Exemple #1
0
SolutionsError::SolutionsError(const tinyxml2::XMLDocument& solutions_error_document)
 : PerformanceTerm(solutions_error_document)
{
   set_default();

   from_XML(solutions_error_document);
}
NeuralParametersNorm::NeuralParametersNorm(const tinyxml2::XMLDocument& neural_parameters_norm_document)
 : PerformanceTerm()
{
   set_default();

   from_XML(neural_parameters_norm_document);
}
OutputsIntegrals::OutputsIntegrals(const tinyxml2::XMLDocument& outputs_integrals_document)
 : PerformanceTerm(outputs_integrals_document)
{
   set_default();

   from_XML(outputs_integrals_document);
}
NeuralParametersNorm::NeuralParametersNorm(TiXmlElement* neural_parameters_norm_element) 
 : PerformanceTerm()
{
   set_default();

   from_XML(neural_parameters_norm_element);
}
void MathematicalModel::load(const std::string& filename)
{
   std::ostringstream buffer;

   TiXmlDocument document(filename.c_str());

   if(!document.LoadFile())
   {
      buffer << "OpenNN Exception: MathematicalModel class.\n"
             << "void load(const std::string&) method.\n"
             << "Cannot load XML file " << filename << ".\n";

      throw std::logic_error(buffer.str());
   }

   // Mathematical model element
  
   TiXmlElement* mathematical_model_element = document.FirstChildElement();

   if(!mathematical_model_element)
   {
      buffer << "OpenNN Exception: MathematicalModel class.\n"
             << "void load(const std::string&) method.\n"
             << "File " << filename << " is not a valid mathematical model file.\n";

      throw std::logic_error(buffer.str());
   }

   from_XML(mathematical_model_element);
}
OutputsIntegrals::OutputsIntegrals(TiXmlElement* outputs_integrals_element) 
 : PerformanceTerm(outputs_integrals_element)
{
   set_default();

   from_XML(outputs_integrals_element);
}
Exemple #7
0
MinkowskiError::MinkowskiError(const tinyxml2::XMLDocument& mean_squared_error_document)
 : ErrorTerm(mean_squared_error_document)
{
   set_default();

   from_XML(mean_squared_error_document);
}
NeuralParametersNorm::NeuralParametersNorm(const tinyxml2::XMLDocument& neural_parameters_norm_document)
 : RegularizationTerm()
{
   set_default();

   from_XML(neural_parameters_norm_document);
}
MinkowskiError::MinkowskiError(TiXmlElement* mean_squared_error_element)
 : PerformanceTerm(mean_squared_error_element)
{
   set_default();

   from_XML(mean_squared_error_element);
}
TimeSeriesPredictionTesting::TimeSeriesPredictionTesting(TiXmlElement* time_series_prediction_testing_element)
 : neural_network_pointer(NULL),
   data_set_pointer(NULL)
{
   set_default();

   from_XML(time_series_prediction_testing_element);
}
RegularizationTerm::RegularizationTerm(const tinyxml2::XMLDocument& performance_term_document)
    : neural_network_pointer(NULL),
      numerical_differentiation_pointer(NULL)
{
    set_default();

    from_XML(performance_term_document);
}
TestingAnalysis::TestingAnalysis(const tinyxml2::XMLDocument& testing_analysis_document)
 : neural_network_pointer(NULL),
   data_set_pointer(NULL),
   mathematical_model_pointer(NULL)
{
   set_default();

   from_XML(testing_analysis_document);
}
InverseProblemTesting::InverseProblemTesting(TiXmlElement* inverse_problem_testing_element)
 : neural_network_pointer(NULL),
   data_set_pointer(NULL),
   mathematical_model_pointer(NULL)
{
   set_default();

   from_XML(inverse_problem_testing_element);
}
TestingAnalysis::TestingAnalysis(TiXmlElement* testing_analysis_element)
 : neural_network_pointer(NULL),
   data_set_pointer(NULL),
   mathematical_model_pointer(NULL),
   function_regression_testing_pointer(NULL),
   pattern_recognition_testing_pointer(NULL),
   time_series_prediction_testing_pointer(NULL),
   inverse_problem_testing_pointer(NULL)
{
   set_default();

