Exemple #1
0
pullTask *
_pullTaskNew(pullContext *pctx, int threadIdx) {
  char me[]="_pullTaskNew", err[BIFF_STRLEN];
  pullTask *task;
  unsigned int ii, offset;

  task = (pullTask *)calloc(1, sizeof(pullTask));
  if (!task) {
    sprintf(err, "%s: couldn't allocate task", me);
    biffAdd(PULL, err); return NULL;
  }    

  task->pctx = pctx;
  for (ii=0; ii<pctx->volNum; ii++) {
    if (!(task->vol[ii] = _pullVolumeCopy(pctx->vol[ii]))) {
      sprintf(err, "%s: trouble copying vol %u/%u", me, ii, pctx->volNum);
      biffAdd(PULL, err); return NULL;
    }
  }
  if (0) {
    gagePerVolume *pvl;
    const double *ans;
    double pos[3];
    int gret;
    for (ii=0; ii<pctx->volNum; ii++) {
      pvl = task->vol[ii]->gctx->pvl[0];
      fprintf(stderr, "!%s: vol[%u] query:\n", me, ii);
      gageQueryPrint(stderr, pvl->kind, pvl->query);
      ans = gageAnswerPointer(task->vol[ii]->gctx, pvl, gageSclValue);
      ELL_3V_SET(pos, 0.6, 0.6, 0.3);
      gret = gageProbeSpace(task->vol[ii]->gctx, pos[0], pos[1], pos[2],
                            AIR_FALSE, AIR_TRUE);
      fprintf(stderr, "!%s: (%d) val(%g,%g,%g) = %g\n", me, gret,
              pos[0], pos[1], pos[2], *ans);
      ELL_3V_SET(pos, 0.5, 0.0, 0.0);
      gret = gageProbeSpace(task->vol[ii]->gctx, pos[0], pos[1], pos[2],
                            AIR_FALSE, AIR_TRUE);
      fprintf(stderr, "!%s: (%d) val(%g,%g,%g) = %g\n", me, gret,
              pos[0], pos[1], pos[2], *ans);
    }
  }
  offset = 0;
  for (ii=0; ii<=PULL_INFO_MAX; ii++) {
    unsigned int volIdx;
    if (pctx->ispec[ii]) {
      volIdx = pctx->ispec[ii]->volIdx;
      task->ans[ii] = gageAnswerPointer(task->vol[volIdx]->gctx,
                                        task->vol[volIdx]->gpvl,
                                        pctx->ispec[ii]->item);
      fprintf(stderr, "!%s: task->ans[%u] = %p\n", me, ii, task->ans[ii]);
    } else {
      task->ans[ii] = NULL;
    }
  }
  if (pctx->threadNum > 1) {
    task->thread = airThreadNew();
  }
  task->threadIdx = threadIdx;
  task->rng = airRandMTStateNew(pctx->rngSeed + threadIdx);
  task->pointBuffer = pullPointNew(pctx);
  pctx->idtagNext = 0; /* because pullPointNew incremented it */
  task->neighPoint = AIR_CAST(pullPoint **, calloc(_PULL_NEIGH_MAXNUM,
                                                   sizeof(pullPoint*)));
  task->returnPtr = NULL;
  task->stuckNum = 0;
  return task;
}
Exemple #2
0
int
main(int argc, const char **argv) {
  const char *me;
  Nrrd *nscl;
  double *dscl;
  airArray *mop;
  char *fullname;
  gageContext *igctx[INTERP_KERN_NUM], *bgctx[BLUR_KERN_NUM];
  const NrrdKernel *ikern[INTERP_KERN_NUM] = {
    nrrdKernelBox,
    nrrdKernelTent,
    nrrdKernelBCCubic,
    nrrdKernelCatmullRom,
  };
  double ikparm[INTERP_KERN_NUM][NRRD_KERNEL_PARMS_NUM] = {
    {1.0},
    {1.0},
    {1.0, 0.0, 0.5},
    {AIR_NAN},
  };
  const NrrdKernel *bkern[BLUR_KERN_NUM] = {
    nrrdKernelTent,
    nrrdKernelBSpline3,
    nrrdKernelBSpline5,
    nrrdKernelBCCubic,
    nrrdKernelGaussian,
  };
  const NrrdKernel *bkernD[BLUR_KERN_NUM] = {
    nrrdKernelForwDiff,
    nrrdKernelBSpline3D,
    nrrdKernelBSpline5D,
    nrrdKernelBCCubicD,
    nrrdKernelGaussianD,
  };
  const NrrdKernel *bkernDD[BLUR_KERN_NUM] = {
    nrrdKernelZero,
    nrrdKernelBSpline3DD,
    nrrdKernelBSpline5DD,
    nrrdKernelBCCubicDD,
    nrrdKernelGaussianDD,
  };
  double bkparm[BLUR_KERN_NUM][NRRD_KERNEL_PARMS_NUM] = {
    {1.0},
    {AIR_NAN},
    {AIR_NAN},
    {2.0, 1.0, 0.0},
    {1.2, 5.0},
  };
  const double *ivalAns[INTERP_KERN_NUM], *bvalAns[BLUR_KERN_NUM],
    *bgrdAns[BLUR_KERN_NUM], *bhesAns[BLUR_KERN_NUM];
  int E;
  unsigned int sx, sy, sz, ki;

