int main(int argc, char *argv[]) { FILE *parameterfile = NULL; int c, j; char * filename = NULL; char datafilename[50]; char parameterfilename[50]; char conf_filename[50]; char * input_filename = NULL; char * xlfmessage = NULL; char * gaugelfn = NULL; char * gaugecksum = NULL; double plaquette_energy; #ifdef _KOJAK_INST #pragma pomp inst init #pragma pomp inst begin(main) #endif #ifdef HAVE_LIBLEMON MPI_File fh; LemonWriter *lemonWriter; paramsXlfInfo *xlfInfo; paramsPropagatorFormat *propagatorFormat; #endif #if (defined SSE || defined SSE2 || SSE3) signal(SIGILL, &catch_ill_inst); #endif DUM_DERI = 6; /* DUM_DERI + 2 is enough (not 7) */ DUM_SOLVER = DUM_DERI + 3; DUM_MATRIX = DUM_SOLVER + 8; /* DUM_MATRIX + 2 is enough (not 6) */ NO_OF_SPINORFIELDS = DUM_MATRIX + 2; verbose = 0; g_use_clover_flag = 0; #ifdef MPI MPI_Init(&argc, &argv); #endif while ((c = getopt(argc, argv, "h?f:o:")) != -1) { switch (c) { case 'f': input_filename = calloc(200, sizeof(char)); strcpy(input_filename, optarg); break; case 'o': filename = calloc(200, sizeof(char)); strcpy(filename, optarg); break; case 'h': case '?': default: usage(); break; } } if (input_filename == NULL) { input_filename = "hmc.input"; } if (filename == NULL) { filename = "output"; } /* Read the input file */ read_input(input_filename); if (solver_flag == 12 && even_odd_flag == 1) { even_odd_flag = 0; if (g_proc_id == 0) { fprintf(stderr, "CGMMS works only without even/odd! Forcing!\n"); } } /* this DBW2 stuff is not needed for the inversion ! */ if (g_dflgcr_flag == 1) { even_odd_flag = 0; } g_rgi_C1 = 0; if (Nsave == 0) { Nsave = 1; } if(g_running_phmc) { NO_OF_SPINORFIELDS = DUM_MATRIX + 8; } mpi_init(argc, argv); g_dbw2rand = 0; /* starts the single and double precision random number */ /* generator */ start_ranlux(rlxd_level, random_seed); #ifndef MPI g_dbw2rand = 0; #endif #ifdef _GAUGE_COPY j = init_gauge_field(VOLUMEPLUSRAND, 1); #else j = init_gauge_field(VOLUMEPLUSRAND, 0); #endif if(j != 0) { fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n"); exit(-1); } j = init_geometry_indices(VOLUMEPLUSRAND); if(j != 0) { fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n"); exit(-1); } if(no_monomials > 0) { if(even_odd_flag) { j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag); } else { j = init_monomials(VOLUMEPLUSRAND, even_odd_flag); } if(j != 0) { fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n"); exit(0); } } if(even_odd_flag) { j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS); } else { j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS); } if(j != 0) { fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n"); exit(-1); } if(g_running_phmc) { j = init_chi_up_spinor_field(VOLUMEPLUSRAND / 2, 20); if(j != 0) { fprintf(stderr, "Not enough memory for PHMC Chi_up fields! Aborting...\n"); exit(0); } j = init_chi_dn_spinor_field(VOLUMEPLUSRAND / 2, 20); if(j != 0) { fprintf(stderr, "Not enough memory for PHMC Chi_dn fields! Aborting...