Exemple #1
0
void
gcry_mpi_randomize( gcry_mpi_t w,
		    unsigned int nbits, enum gcry_random_level level )
{
  unsigned char *p;
  size_t nbytes = (nbits+7)/8;
  
  if (level == GCRY_WEAK_RANDOM)
    {
      p = mpi_is_secure(w) ? gcry_xmalloc_secure (nbytes)
                           : gcry_xmalloc (nbytes);
      gcry_create_nonce (p, nbytes);
    }
  else
    {
      p = mpi_is_secure(w) ? gcry_random_bytes_secure (nbytes, level)
                           : gcry_random_bytes (nbytes, level);
    }
  _gcry_mpi_set_buffer( w, p, nbytes, 0 );
  gcry_free (p);
}
Exemple #2
0
/****************
 * Generate a key pair with a key of size NBITS
 * Returns: 2 structures filled with all needed values
 *	    and an array with n-1 factors of (p-1)
 */
static void
generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
{
  gcry_mpi_t p;    /* the prime */
  gcry_mpi_t p_min1;
  gcry_mpi_t g;
  gcry_mpi_t x;    /* the secret exponent */
  gcry_mpi_t y;
  unsigned int qbits;
  unsigned int xbits;
  byte *rndbuf;

  p_min1 = gcry_mpi_new ( nbits );
  qbits = wiener_map( nbits );
  if( qbits & 1 ) /* better have a even one */
    qbits++;
  g = mpi_alloc(1);
  p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors );
  mpi_sub_ui(p_min1, p, 1);


  /* Select a random number which has these properties:
   *	 0 < x < p-1
   * This must be a very good random number because this is the
   * secret part.  The prime is public and may be shared anyway,
   * so a random generator level of 1 is used for the prime.
   *
   * I don't see a reason to have a x of about the same size
   * as the p.  It should be sufficient to have one about the size
   * of q or the later used k plus a large safety margin. Decryption
   * will be much faster with such an x.
   */
  xbits = qbits * 3 / 2;
  if( xbits >= nbits )
    BUG();
  x = gcry_mpi_snew ( xbits );
  if( DBG_CIPHER )
    log_debug("choosing a random x of size %u", xbits );
  rndbuf = NULL;
  do 
    {
      if( DBG_CIPHER )
        progress('.');
      if( rndbuf )
        { /* Change only some of the higher bits */
          if( xbits < 16 ) /* should never happen ... */
            {
              gcry_free(rndbuf);
              rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
                                                 GCRY_VERY_STRONG_RANDOM );
            }
          else
            {
              char *r = gcry_random_bytes_secure( 2,
                                                  GCRY_VERY_STRONG_RANDOM );
              memcpy(rndbuf, r, 2 );
              gcry_free(r);
            }
	}
      else 
        {
          rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
                                             GCRY_VERY_STRONG_RANDOM );
	}
      _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
      mpi_clear_highbit( x, xbits+1 );
    } 
  while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
  gcry_free(rndbuf);

  y = gcry_mpi_new (nbits);
  gcry_mpi_powm( y, g, x, p );

  if( DBG_CIPHER ) 
    {
      progress('\n');
      log_mpidump("elg  p= ", p );
      log_mpidump("elg  g= ", g );
      log_mpidump("elg  y= ", y );
      log_mpidump("elg  x= ", x );
    }

  /* Copy the stuff to the key structures */
  sk->p = p;
  sk->g = g;
  sk->y = y;
  sk->x = x;

  gcry_mpi_release ( p_min1 );

  /* Now we can test our keys (this should never fail!) */
  test_keys ( sk, nbits - 64, 0 );
}
Exemple #3
0
/****************
 * Generate a random secret exponent k from prime p, so that k is
 * relatively prime to p-1.  With SMALL_K set, k will be selected for
 * better encryption performance - this must never be used signing!
 */
static gcry_mpi_t
gen_k( gcry_mpi_t p, int small_k )
{
  gcry_mpi_t k = mpi_alloc_secure( 0 );
  gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
  gcry_mpi_t p_1 = mpi_copy(p);
  unsigned int orig_nbits = mpi_get_nbits(p);
  unsigned int nbits, nbytes;
  char *rndbuf = NULL;

