Exemple #1
0
/**
 * @name uniformly_spaced()
 * Return true if one of the following are true:
 * - All inter-char gaps are the same width
 * - The largest gap is no larger than twice the mean/median of the others
 * - The largest gap is < normalised_max_nonspace
 * **** REMEMBER - WE'RE NOW WORKING WITH A BLN WERD !!!
 */
BOOL8 Tesseract::uniformly_spaced(WERD_RES *word) {
  TBOX box;
  inT16 prev_right = -MAX_INT16;
  inT16 gap;
  inT16 max_gap = -MAX_INT16;
  inT16 max_gap_count = 0;
  STATS gap_stats(0, MAXSPACING);
  BOOL8 result;
  const ROW *row = word->denorm.row();
  float max_non_space;
  float normalised_max_nonspace;
  inT16 i = 0;
  inT16 offset = 0;
  STRING punct_chars = "\"`',.:;";

  for (TBLOB* blob = word->rebuild_word->blobs; blob != NULL;
       blob = blob->next) {
    box = blob->bounding_box();
    if ((prev_right > -MAX_INT16) &&
        (!punct_chars.contains(
             word->best_choice->unichar_string()
                 [offset - word->best_choice->unichar_lengths()[i - 1]]) &&
         !punct_chars.contains(
             word->best_choice->unichar_string()[offset]))) {
      gap = box.left() - prev_right;
      if (gap < max_gap) {
        gap_stats.add(gap, 1);
      } else if (gap == max_gap) {
        max_gap_count++;
      } else {
        if (max_gap_count > 0)
          gap_stats.add(max_gap, max_gap_count);
        max_gap = gap;
        max_gap_count = 1;
      }
    }
    prev_right = box.right();
    offset += word->best_choice->unichar_lengths()[i++];
  }

  max_non_space = (row->space() + 3 * row->kern()) / 4;
  normalised_max_nonspace = max_non_space * kBlnXHeight / row->x_height();

  result = (
      gap_stats.get_total() == 0 ||
      max_gap <= normalised_max_nonspace ||
      (gap_stats.get_total() > 2 && max_gap <= 2 * gap_stats.median()) ||
      (gap_stats.get_total() <= 2 && max_gap <= 2 * gap_stats.mean()));
  #ifndef SECURE_NAMES
  if ((debug_fix_space_level > 1)) {
    if (result) {
      tprintf(
          "ACCEPT SPACING FOR: \"%s\" norm_maxnon = %f max=%d maxcount=%d "
          "total=%d mean=%f median=%f\n",
          word->best_choice->unichar_string().string(), normalised_max_nonspace,
          max_gap, max_gap_count, gap_stats.get_total(), gap_stats.mean(),
          gap_stats.median());
    } else {
      tprintf(
          "REJECT SPACING FOR: \"%s\" norm_maxnon = %f max=%d maxcount=%d "
          "total=%d mean=%f median=%f\n",
          word->best_choice->unichar_string().string(), normalised_max_nonspace,
          max_gap, max_gap_count, gap_stats.get_total(), gap_stats.mean(),
          gap_stats.median());
    }
  }
  #endif

  return result;
}
Exemple #2
0
int32_t row_words2(                  //compute space size
        TO_BLOCK* block,  //block it came from
        TO_ROW* row,      //row to operate on
        int32_t maxwidth,   //max expected space size
        FCOORD rotation,  //for drawing
        bool testing_on  //for debug
) {
  bool prev_valid;              //if decent size
  bool this_valid;              //current blob big enough
  int32_t prev_x;                  //end of prev blob
  int32_t min_width;               //min interesting width
  int32_t valid_count;             //good gaps
  int32_t total_count;             //total gaps
  int32_t cluster_count;           //no of clusters
  int32_t prev_count;              //previous cluster_count
  int32_t gap_index;               //which cluster
  int32_t smooth_factor;           //for smoothing stats
  BLOBNBOX *blob;                //current blob
  float lower, upper;            //clustering parameters
  ICOORD testpt;
  TBOX blob_box;                  //bounding box
                                 //iterator
  BLOBNBOX_IT blob_it = row->blob_list ();
  STATS gap_stats (0, maxwidth);
                                 //gap sizes
  float gaps[BLOCK_STATS_CLUSTERS];
  STATS cluster_stats[BLOCK_STATS_CLUSTERS + 1];
  //clusters