\n"); exit(0); } } g_mu = g_mu1; if(g_proc_id == 0) { /*construct the filenames for the observables and the parameters*/ strcpy(datafilename, filename); strcat(datafilename, ".data"); strcpy(parameterfilename, filename); strcat(parameterfilename, ".para"); parameterfile = fopen(parameterfilename, "w"); write_first_messages(parameterfile, 1); fclose(parameterfile); } /* this is for the extra masses of the CGMMS */ if (solver_flag == 12 && g_no_extra_masses > 0) { if ((parameterfile = fopen("extra_masses.input", "r")) != NULL) { for (j = 0; j < g_no_extra_masses; j++) { fscanf(parameterfile, "%lf", &g_extra_masses[j]); if (g_proc_id == 0 && g_debug_level > 0) { printf("# g_extra_masses[%d] = %lf\n", j, g_extra_masses[j]); } } fclose(parameterfile); } else { fprintf(stderr, "Could not open file extra_masses.input!\n"); g_no_extra_masses = 0; } } /* define the geometry */ geometry(); /* define the boundary conditions for the fermion fields */ boundary(g_kappa); phmc_invmaxev = 1.; #ifdef _USE_HALFSPINOR j = init_dirac_halfspinor(); if (j != 0) { fprintf(stderr, "Not enough memory for halffield! Aborting...\n"); exit(-1); } if (g_sloppy_precision_flag == 1) { j = init_dirac_halfspinor32(); if (j != 0) { fprintf(stderr, "Not enough memory for 32-Bit halffield! Aborting...\n"); exit(-1); } } # if (defined _PERSISTENT) if (even_odd_flag) { init_xchange_halffield(); } # endif #endif for (j = 0; j < Nmeas; j++) { sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore); if (g_proc_id == 0) { printf("Reading Gauge field from file %s\n", conf_filename); fflush(stdout); } #ifdef HAVE_LIBLEMON read_lemon_gauge_field_parallel(conf_filename, &gaugecksum, &xlfmessage, &gaugelfn); #else /* HAVE_LIBLEMON */ if (xlfmessage != (char*)NULL) free(xlfmessage); if (gaugelfn != (char*)NULL) free(gaugelfn); if (gaugecksum != (char*)NULL) free(gaugecksum); read_lime_gauge_field(conf_filename); xlfmessage = read_message(conf_filename, "xlf-info"); gaugelfn = read_message(conf_filename, "ildg-data-lfn"); gaugecksum = read_message(conf_filename, "scidac-checksum"); printf("%s \n", gaugecksum); #endif /* HAVE_LIBLEMON */ if (g_proc_id == 0) { printf("done!\n"); fflush(stdout); } /* unit_g_gauge_field(); */ #ifdef MPI xchange_gauge(g_gauge_field); #endif /*compute the energy of the gauge field*/ plaquette_energy = measure_gauge_action(); if (g_proc_id == 0) { printf("The plaquette value is %e\n", plaquette_energy / (6.*VOLUME*g_nproc)); fflush(stdout); } if (use_stout_flag == 1) { if (stout_smear_gauge_field(stout_rho , stout_no_iter) != 0) { exit(1) ; } plaquette_energy = measure_gauge_action(); if (g_proc_id == 0) { printf("The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc)); fflush(stdout); } } /* Compute minimal eigenvalues, necessary for overlap! */ if (compute_evs != 0) eigenvalues(&no_eigenvalues, max_solver_iterations, eigenvalue_precision, 0, compute_evs, nstore, even_odd_flag); else { compute_evs = 1; no_eigenvalues = 1; eigenvalues(&no_eigenvalues, max_solver_iterations, eigenvalue_precision, 0, compute_evs, nstore, even_odd_flag); no_eigenvalues = 0; compute_evs = 0; } if (phmc_compute_evs != 0) { #ifdef MPI MPI_Finalize(); #endif return (0); } /* here we can do something */ ov_n_cheby = (-log(delta))/(2*sqrt(ev_minev)); printf("// Degree of cheby polynomial: %d\n", ov_n_cheby); // g_mu = 0.; ov_check_locality(); // ov_check_ginsparg_wilson_relation_strong(); // ov_compare_4x4("overlap.mat"); // ov_compare_12x12("overlap.mat"); // ov_save_12x12("overlap.mat"); // ov_check_operator(1,0,0,0); nstore += Nsave; } #ifdef MPI MPI_Finalize(); #endif free_blocks(); free_dfl_subspace(); free_gauge_field(); free_geometry_indices(); free_spinor_field(); free_moment_field(); if (g_running_phmc) { free_chi_up_spinor_field(); free_chi_dn_spinor_field(); } return(0); #ifdef _KOJAK_INST #pragma pomp inst end(main) #endif }
