Exemple #1
0
void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network *net = load_network(cfgfile, weightfile, 0);
    int i;
    for (i = 0; i < net->n; ++i) {
        layer l = net->layers[i];
        if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
            denormalize_convolutional_layer(l);
            net->layers[i].batch_normalize=0;
        }
        if (l.type == CONNECTED && l.batch_normalize) {
            denormalize_connected_layer(l);
            net->layers[i].batch_normalize=0;
        }
        if (l.type == GRU && l.batch_normalize) {
            denormalize_connected_layer(*l.input_z_layer);
            denormalize_connected_layer(*l.input_r_layer);
            denormalize_connected_layer(*l.input_h_layer);
            denormalize_connected_layer(*l.state_z_layer);
            denormalize_connected_layer(*l.state_r_layer);
            denormalize_connected_layer(*l.state_h_layer);
            l.input_z_layer->batch_normalize = 0;
            l.input_r_layer->batch_normalize = 0;
            l.input_h_layer->batch_normalize = 0;
            l.state_z_layer->batch_normalize = 0;
            l.state_r_layer->batch_normalize = 0;
            l.state_h_layer->batch_normalize = 0;
            net->layers[i].batch_normalize=0;
        }
    }
    save_weights(net, outfile);
    free_network(net);
}
Exemple #2
0
void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network *net = load_network(cfgfile, weightfile, 0);
    int i;
    for(i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        if(l.type == CONVOLUTIONAL && !l.batch_normalize){
            net->layers[i] = normalize_layer(l, l.n);
        }
        if (l.type == CONNECTED && !l.batch_normalize) {
            net->layers[i] = normalize_layer(l, l.outputs);
        }
        if (l.type == GRU && l.batch_normalize) {
            *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
            *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
            *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
            *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
            *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
            *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
            net->layers[i].batch_normalize=1;
        }
    }
    save_weights(net, outfile);
    free_network(net);
}
Exemple #3
0
void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
{
    network *net = load_network(cfgfile, weightfile, 0);
    image *ims = get_weights(net->layers[0]);
    int n = net->layers[0].n;
    int z;
    for(z = 0; z < num; ++z){
        image im = make_image(h, w, 3);
        fill_image(im, .5);
        int i;
        for(i = 0; i < 100; ++i){
            image r = copy_image(ims[rand()%n]);
            rotate_image_cw(r, rand()%4);
            random_distort_image(r, 1, 1.5, 1.5);
            int dx = rand()%(w-r.w);
            int dy = rand()%(h-r.h);
            ghost_image(r, im, dx, dy);
            free_image(r);
        }
        char buff[256];
        sprintf(buff, "%s/gen_%d", prefix, z);
        save_image(im, buff);
        free_image(im);
    }
    free_network(net);
}
Exemple #4
0
void partial(char *cfgfile, char *weightfile, char *outfile, int max)
{
    gpu_index = -1;
    network *net = load_network(cfgfile, weightfile, 1);
    save_weights_upto(net, outfile, max);
    free_network(net);
}
Exemple #5
0
void predict_regressor(char *cfgfile, char *weightfile, char *filename)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image sized = letterbox_image(im, net->w, net->h);

        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("Predicted: %f\n", predictions[0]);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        free_image(im);
        free_image(sized);
        if (filename) break;
    }
    free_network(net);
}
Exemple #6
0
void oneoff(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network *net = parse_network_cfg(cfgfile);
    int oldn = net->layers[net->n - 2].n;
    int c = net->layers[net->n - 2].c;
    scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1);
    scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1);
    net->layers[net->n - 2].n = 11921;
    net->layers[net->n - 2].biases += 5;
    net->layers[net->n - 2].weights += 5*c;
    if(weightfile){
        load_weights(net, weightfile);
    }
    net->layers[net->n - 2].biases -= 5;
    net->layers[net->n - 2].weights -= 5*c;
    net->layers[net->n - 2].n = oldn;
    printf("%d\n", oldn);
    layer l = net->layers[net->n - 2];
    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
    *net->seen = 0;
    save_weights(net, outfile);
    free_network(net);
}
Exemple #7
0
void test_cgm(char *cfgfile, char *weightfile, char *session)
{