  testpt = ICOORD (textord_test_x, textord_test_y);
  smooth_factor =
    static_cast<int32_t>(block->xheight * textord_wordstats_smooth_factor + 1.5);
  //      if (testing_on)
  //              tprintf("Row smooth factor=%d\n",smooth_factor);
  prev_valid = false;
  prev_x = -INT16_MAX;
  const bool testing_row = false;
                                 //min blob size
  min_width = static_cast<int32_t>(block->pr_space);
  total_count = 0;
  for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) {
    blob = blob_it.data ();
    if (!blob->joined_to_prev ()) {
      blob_box = blob->bounding_box ();
      this_valid = blob_box.width () >= min_width;
      if (this_valid && prev_valid
      && blob_box.left () - prev_x < maxwidth) {
        gap_stats.add (blob_box.left () - prev_x, 1);
      }
      total_count++;             //count possibles
      prev_x = blob_box.right ();
      prev_valid = this_valid;
    }
  }
  valid_count = gap_stats.get_total ();
  if (valid_count < total_count * textord_words_minlarge) {
    gap_stats.clear ();
    prev_x = -INT16_MAX;
    for (blob_it.mark_cycle_pt (); !blob_it.cycled_list ();
    blob_it.forward ()) {
      blob = blob_it.data ();
      if (!blob->joined_to_prev ()) {
        blob_box = blob->bounding_box ();
        if (blob_box.left () - prev_x < maxwidth) {
          gap_stats.add (blob_box.left () - prev_x, 1);
        }
        prev_x = blob_box.right ();
      }
    }
  }
  if (gap_stats.get_total () == 0) {
    row->min_space = 0;          //no evidence
    row->max_nonspace = 0;
    return 0;
  }

  cluster_count = 0;
  lower = block->xheight * words_initial_lower;
  upper = block->xheight * words_initial_upper;
  gap_stats.smooth (smooth_factor);
  do {
    prev_count = cluster_count;
    cluster_count = gap_stats.cluster (lower, upper,
      textord_spacesize_ratioprop,
      BLOCK_STATS_CLUSTERS, cluster_stats);
  }
  while (cluster_count > prev_count && cluster_count < BLOCK_STATS_CLUSTERS);
  if (cluster_count < 1) {
    row->min_space = 0;
    row->max_nonspace = 0;
    return 0;
  }
  for (gap_index = 0; gap_index < cluster_count; gap_index++)
    gaps[gap_index] = cluster_stats[gap_index + 1].ile (0.5);
  //get medians
  if (testing_on) {
    tprintf ("cluster_count=%d:", cluster_count);
    for (gap_index = 0; gap_index < cluster_count; gap_index++)
      tprintf (" %g(%d)", gaps[gap_index],
        cluster_stats[gap_index + 1].get_total ());
    tprintf ("\n");
  }

  //Try to find proportional non-space and space for row.
  for (gap_index = 0; gap_index < cluster_count
    && gaps[gap_index] > block->max_nonspace; gap_index++);
  if (gap_index < cluster_count)
    lower = gaps[gap_index];     //most frequent below
  else {
    if (testing_on)
      tprintf ("No cluster below block threshold!, using default=%g\n",
        block->pr_nonsp);
    lower = block->pr_nonsp;
  }
  for (gap_index = 0; gap_index < cluster_count
    && gaps[gap_index] <= block->max_nonspace; gap_index++);
  if (gap_index < cluster_count)
    upper = gaps[gap_index];     //most frequent above
  else {
    if (testing_on)
      tprintf ("No cluster above block threshold!, using default=%g\n",
        block->pr_space);
    upper = block->pr_space;
  }
  row->min_space =
    static_cast<int32_t>(ceil (upper - (upper - lower) * textord_words_definite_spread));
  row->max_nonspace =
    static_cast<int32_t>(floor (lower + (upper - lower) * textord_words_definite_spread));
  row->space_threshold = (row->max_nonspace + row->min_space) / 2;
  row->space_size = upper;
  row->kern_size = lower;
  if (testing_on) {
    if (testing_row) {
      tprintf ("GAP STATS\n");
      gap_stats.print();
      tprintf ("SPACE stats\n");
      cluster_stats[2].print_summary();
      tprintf ("NONSPACE stats\n");
      cluster_stats[1].print_summary();
    }
    tprintf ("Row at %g has minspace=%d(%g), max_non=%d(%g)\n",
      row->intercept (), row->min_space, upper,
      row->max_nonspace, lower);
  }
  return 1;
}
/*************************************************************************
 * uniformly_spaced()
 * Return true if one of the following are true:
 *    - All inter-char gaps are the same width
 *	- The largest gap is no larger than twice the mean/median of the others
 *	- The largest gap is < 64/5 = 13 and all others are <= 0
 * **** REMEMBER - WE'RE NOW WORKING WITH A BLN WERD !!!
 *************************************************************************/
BOOL8 uniformly_spaced(  //sensible word
                       WERD_RES *word) {
  PBLOB_IT blob_it;
  TBOX box;
  inT16 prev_right = -MAX_INT16;
  inT16 gap;
  inT16 max_gap = -MAX_INT16;
  inT16 max_gap_count = 0;
  STATS gap_stats (0, MAXSPACING);
  BOOL8 result;
  const ROW *row = word->denorm.row ();
  float max_non_space;
  float normalised_max_nonspace;
  inT16 i = 0;
  inT16 offset = 0;
  STRING punct_chars = "\"`',.:;";