int main(int argc, char *argv[]) { FILE *parameterfile = NULL; int c, j, i, ix = 0, isample = 0, op_id = 0; char * filename = NULL; char datafilename[50]; char parameterfilename[50]; char conf_filename[50]; char * input_filename = NULL; double plaquette_energy; struct stout_parameters params_smear; spinor **s, *s_; #ifdef _KOJAK_INST #pragma pomp inst init #pragma pomp inst begin(main) #endif #if (defined SSE || defined SSE2 || SSE3) signal(SIGILL, &catch_ill_inst); #endif DUM_DERI = 8; DUM_MATRIX = DUM_DERI + 5; #if ((defined BGL && defined XLC) || defined _USE_TSPLITPAR) NO_OF_SPINORFIELDS = DUM_MATRIX + 3; #else NO_OF_SPINORFIELDS = DUM_MATRIX + 3; #endif verbose = 0; g_use_clover_flag = 0; #ifdef MPI # ifdef OMP int mpi_thread_provided; MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &mpi_thread_provided); # else MPI_Init(&argc, &argv); # endif MPI_Comm_rank(MPI_COMM_WORLD, &g_proc_id); #else g_proc_id = 0; #endif while ((c = getopt(argc, argv, "h?vVf:o:")) != -1) { switch (c) { case 'f': input_filename = calloc(200, sizeof(char)); strcpy(input_filename, optarg); break; case 'o': filename = calloc(200, sizeof(char)); strcpy(filename, optarg); break; case 'v': verbose = 1; break; case 'V': fprintf(stdout,"%s %s\n",PACKAGE_STRING,git_hash); exit(0); break; case 'h': case '?': default: usage(); break; } } if (input_filename == NULL) { input_filename = "invert.input"; } if (filename == NULL) { filename = "output"; } /* Read the input file */ if( (j = read_input(input_filename)) != 0) { fprintf(stderr, "Could not find input file: %s\nAborting...\n", input_filename); exit(-1); } #ifdef OMP if(omp_num_threads > 0) { omp_set_num_threads(omp_num_threads); } else { if( g_proc_id == 0 ) printf("# No value provided for OmpNumThreads, running in single-threaded mode!\n"); omp_num_threads = 1; omp_set_num_threads(omp_num_threads); } init_omp_accumulators(omp_num_threads); #endif /* this DBW2 stuff is not needed for the inversion ! */ if (g_dflgcr_flag == 1) { even_odd_flag = 0; } g_rgi_C1 = 0; if (Nsave == 0) { Nsave = 1; } if (g_running_phmc) { NO_OF_SPINORFIELDS = DUM_MATRIX + 8; } tmlqcd_mpi_init(argc, argv); g_dbw2rand = 0; /* starts the single and double precision random number */ /* generator */ start_ranlux(rlxd_level, random_seed); /* we need to make sure that we don't have even_odd_flag = 1 */ /* if any of the operators doesn't use it */ /* in this way even/odd can still be used by other operators */ for(j = 0; j < no_operators; j++) if(!operator_list[j].even_odd_flag) even_odd_flag = 0; #ifndef MPI g_dbw2rand = 0; #endif #ifdef _GAUGE_COPY j = init_gauge_field(VOLUMEPLUSRAND, 1); #else j = init_gauge_field(VOLUMEPLUSRAND, 0); #endif if (j != 0) { fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n"); exit(-1); } j = init_geometry_indices(VOLUMEPLUSRAND); if (j != 0) { fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n"); exit(-1); } if (no_monomials > 0) { if (even_odd_flag) { j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag); } else { j = init_monomials(VOLUMEPLUSRAND, even_odd_flag); } if (j != 0) { fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n"); exit(-1); } } if (even_odd_flag) { j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS); } else { j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS); } if (j != 0) { fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n"); exit(-1); } if (g_running_phmc) { j = init_chi_spinor_field(VOLUMEPLUSRAND / 2, 20); if (j != 0) { fprintf(stderr, "Not enough memory for PHMC Chi fields! Aborting...