    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    load_weights(&net, weightfile);

    freopen("out.txt", "w", stdout);

    int input_len = net.w;
    int stride = net.w/4;

    int i,j,k;

    data train;
    train.shallow = 0;
    train.X = make_matrix(128, net.w*net.h*net.c);
    train.y = make_matrix(128, 1);

    float cbuf[4096*16];
    int cidx = 0;
    int cnt = 0;
    int cntstride = 0;
    int freq[16] = {0};
    FILE *fp = fopen(session, "rb");
    if(!fp) file_error(session);
    while (!feof(fp))
    {
        unsigned short bytes[11];
        fread(bytes, 2, 11, fp);
        float fbytes[2];
        fread(fbytes, 4, 2, fp);
        // put into circular buffer
        for (j=0;j<10;j++)
            cbuf[cidx+(j<<12)] = (float)(bytes[j])/65536.f;
        cidx = (1+cidx)&4095;
        cnt++;
        cntstride++;
        if (fbytes[0]>54 && cnt>input_len && cntstride>stride)
        {
            cntstride = 0;
            train.y.vals[0][0] = (fbytes[0]-50)/200.0;
            for (k=0;k<net.w;k++)
            for (j=0;j<10;j++)
            {
                train.X.vals[0][(j*net.w)+k] = cbuf[(j<<12)+(((cidx-1-net.w+k)+4096)&4095)];
            }
            float *p = network_predict(net, train.X.vals[0]);
         //   fprintf(stderr, "%f, %f\n", train.y.vals[0][0], p[0]);
            p[0] = (p[0]*200.0)+50.0;
            fprintf(stdout, "%f, %f\n", fbytes[0], p[0]);
            fprintf(stderr, "%f, %f\n", fbytes[0], p[0]);
        }
    }
    fclose(fp);

    free_network(net);
    free_data(train);
}
Exemple #8
0
void statistics_net(char *cfgfile, char *weightfile)
{
    gpu_index = -1;
    network *net = load_network(cfgfile, weightfile, 0);
    int i;
    for (i = 0; i < net->n; ++i) {
        layer l = net->layers[i];
        if (l.type == CONNECTED && l.batch_normalize) {
            printf("Connected Layer %d\n", i);
            statistics_connected_layer(l);
        }
        if (l.type == GRU && l.batch_normalize) {
            printf("GRU Layer %d\n", i);
            printf("Input Z\n");
            statistics_connected_layer(*l.input_z_layer);
            printf("Input R\n");
            statistics_connected_layer(*l.input_r_layer);
            printf("Input H\n");
            statistics_connected_layer(*l.input_h_layer);
            printf("State Z\n");
            statistics_connected_layer(*l.state_z_layer);
            printf("State R\n");
            statistics_connected_layer(*l.state_r_layer);
            printf("State H\n");
            statistics_connected_layer(*l.state_h_layer);
        }
        printf("\n");
    }
    free_network(net);
}
int main(int argc, char** argv) {
  int NUM_PASSES = 100;
  if (argc < 3) {
    fprintf(stderr, "Usage: ./mnist <test|inference> [NUMBER_PASSES]\n");
    return 2;
  }
  else{
    NUM_PASSES = atoi(argv[2]);
  }
  Network* net = construct_scene_labeling_net();
  initialize_network(net, 1);


  if (!strcmp(argv[1], "inference")) {
    //net_measure_inference_time(net);
    return 1;
  }
  
  if (!strcmp(argv[1], "test")){
    // net_test(net, input, labels, NUM_PASSES);
  }
  free_network(net);


  return 2;
}
Exemple #10
0
void operations(char *cfgfile)
{
    gpu_index = -1;
    network *net = parse_network_cfg(cfgfile);
    long ops = numops(net);
    printf("Floating Point Operations: %ld\n", ops);
    printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
    free_network( net );
}
Exemple #11
0
void train_mnist_distill(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    char *backup_directory = "backup";
    int classes = 10;
    int N = 50000;

    int epoch = (*net.seen)/N;

    data train;// = load_all_mnist10();
    matrix soft = csv_to_matrix("results/ensemble.csv");

    float weight = .9;
    scale_matrix(soft, weight);
    scale_matrix(train.y, 1. - weight);
    matrix_add_matrix(soft, train.y);

