void Genome::insertSequences()
{
if (P->genomeFastaFiles.at(0)!="-")
{
    time_t rawtime;
    time ( &rawtime );
    P->inOut->logMain  << timeMonthDayTime(rawtime) << " ..... Inserting extra sequences into genome indexes" <<endl;       
    //move the junctions to free up space for seqs
    // chrStart/Name/Length nChrReal include the extra sequences
    // nGenome is the old, small genome size
    uint sjdblen=P->nGenome-(P->chrStart.back()-P->genomeInsertL);//length of sjdb sequences
    memmove(G+P->chrStart.back(),G+P->chrStart.back()-P->genomeInsertL,sjdblen);
    memset(G+P->chrStart.back()-P->genomeInsertL, GENOME_spacingChar, P->genomeInsertL);//fill empty space with spacing characters
        
    genomeScanFastaFiles(P, G+P->chrStart.back()-P->genomeInsertL, true); //read the seqs from file(s) into the free space
    uint64 nGenomeOld=P->nGenome;
    P->nGenome=P->chrStart.back()+sjdblen; 
    //insert new sequences into the SA
    insertSeqSA(SA, SAinsert, SAi, G, G+P->chrStart.back()-P->genomeInsertL, nGenomeOld-sjdblen, P->genomeInsertL, sjdblen, P);

    //insert new sequences into the SAi
    //update P
    //save the genome if necessary
};
};
Exemple #2
0
void Genome::genomeLoad(){//allocate and load Genome
    
    time_t rawtime;
    time ( &rawtime );
    *(P->inOut->logStdOut) << timeMonthDayTime(rawtime) << " ..... Loading genome\n" <<flush;           

    uint *shmNG=NULL, *shmNSA=NULL;   //pointers to shm stored values , *shmSG, *shmSSA
    uint64 shmSize=0;//, shmStartG=0; shmStartSA=0;
    
    uint L=200,K=6;    
    
    Parameters *P1 = new Parameters;
    
    ifstream parFile((P->genomeDir+("/genomeParameters.txt")).c_str());
    if (parFile.good()) {
        P->inOut->logMain << "Reading genome generation parameters:\n";
        P1->inOut = P->inOut;
        P1->scanAllLines(parFile,3,-1);
        parFile.close();
    } else {
        ostringstream errOut;
        errOut << "EXITING because of FATAL ERROR: could not open genome file "<< P->genomeDir+("/genomeParameters.txt") << endl;
        errOut << "SOLUTION: check that the path to genome files, specified in --genomeDir is correct and the files are present, and have user read permsissions\n" <<flush;     
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_FILES, *P);
    };            
    
    //check genome version
    if (P1->versionGenome.size()==0 || P1->versionGenome[0]==0) {//
        ostringstream errOut;
        errOut << "EXITING because of FATAL ERROR: read no value for the versionGenome parameter from genomeParameters.txt file\n";
        errOut << "SOLUTION: please re-generate genome from scratch with the latest version of STAR\n";
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_FILES, *P);
    } else if (P->sjdbFileChrStartEnd.at(0)=="-" && P1->versionGenome.at(0) >= P->versionGenome.at(0)) {//
        P->inOut->logMain << "Genome version is compatible with current STAR version\n";
    } else if (P->sjdbFileChrStartEnd.at(0)!="-" && P1->versionGenome.at(0) >= P->versionGenome.at(1)) {//
        P->inOut->logMain << "Genome version is compatible with current STAR version\n";        
    } else {
        ostringstream errOut;
        errOut << "EXITING because of FATAL ERROR: Genome version is INCOMPATIBLE with current STAR version\n";
        errOut << "SOLUTION: please re-generate genome from scratch with the latest version of STAR\n";
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_FILES, *P);
    };

    //find chr starts from files
    P->chrInfoLoad();

    //check if sjdbInfo.txt exists => genome was generated with junctions
    bool sjdbInfoExists=false;
    struct stat sjdb1;
    if ( stat( (P->genomeDir+"/sjdbInfo.txt").c_str(), &sjdb1) == 0 )
    {//file exists
        sjdbInfoExists=true;
    };
    
    if ( P->sjdbInsert.yes && sjdbInfoExists && P1->sjdbInsert.save=="") 
    {//if sjdbInsert, and genome had junctions, and genome is old - it should be re-generated with new STAR
        ostringstream errOut;
        errOut << "EXITING because of FATAL ERROR: old Genome is INCOMPATIBLE with on the fly junction insertion\n";
        errOut << "SOLUTION: please re-generate genome from scratch with the latest version of STAR\n";
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_FILES, *P);
    };
    