  blob_it.set_to_list (word->outword->blob_list ());

  for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) {
    box = blob_it.data ()->bounding_box ();
    if ((prev_right > -MAX_INT16) &&
      (!fixsp_ignore_punct ||
      (!punct_chars.contains (word->best_choice->string ()
                              [offset - word->best_choice->lengths()[i - 1]]) &&
    !punct_chars.contains (word->best_choice->string ()[offset])))) {
      gap = box.left () - prev_right;
      if (gap < max_gap)
        gap_stats.add (gap, 1);
      else if (gap == max_gap)
        max_gap_count++;
      else {
        if (max_gap_count > 0)
          gap_stats.add (max_gap, max_gap_count);
        max_gap = gap;
        max_gap_count = 1;
      }
    }
    prev_right = box.right ();
    offset += word->best_choice->lengths()[i++];
  }

  max_non_space = (row->space () + 3 * row->kern ()) / 4;
  normalised_max_nonspace = max_non_space * bln_x_height / row->x_height ();

  result = ((gap_stats.get_total () == 0) ||
    (max_gap <= normalised_max_nonspace) ||
    ((gap_stats.get_total () > 2) &&
    (max_gap <= 2 * gap_stats.median ())) ||
    ((gap_stats.get_total () <= 2) &&
    (max_gap <= 2 * gap_stats.mean ())));
  #ifndef SECURE_NAMES
  if ((debug_fix_space_level > 1)) {
    if (result)
      tprintf
        ("ACCEPT SPACING FOR: \"%s\" norm_maxnon = %f max=%d maxcount=%d total=%d mean=%f median=%f\n",
        word->best_choice->string ().string (), normalised_max_nonspace,
        max_gap, max_gap_count, gap_stats.get_total (), gap_stats.mean (),
        gap_stats.median ());
    else
      tprintf
        ("REJECT SPACING FOR: \"%s\" norm_maxnon = %f max=%d maxcount=%d total=%d mean=%f median=%f\n",
        word->best_choice->string ().string (), normalised_max_nonspace,
        max_gap, max_gap_count, gap_stats.get_total (), gap_stats.mean (),
        gap_stats.median ());
  }
  #endif

  return result;
}
Exemple #4
0
int32_t row_words(                  //compute space size
        TO_BLOCK* block,  //block it came from
        TO_ROW* row,      //row to operate on
        int32_t maxwidth,   //max expected space size
        FCOORD rotation,  //for drawing
        bool testing_on  //for debug
) {
  bool testing_row;             //contains testpt
  bool prev_valid;              //if decent size
  int32_t prev_x;                //end of prev blob
  int32_t cluster_count;         //no of clusters
  int32_t gap_index;             //which cluster
  int32_t smooth_factor;         //for smoothing stats
  BLOBNBOX *blob;                //current blob
  float lower, upper;            //clustering parameters
  float gaps[3];                 //gap clusers
  ICOORD testpt;
  TBOX blob_box;                  //bounding box
                                 //iterator
  BLOBNBOX_IT blob_it = row->blob_list ();
  STATS gap_stats (0, maxwidth);
  STATS cluster_stats[4];        //clusters