    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        clock_t time=clock();

        float loss = train_network_sgd(net, train, 1);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.95 + loss*.05;
        if(get_current_batch(net)%100 == 0)
        {
            printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        }
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    free_network(net);
    free(base);
    free_data(train);
}
Exemple #12
0
void train_go(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    char *backup_directory = "/home/pjreddie/backup/";

    char buff[256];
    float *board = calloc(19*19*net.batch, sizeof(float));
    float *move = calloc(19*19*net.batch, sizeof(float));
    moves m = load_go_moves("/home/pjreddie/go.train");
    //moves m = load_go_moves("games.txt");

    int N = m.n;
    int epoch = (*net.seen)/N;
    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        clock_t time=clock();

        random_go_moves(m, board, move, net.batch);
        float loss = train_network_datum(net, board, move) / net.batch;
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.95 + loss*.05;
        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory,base, epoch);
            save_weights(net, buff);

        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%10000 == 0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.backup",backup_directory,base,get_current_batch(net));
            save_weights(net, buff);
        }
    }
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    free_network(net);
    free(base);
}
Exemple #13
0
void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
{
    gpu_index = -1;
    network *net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights_upto(net, weightfile, 0, net->n);
        load_weights_upto(net, weightfile, l, net->n);
    }
    *net->seen = 0;
    save_weights_upto(net, outfile, net->n);
    free_network(net);
}
Exemple #14
0
void test_lsd(char *cfg, char *weights, char *filename, int gray)
{
    network *net = load_network(cfg, weights, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int i, imlayer = 0;

    for (i = 0; i < net->n; ++i) {
        if (net->layers[i].out_c == 3) {
            imlayer = i;
            printf("%d\n", i);
            break;
        }
    }

    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image resized = resize_min(im, net->w);
        image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
        if(gray) grayscale_image_3c(crop);

        float *X = crop.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        constrain_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        save_image(out, "out");
        show_image(out, "out", 1);
        show_image(crop, "crop", 0);

        free_image(im);
        free_image(resized);
        free_image(crop);
        if (filename) break;
    }
    free_network(net);
}
Exemple #15
0
void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
{
    gpu_index = -1;
    network *net = load_network(cfgfile, weightfile, 0);
    int i;
    for(i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        if(l.type == CONVOLUTIONAL){
            rgbgr_weights(l);
            break;
        }
    }
    save_weights(net, outfile);
    free_network(net);
}
Exemple #16
0
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
    printf("Regressor Demo\n");
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);

    srand(2222222);
    list *options = read_data_cfg(datacfg);
    int classes = option_find_int(options, "classes", 1);
    char *name_list = option_find_str(options, "names", 0);
    char **names = get_labels(name_list);

    void * cap = open_video_stream(filename, cam_index, 0,0,0);
    if(!cap) error("Couldn't connect to webcam.\n");
    float fps = 0;

    while(1){
        struct timeval tval_before, tval_after, tval_result;
        gettimeofday(&tval_before, NULL);

        image in = get_image_from_stream(cap);
        image crop = center_crop_image(in, net->w, net->h);
        grayscale_image_3c(crop);

        float *predictions = network_predict(net, crop.data);

        printf("\033[2J");
        printf("\033[1;1H");
        printf("\nFPS:%.0f\n",fps);

        int i;
        for(i = 0; i < classes; ++i){
            printf("%s: %f\n", names[i], predictions[i]);
        }

        show_image(crop, "Regressor", 10);
        free_image(in);
        free_image(crop);

        gettimeofday(&tval_after, NULL);
        timersub(&tval_after, &tval_before, &tval_result);
        float curr = 1000000.f/((long int)tval_result.tv_usec);
        fps = .9*fps + .1*curr;
    }
    free_network(net);
#endif
}
Exemple #17
0
void train_cifar(char *cfgfile, char *weightfile)
{
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    char *backup_directory = "/home/pjreddie/backup/";
    int classes = 10;
    int N = 50000;

    char **labels = get_labels("data/cifar/labels.txt");
    int epoch = (*net.seen)/N;
    data train = load_all_cifar10();
    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        clock_t time=clock();

        float loss = train_network_sgd(net, train, 1);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.95 + loss*.05;
        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    free_network(net);
    free_ptrs((void**)labels, classes);
    free(base);
    free_data(train);
}
Exemple #18
0
// Perform the classification (this calls into the functions from cnn.c
double run_classification(int* samples, int n, double** keep_output) {
  fprintf(stderr, "Making network...\n");
  network_t* net = load_cnn_snapshot();