\n"); exit(-1); } } g_mu = g_mu1; if (g_cart_id == 0) { /*construct the filenames for the observables and the parameters*/ strcpy(datafilename, filename); strcat(datafilename, ".data"); strcpy(parameterfilename, filename); strcat(parameterfilename, ".para"); parameterfile = fopen(parameterfilename, "w"); write_first_messages(parameterfile, 1); fclose(parameterfile); } /* define the geometry */ geometry(); /* define the boundary conditions for the fermion fields */ boundary(g_kappa); phmc_invmaxev = 1.; init_operators(); /* this could be maybe moved to init_operators */ #ifdef _USE_HALFSPINOR j = init_dirac_halfspinor(); if (j != 0) { fprintf(stderr, "Not enough memory for halffield! Aborting...\n"); exit(-1); } if (g_sloppy_precision_flag == 1) { j = init_dirac_halfspinor32(); if (j != 0) { fprintf(stderr, "Not enough memory for 32-bit halffield! Aborting...\n"); exit(-1); } } # if (defined _PERSISTENT) if (even_odd_flag) init_xchange_halffield(); # endif #endif for (j = 0; j < Nmeas; j++) { sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore); if (g_cart_id == 0) { printf("#\n# Trying to read gauge field from file %s in %s precision.\n", conf_filename, (gauge_precision_read_flag == 32 ? "single" : "double")); fflush(stdout); } if( (i = read_gauge_field(conf_filename)) !=0) { fprintf(stderr, "Error %d while reading gauge field from %s\n Aborting...\n", i, conf_filename); exit(-2); } if (g_cart_id == 0) { printf("# Finished reading gauge field.\n"); fflush(stdout); } #ifdef MPI xchange_gauge(g_gauge_field); #endif /*compute the energy of the gauge field*/ plaquette_energy = measure_gauge_action( (const su3**) g_gauge_field); if (g_cart_id == 0) { printf("# The computed plaquette value is %e.\n", plaquette_energy / (6.*VOLUME*g_nproc)); fflush(stdout); } if (use_stout_flag == 1){ params_smear.rho = stout_rho; params_smear.iterations = stout_no_iter; /* if (stout_smear((su3_tuple*)(g_gauge_field[0]), ¶ms_smear, (su3_tuple*)(g_gauge_field[0])) != 0) */ /* exit(1) ; */ g_update_gauge_copy = 1; g_update_gauge_energy = 1; g_update_rectangle_energy = 1; plaquette_energy = measure_gauge_action( (const su3**) g_gauge_field); if (g_cart_id == 0) { printf("# The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc)); fflush(stdout); } } if (reweighting_flag == 1) { reweighting_factor(reweighting_samples, nstore); } /* Compute minimal eigenvalues, if wanted */ if (compute_evs != 0) { eigenvalues(&no_eigenvalues, 5000, eigenvalue_precision, 0, compute_evs, nstore, even_odd_flag); } if (phmc_compute_evs != 0) { #ifdef MPI MPI_Finalize(); #endif return(0); } /* Compute the mode number or topological susceptibility using spectral projectors, if wanted*/ if(compute_modenumber != 0 || compute_topsus !