  AIR_UNUSED(argc);
  me = argv[0];
  mop = airMopNew();

  nscl = nrrdNew();
  airMopAdd(mop, nscl, (airMopper)nrrdNuke, airMopAlways);
  fullname = testDataPathPrefix("fmob-c4h.nrrd");
  airMopAdd(mop, fullname, airFree, airMopAlways);
  if (nrrdLoad(nscl, fullname, NULL)) {
    char *err;
    airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
    fprintf(stderr, "%s: trouble reading data \"%s\":\n%s",
            me, fullname, err);
    airMopError(mop); return 1;
  }
  /* make sure its a double-type volume (assumed below) */
  if (nrrdTypeDouble != nscl->type) {
    fprintf(stderr, "%s: volume type %s != expected type %s\n", me,
            airEnumStr(nrrdType, nscl->type),
            airEnumStr(nrrdType, nrrdTypeDouble));
    airMopError(mop); return 1;
  }
  dscl = AIR_CAST(double *, nscl->data);
  sx = AIR_CAST(unsigned int, nscl->axis[0].size);
  sy = AIR_CAST(unsigned int, nscl->axis[1].size);
  sz = AIR_CAST(unsigned int, nscl->axis[2].size);

  for (ki=0; ki<INTERP_KERN_NUM; ki++) {
    gagePerVolume *gpvl;
    igctx[ki] = gageContextNew();
    airMopAdd(mop, igctx[ki], (airMopper)gageContextNix, airMopAlways);
    gageParmSet(igctx[ki], gageParmRenormalize, AIR_FALSE);
    gageParmSet(igctx[ki], gageParmCheckIntegrals, AIR_TRUE);
    gageParmSet(igctx[ki], gageParmOrientationFromSpacing, AIR_FALSE);
    E = 0;
    if (!E) E |= !(gpvl = gagePerVolumeNew(igctx[ki], nscl, gageKindScl));
    if (!E) E |= gageKernelSet(igctx[ki], gageKernel00,
                               ikern[ki], ikparm[ki]);
    if (!E) E |= gagePerVolumeAttach(igctx[ki], gpvl);
    if (!E) E |= gageQueryItemOn(igctx[ki], gpvl, gageSclValue);
    if (!E) E |= gageUpdate(igctx[ki]);
    if (E) {
      char *err;
      airMopAdd(mop, err = biffGetDone(GAGE), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble %s set-up:\n%s\n", me,
              ikern[ki]->name, err);
      airMopError(mop); return 1;
    }
    ivalAns[ki] = gageAnswerPointer(igctx[ki], gpvl, gageSclValue);
  }