  fprintf(stderr, "Loading batches...\n");


  for (int i = 0; i < n; i++) {
    int batch = samples[i]/10000;
    if (batches[batch] == NULL) {
      batches[batch] = load_batch(batch);
    }
  }

  vol_t** input = (vol_t**)malloc(sizeof(vol_t*)*n);
  double* output = (double*)malloc(sizeof(double)*n);


  for (int i = 0; i < n; i++) {
    input[i] = batches[samples[i]/10000][samples[i]%10000];
  }

  fprintf(stderr, "Running classification...\n");
  uint64_t start_time = timestamp_us(); 
  net_classify_cats(net, input, output, n);
  uint64_t end_time = timestamp_us();

  for (int i = 0; i < n; i++) {
    samples[i] = (output[i] > 0.5) ? 0 : -1;
  }

  double dt = (double)(end_time-start_time) / 1000.0;
  fprintf(stderr, "TIME: %lf ms\n", dt);

  free_network(net);
  free(input);

  if (keep_output == NULL)
    free(output);
  else
    *keep_output = output;

  return dt;
}
Exemple #19
0
int main(int argc, char** argv) {
  int NUM_PASSES = 100;
  if (argc < 3) {
    fprintf(stderr, "Usage: ./gtsrb <test|inference> [NUMBER_PASSES]\n");
    return 2;
  }
  else{
    NUM_PASSES = atoi(argv[2]);
  }

  Network* net = construct_gtsrb_net();
  initialize_network(net, 1);  
  vol_t** input = (vol_t**)malloc(sizeof(vol_t*)*NUM_PASSES);
  label_t* labels = (label_t*)malloc(sizeof(label_t)*NUM_PASSES);
  load_gtsrb_data(input, labels, NUM_PASSES);

  int valid = 0;
  
  if (!strcmp(argv[1], "inference")) {
    net_predict_Multiple(net, input, NUM_PASSES);
    valid = 1;
  }
  
  if (!strcmp(argv[1], "test")){
    net_test(net, input, labels, NUM_PASSES);
    valid = 1;
  }

#ifdef DEBUGG
  print_vol(net->buffer[4][0],0);
#endif

  free_network(net);
  for(int i = 0; i < NUM_PASSES; i++)
    free(input[i]);
  free(input);
  free(labels);

  if(valid) return 0;

  fprintf(stderr,"unrecognised command\n");
  return 2;
}
Exemple #20
0
void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
{
    image **alphabet = load_alphabet();
    network *net = load_network(cfgfile, weightfile, 0);
    layer l = net->layers[net->n-1];
    set_batch_network(net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    float nms=.4;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net->w, net->h);
        float *X = sized.data;
        time=clock();
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));

        int nboxes = 0;
        detection *dets = get_network_boxes(net, 1, 1, thresh, 0, 0, 0, &nboxes);
        if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);

        draw_detections(im, dets, l.side*l.side*l.n, thresh, voc_names, alphabet, 20);
        save_image(im, "predictions");
        show_image(im, "predictions", 0);
        free_detections(dets, nboxes);
        free_image(im);
        free_image(sized);
        if (filename) break;
    }
    free_network(net);
}
Exemple #21
0
void demo_segmenter(char *datacfg, char *cfg, char *weights, int cam_index, const char *filename)
{
#ifdef OPENCV
    printf("Classifier Demo\n");
    network *net = load_network(cfg, weights, 0);
    set_batch_network(net, 1);

    srand(2222222);
    void * cap = open_video_stream(filename, cam_index, 0,0,0);

    if(!cap) error("Couldn't connect to webcam.\n");
    float fps = 0;

    while(1){
        struct timeval tval_before, tval_after, tval_result;
        gettimeofday(&tval_before, NULL);

        image in = get_image_from_stream(cap);
        image in_s = letterbox_image(in, net->w, net->h);

        network_predict(net, in_s.data);

        printf("\033[2J");
        printf("\033[1;1H");
        printf("\nFPS:%.0f\n",fps);

        image pred = get_network_image(net);
        image prmask = mask_to_rgb(pred);
        show_image(prmask, "Segmenter", 10);

        free_image(in_s);
        free_image(in);
        free_image(prmask);