  if (small_k)
    {
      /* Using a k much lesser than p is sufficient for encryption and
       * it greatly improves the encryption performance.  We use
       * Wiener's table and add a large safety margin. */
      nbits = wiener_map( orig_nbits ) * 3 / 2;
      if( nbits >= orig_nbits )
        BUG();
    }
  else
    nbits = orig_nbits;


  nbytes = (nbits+7)/8;
  if( DBG_CIPHER )
    log_debug("choosing a random k ");
  mpi_sub_ui( p_1, p, 1);
  for(;;) 
    {
      if( !rndbuf || nbits < 32 ) 
        {
          gcry_free(rndbuf);
          rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
        }
      else
        { 
          /* Change only some of the higher bits.  We could improve
             this by directly requesting more memory at the first call
             to get_random_bytes() and use this the here maybe it is
             easier to do this directly in random.c Anyway, it is
             highly inlikely that we will ever reach this code. */
          char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
          memcpy( rndbuf, pp, 4 );
          gcry_free(pp);
	}
      _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
        
      for(;;)
        {
          if( !(mpi_cmp( k, p_1 ) < 0) )  /* check: k < (p-1) */
            {
              if( DBG_CIPHER )
                progress('+');
              break; /* no  */
            }
          if( !(mpi_cmp_ui( k, 0 ) > 0) )  /* check: k > 0 */
            {
              if( DBG_CIPHER )
                progress('-');
              break; /* no */
            }
          if (gcry_mpi_gcd( temp, k, p_1 ))
            goto found;  /* okay, k is relative prime to (p-1) */
          mpi_add_ui( k, k, 1 );
          if( DBG_CIPHER )
            progress('.');
	}
    }
 found:
  gcry_free(rndbuf);
  if( DBG_CIPHER )
    progress('\n');
  mpi_free(p_1);
  mpi_free(temp);

  return k;
}
Exemple #4
0
/*
 * Generate a random secret exponent K less than Q.
 * Note that ECDSA uses this code also to generate D.
 */
gcry_mpi_t
_gcry_dsa_gen_k (gcry_mpi_t q, int security_level)
{
  gcry_mpi_t k        = mpi_alloc_secure (mpi_get_nlimbs (q));
  unsigned int nbits  = mpi_get_nbits (q);
  unsigned int nbytes = (nbits+7)/8;
  char *rndbuf = NULL;

  /* To learn why we don't use mpi_mod to get the requested bit size,
     read the paper: "The Insecurity of the Digital Signature
     Algorithm with Partially Known Nonces" by Nguyen and Shparlinski.
     Journal of Cryptology, New York. Vol 15, nr 3 (2003)  */

  if (DBG_CIPHER)
    log_debug ("choosing a random k of %u bits at seclevel %d\n",
               nbits, security_level);
  for (;;)
    {
      if ( !rndbuf || nbits < 32 )
        {
          gcry_free (rndbuf);
          rndbuf = gcry_random_bytes_secure (nbytes, security_level);
	}
      else
        { /* Change only some of the higher bits.  We could improve
	     this by directly requesting more memory at the first call
	     to get_random_bytes() and use these extra bytes here.
	     However the required management code is more complex and
	     thus we better use this simple method.  */
          char *pp = gcry_random_bytes_secure (4, security_level);
          memcpy (rndbuf, pp, 4);
          gcry_free (pp);
	}
      _gcry_mpi_set_buffer (k, rndbuf, nbytes, 0);

      /* Make sure we have the requested number of bits.  This code
         looks a bit funny but it is easy to understand if you
         consider that mpi_set_highbit clears all higher bits.  We
         don't have a clear_highbit, thus we first set the high bit
         and then clear it again.  */
      if (mpi_test_bit (k, nbits-1))
        mpi_set_highbit (k, nbits-1);
      else
        {
          mpi_set_highbit (k, nbits-1);
          mpi_clear_bit (k, nbits-1);
	}

      if (!(mpi_cmp (k, q) < 0))    /* check: k < q */
        {
          if (DBG_CIPHER)
            log_debug ("\tk too large - again\n");
          continue; /* no  */
        }
      if (!(mpi_cmp_ui (k, 0) > 0)) /* check: k > 0 */
        {
          if (DBG_CIPHER)
            log_debug ("\tk is zero - again\n");
          continue; /* no */
        }
      break;	/* okay */
    }
  gcry_free (rndbuf);

  return k;
}