  /* traverse all samples of volume, probing with the interpolating
     kernels, make sure we recover the original values */
  {
    unsigned int xi, yi, zi;
    double pval[INTERP_KERN_NUM], err, rval;
    int pret;
    for (zi=0; zi<sz; zi++) {
      for (yi=0; yi<sy; yi++) {
        for (xi=0; xi<sx; xi++) {
          rval = dscl[xi + sx*(yi + sy*zi)];
          for (ki=0; ki<INTERP_KERN_NUM; ki++) {
            pret = gageProbeSpace(igctx[ki], xi, yi, zi,
                                  AIR_TRUE /* indexSpace */,
                                  AIR_FALSE /* clamp */);
            if (pret) {
              fprintf(stderr, "%s: %s probe error(%d): %s\n", me,
                      ikern[ki]->name, igctx[ki]->errNum, igctx[ki]->errStr);

              airMopError(mop); return 1;
            }
            pval[ki] = *ivalAns[ki];
            err = AIR_ABS(rval - pval[ki]);
            if (err) {
              fprintf(stderr, "%s: interp's [%u,%u,%u] %s probe %f "
                      "!= true %f (err %f)\n", me, xi, yi, zi,
                      ikern[ki]->name, pval[ki], rval, err);
              airMopError(mop); return 1;
            }
          }
        }
      }
    }
  }

  /* set up contexts for non-interpolating (blurring) kernels,
     and their first and second derivatives */
  for (ki=0; ki<BLUR_KERN_NUM; ki++) {
    gagePerVolume *gpvl;
    bgctx[ki] = gageContextNew();
    airMopAdd(mop, bgctx[ki], (airMopper)gageContextNix, airMopAlways);
    gageParmSet(bgctx[ki], gageParmRenormalize, AIR_TRUE);
    gageParmSet(bgctx[ki], gageParmCheckIntegrals, AIR_TRUE);
    gageParmSet(bgctx[ki], gageParmOrientationFromSpacing, AIR_FALSE);
    E = 0;
    if (!E) E |= !(gpvl = gagePerVolumeNew(bgctx[ki], nscl, gageKindScl));
    if (!E) E |= gageKernelSet(bgctx[ki], gageKernel00,
                               bkern[ki], bkparm[ki]);
    if (!E) E |= gageKernelSet(bgctx[ki], gageKernel11,
                               bkernD[ki], bkparm[ki]);
    if (!E) E |= gageKernelSet(bgctx[ki], gageKernel22,
                               bkernDD[ki], bkparm[ki]);
    if (!E) E |= gagePerVolumeAttach(bgctx[ki], gpvl);
    if (!E) E |= gageQueryItemOn(bgctx[ki], gpvl, gageSclValue);
    if (!E) E |= gageQueryItemOn(bgctx[ki], gpvl, gageSclGradVec);
    if (!E) E |= gageQueryItemOn(bgctx[ki], gpvl, gageSclHessian);
    if (!E) E |= gageUpdate(bgctx[ki]);
    if (E) {
      char *err;
      airMopAdd(mop, err = biffGetDone(GAGE), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble %s set-up:\n%s\n", me,
              bkern[ki]->name, err);
      airMopError(mop); return 1;
    }
    fprintf(stderr, "%s radius = %u\n", bkern[ki]->name, bgctx[ki]->radius);
    bvalAns[ki] = gageAnswerPointer(bgctx[ki], gpvl, gageSclValue);
    bgrdAns[ki] = gageAnswerPointer(bgctx[ki], gpvl, gageSclGradVec);
    bhesAns[ki] = gageAnswerPointer(bgctx[ki], gpvl, gageSclHessian);
  }