=0){ s_ = calloc(no_sources_z2*VOLUMEPLUSRAND+1, sizeof(spinor)); s = calloc(no_sources_z2, sizeof(spinor*)); if(s_ == NULL) { printf("Not enough memory in %s: %d",__FILE__,__LINE__); exit(42); } if(s == NULL) { printf("Not enough memory in %s: %d",__FILE__,__LINE__); exit(42); } for(i = 0; i < no_sources_z2; i++) { #if (defined SSE3 || defined SSE2 || defined SSE) s[i] = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE)+i*VOLUMEPLUSRAND; #else s[i] = s_+i*VOLUMEPLUSRAND; #endif z2_random_spinor_field(s[i], VOLUME); /* what is this here needed for?? */ /* spinor *aux_,*aux; */ /* #if ( defined SSE || defined SSE2 || defined SSE3 ) */ /* aux_=calloc(VOLUMEPLUSRAND+1, sizeof(spinor)); */ /* aux = (spinor *)(((unsigned long int)(aux_)+ALIGN_BASE)&~ALIGN_BASE); */ /* #else */ /* aux_=calloc(VOLUMEPLUSRAND, sizeof(spinor)); */ /* aux = aux_; */ /* #endif */ if(g_proc_id == 0) { printf("source %d \n", i); } if(compute_modenumber != 0){ mode_number(s[i], mstarsq); } if(compute_topsus !=0) { top_sus(s[i], mstarsq); } } free(s); free(s_); } /* move to operators as well */ if (g_dflgcr_flag == 1) { /* set up deflation blocks */ init_blocks(nblocks_t, nblocks_x, nblocks_y, nblocks_z); /* the can stay here for now, but later we probably need */ /* something like init_dfl_solver called somewhere else */ /* create set of approximate lowest eigenvectors ("global deflation subspace") */ /* g_mu = 0.; */ /* boundary(0.125); */ generate_dfl_subspace(g_N_s, VOLUME); /* boundary(g_kappa); */ /* g_mu = g_mu1; */ /* Compute little Dirac operators */ /* alt_block_compute_little_D(); */ if (g_debug_level > 0) { check_projectors(); check_local_D(); } if (g_debug_level > 1) { check_little_D_inversion(); } } if(SourceInfo.type == 1) { index_start = 0; index_end = 1; } g_precWS=NULL; if(use_preconditioning == 1){ /* todo load fftw wisdom */ #if (defined HAVE_FFTW ) && !( defined MPI) loadFFTWWisdom(g_spinor_field[0],g_spinor_field[1],T,LX); #else use_preconditioning=0; #endif } if (g_cart_id == 0) { fprintf(stdout, "#\n"); /*Indicate starting of the operator part*/ } for(op_id = 0; op_id < no_operators; op_id++) { boundary(operator_list[op_id].kappa); g_kappa = operator_list[op_id].kappa; g_mu = 0.; if(use_preconditioning==1 && PRECWSOPERATORSELECT[operator_list[op_id].solver]!=PRECWS_NO ){ printf("# Using preconditioning with treelevel preconditioning operator: %s \n", precWSOpToString(PRECWSOPERATORSELECT[operator_list[op_id].solver])); /* initial preconditioning workspace */ operator_list[op_id].precWS=(spinorPrecWS*)malloc(sizeof(spinorPrecWS)); spinorPrecWS_Init(operator_list[op_id].precWS, operator_list[op_id].kappa, operator_list[op_id].mu/2./operator_list[op_id].kappa, -(0.5/operator_list[op_id].kappa-4.), PRECWSOPERATORSELECT[operator_list[op_id].solver]); g_precWS = operator_list[op_id].precWS; if(PRECWSOPERATORSELECT[operator_list[op_id].solver] == PRECWS_D_DAGGER_D) { fitPrecParams(op_id); } } for(isample = 0; isample < no_samples; isample++) { for (ix = index_start; ix < index_end; ix++) { if (g_cart_id == 0) { fprintf(stdout, "#\n"); /*Indicate starting of new index*/ } /* we use g_spinor_field[0-7] for sources and props for the moment */ /* 0-3 in case of 1 flavour */ /* 0-7 in case of 2 flavours */ prepare_source(nstore, isample, ix, op_id, read_source_flag, source_location); operator_list[op_id].inverter(op_id, index_start); } } if(use_preconditioning==1 && operator_list[op_id].precWS!