  testpt = ICOORD (textord_test_x, textord_test_y);
  smooth_factor =
    static_cast<int32_t>(block->xheight * textord_wordstats_smooth_factor + 1.5);
  //      if (testing_on)
  //              tprintf("Row smooth factor=%d\n",smooth_factor);
  prev_valid = false;
  prev_x = -INT32_MAX;
  testing_row = false;
  for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) {
    blob = blob_it.data ();
    blob_box = blob->bounding_box ();
    if (blob_box.contains (testpt))
      testing_row = true;
    gap_stats.add (blob_box.width (), 1);
  }
  gap_stats.clear ();
  for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) {
    blob = blob_it.data ();
    if (!blob->joined_to_prev ()) {
      blob_box = blob->bounding_box ();
      if (prev_valid && blob_box.left () - prev_x < maxwidth) {
        gap_stats.add (blob_box.left () - prev_x, 1);
      }
      prev_valid = true;
      prev_x = blob_box.right ();
    }
  }
  if (gap_stats.get_total () == 0) {
    row->min_space = 0;          //no evidence
    row->max_nonspace = 0;
    return 0;
  }
  gap_stats.smooth (smooth_factor);
  lower = row->xheight * textord_words_initial_lower;
  upper = row->xheight * textord_words_initial_upper;
  cluster_count = gap_stats.cluster (lower, upper,
    textord_spacesize_ratioprop, 3,
    cluster_stats);
  while (cluster_count < 2 && ceil (lower) < floor (upper)) {
                                 //shrink gap
    upper = (upper * 3 + lower) / 4;
    lower = (lower * 3 + upper) / 4;
    cluster_count = gap_stats.cluster (lower, upper,
      textord_spacesize_ratioprop, 3,
      cluster_stats);
  }
  if (cluster_count < 2) {
    row->min_space = 0;          //no evidence
    row->max_nonspace = 0;
    return 0;
  }
  for (gap_index = 0; gap_index < cluster_count; gap_index++)
    gaps[gap_index] = cluster_stats[gap_index + 1].ile (0.5);
  //get medians
  if (cluster_count > 2) {
    if (testing_on && textord_show_initial_words) {
      tprintf ("Row at %g has 3 sizes of gap:%g,%g,%g\n",
        row->intercept (),
        cluster_stats[1].ile (0.5),
        cluster_stats[2].ile (0.5), cluster_stats[3].ile (0.5));
    }
    lower = gaps[0];
    if (gaps[1] > lower) {
      upper = gaps[1];           //prefer most frequent
      if (upper < block->xheight * textord_words_min_minspace
      && gaps[2] > gaps[1]) {
        upper = gaps[2];
      }
    }
    else if (gaps[2] > lower
      && gaps[2] >= block->xheight * textord_words_min_minspace)
      upper = gaps[2];
    else if (lower >= block->xheight * textord_words_min_minspace) {
      upper = lower;             //not nice
      lower = gaps[1];
      if (testing_on && textord_show_initial_words) {
        tprintf ("Had to switch most common from lower to upper!!\n");
        gap_stats.print();
      }
    }
    else {
      row->min_space = 0;        //no evidence
      row->max_nonspace = 0;
      return 0;
    }
  }
  else {
    if (gaps[1] < gaps[0]) {
      if (testing_on && textord_show_initial_words) {
        tprintf ("Had to switch most common from lower to upper!!\n");
        gap_stats.print();
      }
      lower = gaps[1];
      upper = gaps[0];
    }
    else {
      upper = gaps[1];
      lower = gaps[0];
    }
  }
  if (upper < block->xheight * textord_words_min_minspace) {
    row->min_space = 0;          //no evidence
    row->max_nonspace = 0;
    return 0;
  }
  if (upper * 3 < block->min_space * 2 + block->max_nonspace
  || lower * 3 > block->min_space * 2 + block->max_nonspace) {
    if (testing_on && textord_show_initial_words) {
      tprintf ("Disagreement between block and row at %g!!\n",
        row->intercept ());
      tprintf ("Lower=%g, upper=%g, Stats:\n", lower, upper);
      gap_stats.print();
    }
  }
  row->min_space =
    static_cast<int32_t>(ceil (upper - (upper - lower) * textord_words_definite_spread));
  row->max_nonspace =
    static_cast<int32_t>(floor (lower + (upper - lower) * textord_words_definite_spread));
  row->space_threshold = (row->max_nonspace + row->min_space) / 2;
  row->space_size = upper;
  row->kern_size = lower;
  if (testing_on && textord_show_initial_words) {
    if (testing_row) {
      tprintf ("GAP STATS\n");
      gap_stats.print();
      tprintf ("SPACE stats\n");
      cluster_stats[2].print_summary();
      tprintf ("NONSPACE stats\n");
      cluster_stats[1].print_summary();
    }
    tprintf ("Row at %g has minspace=%d(%g), max_non=%d(%g)\n",
      row->intercept (), row->min_space, upper,
      row->max_nonspace, lower);
  }
  return cluster_stats[2].get_total ();
}