   from_XML(testing_analysis_element);
}
void KappaCoefficientOptimizationThreshold::load(const std::string& file_name)
{
   set_default();

   tinyxml2::XMLDocument document;

   if(document.LoadFile(file_name.c_str()))
   {
      std::ostringstream buffer;

      buffer << "OpenNN Exception: KappaCoefficientOptimizationThreshold class.\n"
             << "void load(const std::string&) method.\n"
             << "Cannot load XML file " << file_name << ".\n";

      throw std::logic_error(buffer.str());
   }

   from_XML(document);
}
void SimulatedAnnealingOrder::load(const std::string& file_name)
{
   set_default();

   tinyxml2::XMLDocument document;

   if(document.LoadFile(file_name.c_str()))
   {
      std::ostringstream buffer;

      buffer << "OpenNN Exception: SimulatedAnnealingOrder class.\n"
             << "void load(const std::string&) method.\n"
             << "Cannot load XML file " << file_name << ".\n";

      throw std::logic_error(buffer.str());
   }

   from_XML(document);
}
void InstancesInformation::set(TiXmlElement* instances_information_element)
{
   set();
   from_XML(instances_information_element);
}
KappaCoefficientOptimizationThreshold::KappaCoefficientOptimizationThreshold(const tinyxml2::XMLDocument& kappa_coefficient_optimization_document)
    : ThresholdSelectionAlgorithm(kappa_coefficient_optimization_document)
{
    from_XML(kappa_coefficient_optimization_document);
}
TrainingAlgorithm::TrainingAlgorithm(const tinyxml2::XMLDocument& document)
 : performance_functional_pointer(NULL)
{ 
   from_XML(document);
}
TrainingAlgorithm::TrainingAlgorithm(const tinyxml2::XMLDocument& document)
 : loss_index_pointer(NULL)
{ 
   from_XML(document);
}
Exemple #21
0
void BoundingLayer::set(const tinyxml2::XMLDocument& bounding_layer_document)
{
    set_default();

   from_XML(bounding_layer_document);
}
MathematicalModel::MathematicalModel(TiXmlElement* mathematical_model_element)
{                
   set_default();

   from_XML(mathematical_model_element);   
}
void BoundingLayer::set(TiXmlElement* bounding_layer_element)
{
   from_XML(bounding_layer_element);
}
IncrementalOrder::IncrementalOrder(const tinyxml2::XMLDocument& incremental_order_document)
    : OrderSelectionAlgorithm(incremental_order_document)
{
    from_XML(incremental_order_document);
}
Exemple #25
0
Outputs::Outputs(const tinyxml2::XMLDocument& outputs_document)
{
   from_XML(outputs_document);
}
Exemple #26
0
void MissingValues::set(const tinyxml2::XMLDocument& document)
{
    set();

    from_XML(document);
}
Exemple #27
0
GrowingInputs::GrowingInputs(const tinyxml2::XMLDocument& genetic_algorithm_document)
    : InputsSelectionAlgorithm(genetic_algorithm_document)
{
    from_XML(genetic_algorithm_document);
}
void ScalingLayer::set(const tinyxml2::XMLDocument& new_scaling_layer_document)
{
    set_default();

   from_XML(new_scaling_layer_document);
}
SimulatedAnnealingOrder::SimulatedAnnealingOrder(const tinyxml2::XMLDocument& simulated_annealing_order_document)
    : OrderSelectionAlgorithm(simulated_annealing_order_document)
{
    from_XML(simulated_annealing_order_document);
}
GoldenSectionOrder::GoldenSectionOrder(const tinyxml2::XMLDocument& golden_section_order_document)
    : OrderSelectionAlgorithm(golden_section_order_document)
{
    from_XML(golden_section_order_document);
}