=NULL ){ /* free preconditioning workspace */ spinorPrecWS_Free(operator_list[op_id].precWS); free(operator_list[op_id].precWS); } if(operator_list[op_id].type == OVERLAP){ free_Dov_WS(); } } nstore += Nsave; } #ifdef MPI MPI_Finalize(); #endif #ifdef OMP free_omp_accumulators(); #endif free_blocks(); free_dfl_subspace(); free_gauge_field(); free_geometry_indices(); free_spinor_field(); free_moment_field(); free_chi_spinor_field(); return(0); #ifdef _KOJAK_INST #pragma pomp inst end(main) #endif }
int main(int argc, char *argv[]) { FILE *parameterfile = NULL; int j, i, ix = 0, isample = 0, op_id = 0; char datafilename[206]; char parameterfilename[206]; char conf_filename[50]; char * input_filename = NULL; char * filename = NULL; double plaquette_energy; struct stout_parameters params_smear; #ifdef _KOJAK_INST #pragma pomp inst init #pragma pomp inst begin(main) #endif #if (defined SSE || defined SSE2 || SSE3) signal(SIGILL, &catch_ill_inst); #endif DUM_DERI = 8; DUM_MATRIX = DUM_DERI + 5; NO_OF_SPINORFIELDS = DUM_MATRIX + 4; //4 extra fields (corresponding to DUM_MATRIX+0..5) for deg. and ND matrix mult. NO_OF_SPINORFIELDS_32 = 6; verbose = 0; g_use_clover_flag = 0; process_args(argc,argv,&input_filename,&filename); set_default_filenames(&input_filename, &filename); init_parallel_and_read_input(argc, argv, input_filename); /* this DBW2 stuff is not needed for the inversion ! */ if (g_dflgcr_flag == 1) { even_odd_flag = 0; } g_rgi_C1 = 0; if (Nsave == 0) { Nsave = 1; } if (g_running_phmc) { NO_OF_SPINORFIELDS = DUM_MATRIX + 8; } tmlqcd_mpi_init(argc, argv); g_dbw2rand = 0; /* starts the single and double precision random number */ /* generator */ start_ranlux(rlxd_level, random_seed^nstore); /* we need to make sure that we don't have even_odd_flag = 1 */ /* if any of the operators doesn't use it */ /* in this way even/odd can still be used by other operators */ for(j = 0; j < no_operators; j++) if(!operator_list[j].even_odd_flag) even_odd_flag = 0; #ifndef TM_USE_MPI g_dbw2rand = 0; #endif #ifdef _GAUGE_COPY j = init_gauge_field(VOLUMEPLUSRAND, 1); j += init_gauge_field_32(VOLUMEPLUSRAND, 1); #else j = init_gauge_field(VOLUMEPLUSRAND, 0); j += init_gauge_field_32(VOLUMEPLUSRAND, 0); #endif if (j != 0) { fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n"); exit(-1); } j = init_geometry_indices(VOLUMEPLUSRAND); if (j != 0) { fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n"); exit(-1); } if (no_monomials > 0) { if (even_odd_flag) { j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag); } else { j = init_monomials(VOLUMEPLUSRAND, even_odd_flag); } if (j != 0) { fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n"); exit(-1); } } if (even_odd_flag) { j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS); j += init_spinor_field_32(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS_32); } else { j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS); j += init_spinor_field_32(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS_32); } if (j != 0) { fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n"); exit(-1); } if (g_running_phmc) { j = init_chi_spinor_field(VOLUMEPLUSRAND / 2, 20); if (j != 0) { fprintf(stderr, "Not enough memory for PHMC Chi fields! Aborting...