        gettimeofday(&tval_after, NULL);
        timersub(&tval_after, &tval_before, &tval_result);
        float curr = 1000000.f/((long int)tval_result.tv_usec);
        fps = .9*fps + .1*curr;
    }
    free_network(net);
#endif
}
Exemple #22
0
void test_dcgan(char *cfgfile, char *weightfile)
{
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);

    clock_t time;
    char buff[256];
    char *input = buff;
    int imlayer = 0;

    imlayer = net->n-1;

    while(1){
        image im = make_image(net->w, net->h, net->c);
        int i;
        for(i = 0; i < im.w*im.h*im.c; ++i){
            im.data[i] = rand_normal();
        }
        //float mag = mag_array(im.data, im.w*im.h*im.c);
        //scale_array(im.data, im.w*im.h*im.c, 1./mag);

        float *X = im.data;
        time=clock();
        network_predict(net, X);
        image out = get_network_image_layer(net, imlayer);
        //yuv_to_rgb(out);
        normalize_image(out);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        save_image(out, "out");
        show_image(out, "out", 0);

        free_image(im);
    }
    free_network(net);
}
Exemple #23
0
void train_compare(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    char *backup_directory = "/home/pjreddie/backup/";
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1024;
    list *plist = get_paths("data/compare.train.list");
    char **paths = (char **)list_to_array(plist);
    int N = plist->size;
    printf("%d\n", N);
    clock_t time;
#ifndef _MSC_VER
    pthread_t load_thread;
#endif
    data train;
    data buffer;

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.classes = 20;
    args.n = imgs;
    args.m = N;
    args.d = &buffer;
    args.type = COMPARE_DATA;
#ifndef _MSC_VER
    load_thread = load_data_in_thread(args);
#endif
    int epoch = *net.seen/N;
    int i = 0;
    while(1){
        ++i;
        time=clock();
#ifndef _MSC_VER
        pthread_join(load_thread, 0);
#else
        load_data_in_thread(args);
#endif
        train = buffer;

#ifndef _MSC_VER
        load_thread = load_data_in_thread(args);
#endif
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%.3f: %f, %f avg, %lf seconds, %d images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
        free_data(train);
        if(i%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s_%d_minor_%d.weights",backup_directory,base, epoch, i);
            save_weights(net, buff);
        }
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            i = 0;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
            if(epoch%22 == 0) net.learning_rate *= .1;
        }
    }
#ifndef _MSC_VER
    pthread_join(load_thread, 0);
#endif
    free_data(buffer);
    free_network(net);
    free_ptrs((void**)paths, plist->size);
    free_list(plist);
    free(base);
}
Exemple #24
0
void free_state(struct State *S)
{
        free_network(&S->ntw);
        free_simulation(&S->sim);
}
Exemple #25
0
void validate_yolo(char *cfg, char *weights)
{
    network *net = load_network(cfg, weights, 0);
    set_batch_network(net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
    //list *plist = get_paths("data/voc.2012.test");
    char **paths = (char **)list_to_array(plist);

    layer l = net->layers[net->n-1];
    int classes = l.classes;

    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .001;
    int nms = 1;
    float iou_thresh = .5;

    int nthreads = 8;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));

    load_args args = {0};
    args.w = net->w;
    args.h = net->h;
    args.type = IMAGE_DATA;

    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            int nboxes = 0;
            detection *dets = get_network_boxes(net, w, h, thresh, 0, 0, 0, &nboxes);
            if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
            print_yolo_detections(fps, id, l.side*l.side*l.n, classes, w, h, dets);
            free_detections(dets, nboxes);
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
    free_network( net );
}
Exemple #26
0
void train_yolo(char *cfgfile, char *weightfile)
{
    char *train_images = "/data/voc/train.txt";
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network * net = load_network(cfgfile, weightfile, 0);
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    int imgs = net->batch*net->subdivisions;
    int i = *net->seen/imgs;
    data train, buffer;


    layer l = net->layers[net->n - 1];

    int side = l.side;
    int classes = l.classes;
    float jitter = l.jitter;

    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = {0};
    args.w = net->w;
    args.h = net->h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = side;
    args.d = &buffer;
    args.type = REGION_DATA;

    args.angle = net->angle;
    args.exposure = net->exposure;
    args.saturation = net->saturation;
    args.hue = net->hue;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net->max_batches){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
    free_network( net );
}
Exemple #27
0
void validate_yolo_recall(char *cfg, char *weights)
{
    network *net = load_network(cfg, weights, 0);
    set_batch_network(net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    list *plist = get_paths("data/voc.2007.test");
    char **paths = (char **)list_to_array(plist);

    layer l = net->layers[net->n-1];
    int classes = l.classes;
    int side = l.side;