  {
#define POS_NUM 12
    double xp[POS_NUM], yp[POS_NUM], zp[POS_NUM],
      pos[POS_NUM*POS_NUM*POS_NUM][3], *prbd,
      offs[POS_NUM/2] = {0, 1.22222, 2.444444, 3.777777, 5.88888, 7.55555};
    Nrrd *nprbd, *ncorr;
    unsigned int ii, jj, kk, qlen = 1 + 3 + 9;
    char *corrfn, explain[AIR_STRLEN_LARGE];
    int pret, differ;

    corrfn = testDataPathPrefix("test/probeSclAns.nrrd");
    airMopAdd(mop, corrfn, airFree, airMopAlways);
    ncorr = nrrdNew();
    airMopAdd(mop, ncorr, (airMopper)nrrdNuke, airMopAlways);
    if (nrrdLoad(ncorr, corrfn, NULL)) {
      char *err;
      airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble reading data \"%s\":\n%s",
              me, corrfn, err);
      airMopError(mop); return 1;
    }
    for (ii=0; ii<POS_NUM/2; ii++) {
      xp[ii] = yp[ii] = zp[ii] = offs[ii];
      xp[POS_NUM-1-ii] = AIR_CAST(double, sx)-1.0-offs[ii];
      yp[POS_NUM-1-ii] = AIR_CAST(double, sy)-1.0-offs[ii];
      zp[POS_NUM-1-ii] = AIR_CAST(double, sz)-1.0-offs[ii];
    }
    for (kk=0; kk<POS_NUM; kk++) {
      for (jj=0; jj<POS_NUM; jj++) {
        for (ii=0; ii<POS_NUM; ii++) {
          ELL_3V_SET(pos[ii + POS_NUM*(jj + POS_NUM*kk)],
                     xp[ii], yp[jj], zp[kk]);
        }
      }
    }
    nprbd = nrrdNew();
    airMopAdd(mop, nprbd, (airMopper)nrrdNuke, airMopAlways);
    if (nrrdMaybeAlloc_va(nprbd, nrrdTypeDouble, 3,
                          AIR_CAST(size_t, qlen),
                          AIR_CAST(size_t, BLUR_KERN_NUM),
                          AIR_CAST(size_t, POS_NUM*POS_NUM*POS_NUM))) {
      char *err;
      airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble setting up prbd:\n%s", me, err);
      airMopError(mop); return 1;
    }
    prbd = AIR_CAST(double *, nprbd->data);
    for (ii=0; ii<POS_NUM*POS_NUM*POS_NUM; ii++) {
      for (ki=0; ki<BLUR_KERN_NUM; ki++) {
        pret = gageProbeSpace(bgctx[ki], pos[ii][0], pos[ii][1], pos[ii][2],
                              AIR_TRUE /* indexSpace */,
                              AIR_FALSE /* clamp */);
        if (pret) {
          fprintf(stderr, "%s: %s probe error(%d): %s\n", me,
                  bkern[ki]->name, bgctx[ki]->errNum, bgctx[ki]->errStr);
          airMopError(mop); return 1;
        }
        prbd[0 + qlen*(ki + BLUR_KERN_NUM*(ii))] = bvalAns[ki][0];
        ELL_3V_COPY(prbd + 1 + qlen*(ki + BLUR_KERN_NUM*(ii)), bgrdAns[ki]);
        ELL_9V_COPY(prbd + 4 + qlen*(ki + BLUR_KERN_NUM*(ii)), bhesAns[ki]);
      }
    }
    /* HEY: weirdly, so far its only on Windows (and more than 10 times worse
       on Cygwin) this epsilon needs to be larger than zero, and only for the
       radius 6 Gaussian? */
    if (nrrdCompare(ncorr, nprbd, AIR_FALSE /* onlyData */,
                    8.0e-14 /* epsilon */, &differ, explain)) {
      char *err;
      airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
      fprintf(stderr, "%s: trouble comparing:\n%s", me, err);
      airMopError(mop); return 1;
    }
    if (differ) {
      fprintf(stderr, "%s: probed values not correct: %s\n", me, explain);
      airMopError(mop); return 1;
    } else {
      fprintf(stderr, "all good\n");
    }
  }

  airMopOkay(mop);
  return 0;
}