static void handle_req_invalidate (FRV_CACHE *cache, int pipe, FRV_CACHE_REQUEST *req) { FRV_CACHE_PIPELINE *pipeline = & cache->pipeline[pipe]; SI address = req->address; SI interfere_address = req->u.invalidate.all ? -1 : address; /* If this address interferes with an existing request, then requeue it. */ if (address_interference (cache, interfere_address, req, pipe)) { pipeline_requeue_request (pipeline); return; } /* Invalidate the cache line now. This function already checks for non-cache access. */ if (req->u.invalidate.all) frv_cache_invalidate_all (cache, req->u.invalidate.flush); else frv_cache_invalidate (cache, address, req->u.invalidate.flush); if (req->u.invalidate.flush) { pipeline->status.flush.reqno = req->reqno; pipeline->status.flush.address = address; pipeline->status.flush.valid = 1; } }
/* * This function will allocate the requested contiguous pages and * map them into the kernel's vmalloc() space. This is done so we * get unique mapping for these pages, outside of the kernel's 1:1 * virtual:physical mapping. This is necessary so we can cover large * portions of the kernel with single large page TLB entries, and * still get unique uncached pages for consistent DMA. */ void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle) { struct vm_struct *area; unsigned long page, va, pa; void *ret; int order, err, i; if (in_interrupt()) BUG(); /* only allocate page size areas */ size = PAGE_ALIGN(size); order = get_order(size); page = __get_free_pages(gfp, order); if (!page) { BUG(); return NULL; } /* allocate some common virtual space to map the new pages */ area = get_vm_area(size, VM_ALLOC); if (area == 0) { free_pages(page, order); return NULL; } va = VMALLOC_VMADDR(area->addr); ret = (void *) va; /* this gives us the real physical address of the first page */ *dma_handle = pa = virt_to_bus((void *) page); /* set refcount=1 on all pages in an order>0 allocation so that vfree() will actually free * all pages that were allocated. */ if (order > 0) { struct page *rpage = virt_to_page(page); for (i = 1; i < (1 << order); i++) set_page_count(rpage + i, 1); } err = 0; for (i = 0; i < size && err == 0; i += PAGE_SIZE) err = map_page(va + i, pa + i, PAGE_KERNEL_NOCACHE); if (err) { vfree((void *) va); return NULL; } /* we need to ensure that there are no cachelines in use, or worse dirty in this area * - can't do until after virtual address mappings are created */ frv_cache_invalidate(va, va + size); return ret; }
/* * make an area consistent. */ void consistent_sync(void *vaddr, size_t size, int direction) { unsigned long start = (unsigned long) vaddr; unsigned long end = start + size; switch (direction) { case PCI_DMA_NONE: BUG(); case PCI_DMA_FROMDEVICE: /* invalidate only */ frv_cache_invalidate(start, end); break; case PCI_DMA_TODEVICE: /* writeback only */ frv_dcache_writeback(start, end); break; case PCI_DMA_BIDIRECTIONAL: /* writeback and invalidate */ frv_dcache_writeback(start, end); break; } }
void frvbf_check_recovering_store ( SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float ) { FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); int reg_ix; CPU_RSTR_INVALIDATE(current_cpu) = 0; for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); reg_ix != NO_NESR; reg_ix = next_valid_nesr (current_cpu, reg_ix)) { if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix)) { SI nesr = GET_NESR (reg_ix); int nesr_drn = GET_NESR_DRN (nesr); BI nesr_fr = GET_NESR_FR (nesr); SI remain; /* Invalidate cache block containing this address. If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { CPU_RSTR_INVALIDATE(current_cpu) = 1; CPU_LOAD_ADDRESS (current_cpu) = address; } else frv_cache_invalidate (cache, address, 1/* flush */); /* Copy the stored value to the register indicated by NESR.DRN. */ for (remain = size; remain > 0; remain -= 4) { SI value; if (is_float) value = GET_H_FR (regno); else value = GET_H_GR (regno); switch (size) { case 1: value &= 0xff; break; case 2: value &= 0xffff; break; default: break; } if (nesr_fr) sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn, value); else sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn, value); nesr_drn++; regno++; } break; /* Only consider the first matching register. */ } } /* loop over active neear registers. */ }