    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }

    int m = plist->size;
    int i=0;

    float thresh = .001;
    float iou_thresh = .5;
    float nms = 0;

    int total = 0;
    int correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net->w, net->h);
        char *id = basecfg(path);
        network_predict(net, sized.data);

        int nboxes = 0;
        detection *dets = get_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, &nboxes);
        if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);

        char labelpath[4096];
        find_replace(path, "images", "labels", labelpath);
        find_replace(labelpath, "JPEGImages", "labels", labelpath);
        find_replace(labelpath, ".jpg", ".txt", labelpath);
        find_replace(labelpath, ".JPEG", ".txt", labelpath);

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            if(dets[k].objectness > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(dets[k].bbox, t);
                if(dets[k].objectness > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
        free_detections(dets, nboxes);
        free(id);
        free_image(orig);
        free_image(sized);
    }
    free_network( net );
}
Exemple #28
0
void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
    int i;

    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    printf("%d\n", ngpus);
    network **nets = calloc(ngpus, sizeof(network*));

    srand(time(0));
    int seed = rand();
    for(i = 0; i < ngpus; ++i){
        srand(seed);
#ifdef GPU
        cuda_set_device(gpus[i]);
#endif
        nets[i] = load_network(cfgfile, weightfile, clear);
        nets[i]->learning_rate *= ngpus;
    }
    srand(time(0));
    network *net = nets[0];

    int imgs = net->batch * net->subdivisions * ngpus;

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    list *options = read_data_cfg(datacfg);

    char *backup_directory = option_find_str(options, "backup", "/backup/");
    char *train_list = option_find_str(options, "train", "data/train.list");
    int classes = option_find_int(options, "classes", 1);

    list *plist = get_paths(train_list);
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    int N = plist->size;
    clock_t time;

    load_args args = {0};
    args.w = net->w;
    args.h = net->h;
    args.threads = 32;
    args.classes = classes;

    args.min = net->min_ratio*net->w;
    args.max = net->max_ratio*net->w;
    args.angle = net->angle;
    args.aspect = net->aspect;
    args.exposure = net->exposure;
    args.saturation = net->saturation;
    args.hue = net->hue;
    args.size = net->w;

    args.paths = paths;
    args.n = imgs;
    args.m = N;
    args.type = REGRESSION_DATA;

    data train;
    data buffer;
    pthread_t load_thread;
    args.d = &buffer;
    load_thread = load_data(args);

    int epoch = (*net->seen)/N;
    while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
        time=clock();

        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();

        float loss = 0;
#ifdef GPU
        if(ngpus == 1){
            loss = train_network(net, train);
        } else {
            loss = train_networks(nets, ngpus, train, 4);
        }
#else
        loss = train_network(net, train);
#endif
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
        free_data(train);
        if(*net->seen/N > epoch){
            epoch = *net->seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    for(i = 0; i < ngpus; ++i){
      free_network(nets[i]);
    }
    free(nets);
    free_ptrs((void**)paths, plist->size);
    free_list(plist);
    free(base);
}
Exemple #29
0
/* Function to be called from R */
void R_epidemics(int *seqLength, double *mutRate, int *npop, int *nHostPerPop, double *beta, int *nStart, int *t1, int *t2, int *Nsample, int *Tsample, int *duration, int *nbnb, int *listnb, double *pdisp){
	int i, nstep, counter_sample = 0, tabidx;

	/* Initialize random number generator */
	int j;
	time_t t;
	t = time(NULL); // time in seconds, used to change the seed of the random generator
	gsl_rng * rng;
	const gsl_rng_type *typ;
	gsl_rng_env_setup();
	typ=gsl_rng_default;
	rng=gsl_rng_alloc(typ);
	gsl_rng_set(rng,t); // changes the seed of the random generator