\n"); exit(-1); } } g_mu = g_mu1; if (g_cart_id == 0) { /*construct the filenames for the observables and the parameters*/ strncpy(datafilename, filename, 200); strcat(datafilename, ".data"); strncpy(parameterfilename, filename, 200); strcat(parameterfilename, ".para"); parameterfile = fopen(parameterfilename, "w"); write_first_messages(parameterfile, "invert", git_hash); fclose(parameterfile); } /* define the geometry */ geometry(); /* define the boundary conditions for the fermion fields */ boundary(g_kappa); phmc_invmaxev = 1.; init_operators(); /* list and initialize measurements*/ if(g_proc_id == 0) { printf("\n"); for(int j = 0; j < no_measurements; j++) { printf("# measurement id %d, type = %d\n", j, measurement_list[j].type); } } init_measurements(); /* this could be maybe moved to init_operators */ #ifdef _USE_HALFSPINOR j = init_dirac_halfspinor(); if (j != 0) { fprintf(stderr, "Not enough memory for halffield! Aborting...\n"); exit(-1); } /* for mixed precision solvers, the 32 bit halfspinor field must always be there */ j = init_dirac_halfspinor32(); if (j != 0) { fprintf(stderr, "Not enough memory for 32-bit halffield! Aborting...\n"); exit(-1); } # if (defined _PERSISTENT) if (even_odd_flag) init_xchange_halffield(); # endif #endif for (j = 0; j < Nmeas; j++) { sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore); if (g_cart_id == 0) { printf("#\n# Trying to read gauge field from file %s in %s precision.\n", conf_filename, (gauge_precision_read_flag == 32 ? "single" : "double")); fflush(stdout); } if( (i = read_gauge_field(conf_filename,g_gauge_field)) !=0) { fprintf(stderr, "Error %d while reading gauge field from %s\n Aborting...\n", i, conf_filename); exit(-2); } if (g_cart_id == 0) { printf("# Finished reading gauge field.\n"); fflush(stdout); } #ifdef TM_USE_MPI xchange_gauge(g_gauge_field); #endif /*Convert to a 32 bit gauge field, after xchange*/ convert_32_gauge_field(g_gauge_field_32, g_gauge_field, VOLUMEPLUSRAND); /*compute the energy of the gauge field*/ plaquette_energy = measure_plaquette( (const su3**) g_gauge_field); if (g_cart_id == 0) { printf("# The computed plaquette value is %e.\n", plaquette_energy / (6.*VOLUME*g_nproc)); fflush(stdout); } if (use_stout_flag == 1){ params_smear.rho = stout_rho; params_smear.iterations = stout_no_iter; /* if (stout_smear((su3_tuple*)(g_gauge_field[0]), ¶ms_smear, (su3_tuple*)(g_gauge_field[0])) != 0) */ /* exit(1) ; */ g_update_gauge_copy = 1; plaquette_energy = measure_plaquette( (const su3**) g_gauge_field); if (g_cart_id == 0) { printf("# The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc)); fflush(stdout); } } /* if any measurements are defined in the input file, do them here */ measurement * meas; for(int imeas = 0; imeas < no_measurements; imeas++){ meas = &measurement_list[imeas]; if (g_proc_id == 0) { fprintf(stdout, "#\n# Beginning online measurement.\n"); } meas->measurefunc(nstore, imeas, even_odd_flag); } if (reweighting_flag == 1) { reweighting_factor(reweighting_samples, nstore); } /* Compute minimal eigenvalues, if wanted */ if (compute_evs != 0) { eigenvalues(&no_eigenvalues, 5000, eigenvalue_precision, 0, compute_evs, nstore, even_odd_flag); } if (phmc_compute_evs != 0) { #ifdef TM_USE_MPI MPI_Finalize(); #endif return(0); } /* Compute the mode number or topological susceptibility using spectral projectors, if wanted*/ if(compute_modenumber != 0 || compute_topsus !