance the animation to an incomplete frame. size_t nextFrame = (m_currentFrame + 1) % frameCount(); if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame)) return; // Don't advance past the last frame if we haven't decoded the whole image // yet and our repetition count is potentially unset. The repetition count // in a GIF can potentially come after all the rest of the image data, so // wait on it. if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1)) return; // Determine time for next frame to start. By ignoring paint and timer lag // in this calculation, we make the animation appear to run at its desired // rate regardless of how fast it's being repainted. const double currentDuration = frameDurationAtIndex(m_currentFrame); m_desiredFrameStartTime += currentDuration; #if !PLATFORM(IOS) // When an animated image is more than five minutes out of date, the // user probably doesn't care about resyncing and we could burn a lot of // time looping through frames below. Just reset the timings. const double cAnimationResyncCutoff = 5 * 60; if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff) m_desiredFrameStartTime = time + currentDuration; #else // Maintaining frame-to-frame delays is more important than // maintaining absolute animation timing, so reset the timings each frame. m_desiredFrameStartTime = time + currentDuration; #endif // The image may load more slowly than it's supposed to animate, so that by // the time we reach the end of the first repetition, we're well behind. // Clamp the desired frame start time in this case, so that we don't skip // frames (or whole iterations) trying to "catch up". This is a tradeoff: // It guarantees users see the whole animation the second time through and // don't miss any repetitions, and is closer to what other browsers do; on // the other hand, it makes animations "less accurate" for pages that try to // sync an image and some other resource (e.g. audio), especially if users // switch tabs (and thus stop drawing the animation, which will pause it) // during that initial loop, then switch back later. if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time) m_desiredFrameStartTime = time; if (catchUpIfNecessary == DoNotCatchUp || time < m_desiredFrameStartTime) { // Haven't yet reached time for next frame to start; delay until then. startTimer(std::max<double>(m_desiredFrameStartTime - time, 0)); return; } ASSERT(!m_frameTimer); // We've already reached or passed the time for the next frame to start. // See if we've also passed the time for frames after that to start, in // case we need to skip some frames entirely. Remember not to advance // to an incomplete frame. #if !LOG_DISABLED size_t startCatchupFrameIndex = nextFrame; #endif for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) { // Should we skip the next frame? double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame); if (time < frameAfterNextStartTime) break; // Yes; skip over it without notifying our observers. If we hit the end while catching up, // tell the observer asynchronously. if (!internalAdvanceAnimation(SkippingFramesToCatchUp)) { m_animationFinishedWhenCatchingUp = true; startTimer(0); LOG(Images, "BitmapImage %p startAnimation catching up from frame %lu, ended", this, startCatchupFrameIndex); return; } m_desiredFrameStartTime = frameAfterNextStartTime; nextFrame = frameAfterNext; } LOG(Images, "BitmapImage %p startAnimation catching up jumped from from frame %lu to %d", this, startCatchupFrameIndex, (int)nextFrame - 1); // Draw the next frame as soon as possible. Note that m_desiredFrameStartTime // may be in the past, meaning the next time through this function we'll // kick off the next advancement sooner than this frame's duration would suggest. startTimer(0); }
bool WEBPImageDecoder::decodeSingleFrame(const uint8_t* dataBytes, size_t dataSize, size_t frameIndex) { if (failed()) return false; ASSERT(isDecodedSizeAvailable()); ASSERT(m_frameBufferCache.size() > frameIndex); ImageFrame& buffer = m_frameBufferCache[frameIndex]; ASSERT(buffer.getStatus() != ImageFrame::FrameComplete); if (buffer.getStatus() == ImageFrame::FrameEmpty) { if (!buffer.setSizeAndColorSpace(size().width(), size().height(), colorSpace())) return setFailed(); buffer.setStatus(ImageFrame::FramePartial); // The buffer is transparent outside the decoded area while the image is // loading. The correct alpha value for the frame will be set when it is // fully decoded. buffer.setHasAlpha(true); buffer.setOriginalFrameRect(IntRect(IntPoint(), size())); } const IntRect& frameRect = buffer.originalFrameRect(); if (!m_decoder) { WEBP_CSP_MODE mode = outputMode(m_formatFlags & ALPHA_FLAG); if (!m_premultiplyAlpha) mode = outputMode(false); if (colorTransform()) { // Swizzling between RGBA and BGRA is zero cost in a color transform. // So when we have a color transform, we should decode to whatever is // easiest for libwebp, and then let the color transform swizzle if // necessary. // Lossy webp is encoded as YUV (so RGBA and BGRA are the same cost). // Lossless webp is encoded as BGRA. This means decoding to BGRA is // either faster or the same cost as RGBA. mode = MODE_BGRA; } WebPInitDecBuffer(&m_decoderBuffer); m_decoderBuffer.colorspace = mode; m_decoderBuffer.u.RGBA.stride = size().width() * sizeof(ImageFrame::PixelData); m_decoderBuffer.u.RGBA.size = m_decoderBuffer.u.RGBA.stride * frameRect.height(); m_decoderBuffer.is_external_memory = 1; m_decoder = WebPINewDecoder(&m_decoderBuffer); if (!m_decoder) return setFailed(); } m_decoderBuffer.u.RGBA.rgba = reinterpret_cast<uint8_t*>(buffer.getAddr(frameRect.x(), frameRect.y())); switch (WebPIUpdate(m_decoder, dataBytes, dataSize)) { case VP8_STATUS_OK: applyPostProcessing(frameIndex); buffer.setHasAlpha((m_formatFlags & ALPHA_FLAG) || m_frameBackgroundHasAlpha); buffer.setStatus(ImageFrame::FrameComplete); clearDecoder(); return true; case VP8_STATUS_SUSPENDED: if (!isAllDataReceived() && !frameIsCompleteAtIndex(frameIndex)) { applyPostProcessing(frameIndex); return false; } // FALLTHROUGH default: clear(); return setFailed(); } }