	/* transfer simulation parameters */
	struct param * par;
	par = (struct param *) malloc(sizeof(struct param));
	par->L = *seqLength;
	par->mu = *mutRate;
	par->muL = par->mu * par->L;
	par->rng = rng;
	par->npop = *npop;
	par->popsizes = nHostPerPop;
	par->beta = *beta;
	par->nstart = *nStart;
	par->t1 = *t1;
	par->t2 = *t2;
	par->t_sample = Tsample;
	par->n_sample = *Nsample;
	par->duration = *duration;
	par->cn_nb_nb = nbnb;
	par->cn_list_nb = listnb;
	par->cn_weights = pdisp;

	/* check/print parameters */
	check_param(par);
	print_param(par);

	/* dispersal matrix */
	struct network *cn = create_network(par);
	/* print_network(cn, TRUE); */

	/* group sizes */
	struct ts_groupsizes * grpsizes = create_ts_groupsizes(par);

	/* initiate population */
	struct metapopulation * metapop;
	metapop = create_metapopulation(par);

	/* get sampling schemes (timestep+effectives) */
	translate_dates(par);
	struct table_int *tabdates = get_table_int(par->t_sample, par->n_sample);
	printf("\n\nsampling at timesteps:");
	print_table_int(tabdates);

	/* create sample */
	struct sample ** samplist = (struct sample **) malloc(tabdates->n * sizeof(struct sample *));
	struct sample *samp;


	/* MAKE METAPOPULATION EVOLVE */
	nstep = 0;
	while(get_total_nsus(metapop)>0 && (get_total_ninf(metapop)+get_total_nexp(metapop))>0 && nstep<par->duration){
		nstep++;

		/* age metapopulation */
		age_metapopulation(metapop, par);

		/* process infections */
		for(j=0;j<get_npop(metapop);j++){
			process_infections(get_populations(metapop)[j], metapop, cn, par);
		}

		/* draw samples */
		if((tabidx = int_in_vec(nstep, tabdates->items, tabdates->n)) > -1){ /* TRUE if step must be sampled */
			samplist[counter_sample++] = draw_sample(metapop, tabdates->times[tabidx], par);
		}

		fill_ts_groupsizes(grpsizes, metapop, nstep);

	}

	/* we stopped after 'nstep' steps */
	if(nstep < par->duration){
		printf("\nEpidemics ended at time %d, before last sampling time (%d).\n", nstep, par->duration);
	} else {

		/* printf("\n\n-- FINAL METAPOPULATION --"); */
		/* print_metapopulation(metapop, FALSE); */

		/* merge samples */
		samp = merge_samples(samplist, tabdates->n, par);

		/* write sample to file */
		printf("\n\nWriting sample to file 'out-sample.txt'\n");
		write_sample(samp);

		/* free memory */
		free_sample(samp);

	}

	/* write group sizes to file */
	printf("\n\nPrinting group sizes to file 'out-popsize.txt'\n");
	write_ts_groupsizes(grpsizes);


	/* free memory */
	free_metapopulation(metapop);
	free_param(par);
	for(i=0;i<counter_sample;i++) free_sample(samplist[i]);
	free(samplist);
	free_table_int(tabdates);
	free_network(cn);
	free_ts_groupsizes(grpsizes);
}
Exemple #30
0
/* all-in-one function testing epidemics growth, summary statistics, etc. */
void test_epidemics(int seqLength, double mutRate, int npop, int *nHostPerPop, double beta, int nStart, int t1, int t2, int Nsample, int *Tsample, int duration, int *nbnb, int *listnb, double *pdisp){
	int i, j, nstep=0, tabidx, counter_sample = 0;

	/* Initialize random number generator */
	time_t t;
	t = time(NULL); // time in seconds, used to change the seed of the random generator
	gsl_rng * rng;
	const gsl_rng_type *typ;
	gsl_rng_env_setup();
	typ=gsl_rng_default;
	rng=gsl_rng_alloc(typ);
	gsl_rng_set(rng,t); // changes the seed of the random generator


	/* transfer simulation parameters */
	struct param * par;
	par = (struct param *) malloc(sizeof(struct param));
	par->L = seqLength;
	par->mu = mutRate;
	par->muL = par->mu * par->L;
	par->rng = rng;
	par->npop = npop;
	par->npop = npop;
	par->popsizes = nHostPerPop;
	par->beta = beta;
	par->nstart = nStart;
	par->t1 = t1;
	par->t2 = t2;
	par->t_sample = Tsample;
	par->n_sample = Nsample;
	par->duration = duration;
	par->cn_nb_nb = nbnb;
	par->cn_list_nb = listnb;
	par->cn_weights = pdisp;