=0){ invert_compute_modenumber(); } // set up blocks if Deflation is used if (g_dflgcr_flag) init_blocks(nblocks_t, nblocks_x, nblocks_y, nblocks_z); if(SourceInfo.type == SRC_TYPE_VOL || SourceInfo.type == SRC_TYPE_PION_TS || SourceInfo.type == SRC_TYPE_GEN_PION_TS) { index_start = 0; index_end = 1; } g_precWS=NULL; if(use_preconditioning == 1){ /* todo load fftw wisdom */ #if (defined HAVE_FFTW ) && !( defined TM_USE_MPI) loadFFTWWisdom(g_spinor_field[0],g_spinor_field[1],T,LX); #else use_preconditioning=0; #endif } if (g_cart_id == 0) { fprintf(stdout, "#\n"); /*Indicate starting of the operator part*/ } for(op_id = 0; op_id < no_operators; op_id++) { boundary(operator_list[op_id].kappa); g_kappa = operator_list[op_id].kappa; g_mu = operator_list[op_id].mu; g_c_sw = operator_list[op_id].c_sw; // DFLGCR and DFLFGMRES if(operator_list[op_id].solver == DFLGCR || operator_list[op_id].solver == DFLFGMRES) { generate_dfl_subspace(g_N_s, VOLUME, reproduce_randomnumber_flag); } if(use_preconditioning==1 && PRECWSOPERATORSELECT[operator_list[op_id].solver]!=PRECWS_NO ){ printf("# Using preconditioning with treelevel preconditioning operator: %s \n", precWSOpToString(PRECWSOPERATORSELECT[operator_list[op_id].solver])); /* initial preconditioning workspace */ operator_list[op_id].precWS=(spinorPrecWS*)malloc(sizeof(spinorPrecWS)); spinorPrecWS_Init(operator_list[op_id].precWS, operator_list[op_id].kappa, operator_list[op_id].mu/2./operator_list[op_id].kappa, -(0.5/operator_list[op_id].kappa-4.), PRECWSOPERATORSELECT[operator_list[op_id].solver]); g_precWS = operator_list[op_id].precWS; if(PRECWSOPERATORSELECT[operator_list[op_id].solver] == PRECWS_D_DAGGER_D) { fitPrecParams(op_id); } } for(isample = 0; isample < no_samples; isample++) { for (ix = index_start; ix < index_end; ix++) { if (g_cart_id == 0) { fprintf(stdout, "#\n"); /*Indicate starting of new index*/ } /* we use g_spinor_field[0-7] for sources and props for the moment */ /* 0-3 in case of 1 flavour */ /* 0-7 in case of 2 flavours */ prepare_source(nstore, isample, ix, op_id, read_source_flag, source_location, random_seed); //randmize initial guess for eigcg if needed-----experimental if( (operator_list[op_id].solver == INCREIGCG) && (operator_list[op_id].solver_params.eigcg_rand_guess_opt) ){ //randomize the initial guess gaussian_volume_source( operator_list[op_id].prop0, operator_list[op_id].prop1,isample,ix,0); //need to check this } operator_list[op_id].inverter(op_id, index_start, 1); } } if(use_preconditioning==1 && operator_list[op_id].precWS!=NULL ){ /* free preconditioning workspace */ spinorPrecWS_Free(operator_list[op_id].precWS); free(operator_list[op_id].precWS); } if(operator_list[op_id].type == OVERLAP){ free_Dov_WS(); } } nstore += Nsave; } #ifdef TM_USE_OMP free_omp_accumulators(); #endif free_blocks(); free_dfl_subspace(); free_gauge_field(); free_gauge_field_32(); free_geometry_indices(); free_spinor_field(); free_spinor_field_32(); free_moment_field(); free_chi_spinor_field(); free(filename); free(input_filename); free(SourceInfo.basename); free(PropInfo.basename); #ifdef TM_USE_QUDA _endQuda(); #endif #ifdef TM_USE_MPI MPI_Barrier(MPI_COMM_WORLD); MPI_Finalize(); #endif return(0); #ifdef _KOJAK_INST #pragma pomp inst end(main) #endif }