	/* check/print parameters */
	check_param(par);
	print_param(par);

	/* dispersal matrix */
	struct network *cn = create_network(par);

	/* group sizes */
	struct ts_groupsizes * grpsizes = create_ts_groupsizes(par);


	/* initiate population */
	struct metapopulation * metapop;
	metapop = create_metapopulation(par);


	/* get sampling schemes (timestep+effectives) */
	translate_dates(par);
	struct table_int *tabdates = get_table_int(par->t_sample, par->n_sample);
	printf("\n\nsampling at timesteps:");
	print_table_int(tabdates);

	/* create sample */
	struct sample ** samplist = (struct sample **) malloc(tabdates->n * sizeof(struct sample *));
	struct sample *samp;


	/* MAKE METAPOPULATION EVOLVE */
	nstep = 0;
	while(get_total_nsus(metapop)>0 && (get_total_ninf(metapop)+get_total_nexp(metapop))>0 && nstep<par->duration){
		nstep++;

		/* age metapopulation */
		age_metapopulation(metapop, par);

		/* process infections */
		for(j=0;j<get_npop(metapop);j++){
			process_infections(get_populations(metapop)[j], metapop, cn, par);
		}

		/* draw samples */
		if((tabidx = int_in_vec(nstep, tabdates->items, tabdates->n)) > -1){ /* TRUE if step must be sampled */
			samplist[counter_sample++] = draw_sample(metapop, tabdates->times[tabidx], par);
		}

		fill_ts_groupsizes(grpsizes, metapop, nstep);

	}


	/* we stopped after 'nstep' steps */
	if(nstep < par->duration){
		printf("\nEpidemics ended at time %d, before last sampling time (%d).\n", nstep, par->duration);
	} else {

		printf("\n\n-- FINAL METAPOPULATION --");
		print_metapopulation(metapop, TRUE);

		/* test samples */
		for(i=0;i<tabdates->n;i++) {
			printf("\nsample %d\n", i);
			print_sample(samplist[i], TRUE);
		}
		samp = merge_samples(samplist, tabdates->n, par) ;
		print_sample(samp, TRUE);

		/* test allele listing */
		struct snplist *snpbilan;
		snpbilan = list_snps(samp, par);
		print_snplist(snpbilan);

		/* test allele frequencies */
		struct allfreq *freq;
		freq = get_frequencies(samp, par);
		print_allfreq(freq);

		/* test Hs*/
		double Hs = hs(samp,par);
		printf("\nHs = %0.3f\n", Hs);

		/* test Hs full genome */
		Hs = hs_full_genome(samp,par);
		printf("\nHs (full genome) = %0.5f\n", Hs);

		/* test nb of snps */
		int nball = nb_snps(samp,par);
		printf("\nnumber of SNPs = %d\n", nball);

		/* test mean nb of snps */
		double temp = mean_nb_snps(samp);
		printf("\nmean number of SNPs = %.2f\n", temp);

		/* test var nb of snps */
		temp = var_nb_snps(samp);
		printf("\nvariance of number of alleles = %.2f\n", temp);

		/* test pairwise distances */
		struct distmat_int *mat = pairwise_dist(samp, par);
		print_distmat_int(mat);

		/* test mean pairwise distances */
		temp = mean_pairwise_dist(samp,par);
		printf("\nmean pairwise distance: %.2f", temp);

		/* test variance of pairwise distances */
		temp = var_pairwise_dist(samp,par);
		printf("\nvar pairwise distance: %.2f", temp);

		/* test Fst */
		temp = fst(samp,par);
		printf("\nfst: %.2f", temp);


		printf("\n\n");

		/* free memory */
		free_sample(samp);
		free_snplist(snpbilan);
		free_allfreq(freq);
		free_distmat_int(mat);

	}

	/* write group sizes to file */
	printf("\n\nPrinting group sizes to file 'out-popsize.txt'");
	write_ts_groupsizes(grpsizes);

	/* free memory */
	free_metapopulation(metapop);
	free_param(par);
	for(i=0;i<counter_sample;i++) free_sample(samplist[i]);
	free(samplist);
	free_table_int(tabdates);
	free_network(cn);
	free_ts_groupsizes(grpsizes);
}