    //record required genome parameters in P
    P->genomeSAindexNbases=P1->genomeSAindexNbases;
    P->genomeChrBinNbits=P1->genomeChrBinNbits;
    P->genomeSAsparseD=P1->genomeSAsparseD;
    if (P->parArray.at(P->sjdbOverhang_par)->inputLevel==0 && P1->sjdbOverhang>0) 
    {//if --sjdbOverhang was not defined by user and it was defined >0 at the genome generation step, then use sjdbOverhang from the genome generation step
        P->sjdbOverhang=P1->sjdbOverhang;
        P->inOut->logMain << "--sjdbOverhang = " << P->sjdbOverhang << " taken from the generated genome\n";
    } else if (sjdbInfoExists && P->parArray.at(P->sjdbOverhang_par)->inputLevel>0 && P->sjdbOverhang!=P1->sjdbOverhang) 
    {//if sjdbOverhang was defined at the genome generation step,the mapping step value has to agree with it
        ostringstream errOut;
        errOut << "EXITING because of fatal PARAMETERS error: present --sjdbOverhang="<<P->sjdbOverhang << " is not equal to the value at the genome generation step ="<< P1->sjdbOverhang << "\n";
        errOut << "SOLUTION: \n" <<flush;     
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_FILES, *P);
    };
    
    P->sjdbLength = P->sjdbOverhang==0 ? 0 : P->sjdbOverhang*2+1;


    P->inOut->logMain << "Started loading the genome: " << asctime (localtime ( &rawtime ))<<"\n"<<flush;    
  
    ifstream GenomeIn, SAin, SAiIn;

    P->nGenome = OpenStream("Genome",GenomeIn);
    P->nSAbyte = OpenStream("SA",SAin);
    OpenStream("/SAindex",SAiIn);

    uint SAiInBytes=0;
    SAiInBytes += fstreamReadBig(SAiIn,(char*) &P->genomeSAindexNbases, sizeof(P->genomeSAindexNbases));
    P->genomeSAindexStart = new uint[P->genomeSAindexNbases+1];
    SAiInBytes += fstreamReadBig(SAiIn,(char*) P->genomeSAindexStart, sizeof(P->genomeSAindexStart[0])*(P->genomeSAindexNbases+1));  
    P->nSAi=P->genomeSAindexStart[P->genomeSAindexNbases];
    P->inOut->logMain << "Read from SAindex: genomeSAindexNbases=" << P->genomeSAindexNbases <<"  nSAi="<< P->nSAi <<endl;
    

    /////////////////////////////////// at this point all array sizes should be known: calculate packed array lengths
    P->GstrandBit = (uint) floor(log(P->nGenome)/log(2))+1;
    if (P->GstrandBit<32) P->GstrandBit=32; //TODO: use simple access function for SA

    P->GstrandMask = ~(1LLU<<P->GstrandBit);
    P->nSA=(P->nSAbyte*8)/(P->GstrandBit+1);
    SA.defineBits(P->GstrandBit+1,P->nSA);  
    
    P->SAiMarkNbit=P->GstrandBit+1;
    P->SAiMarkAbsentBit=P->GstrandBit+2;
    
    P->SAiMarkNmaskC=1LLU << P->SAiMarkNbit;
    P->SAiMarkNmask=~P->SAiMarkNmaskC;
    P->SAiMarkAbsentMaskC=1LLU << P->SAiMarkAbsentBit;
    P->SAiMarkAbsentMask=~P->SAiMarkAbsentMaskC;
    
    SAi.defineBits(P->GstrandBit+3,P->nSAi); 

    P->inOut->logMain << "nGenome=" << P->nGenome << ";  nSAbyte=" << P->nSAbyte <<endl<< flush;       
    P->inOut->logMain <<"GstrandBit="<<int(P->GstrandBit)<<"   SA number of indices="<<P->nSA<<endl<<flush;      
    
    shmSize=SA.lengthByte + P->nGenome+L+L+SHM_startG+8;
    shmSize+= SAi.lengthByte;                
    if (P->annotScoreScale>0) shmSize+=P->nGenome;


    if ((P->genomeLoad=="LoadAndKeep" ||
         P->genomeLoad=="LoadAndRemove" ||
         P->genomeLoad=="LoadAndExit" ||
         P->genomeLoad=="Remove") && sharedMemory == NULL)
    {
        bool unloadLast = P->genomeLoad=="LoadAndRemove";
        try
        {
            sharedMemory = new SharedMemory(shmKey, unloadLast);
            sharedMemory->SetErrorStream(P->inOut->logStdOut);

            if (!sharedMemory->NeedsAllocation())
            P->inOut->logMain <<"Found genome in shared memory\n"<<flush;
    
    if (P->genomeLoad=="Remove") {//kill the genome and exit
                if (sharedMemory->NeedsAllocation()) {//did not find genome in shared memory, nothing to kill
            ostringstream errOut;
            errOut << "EXITING: Did not find the genome in memory, did not remove any genomes from shared memory\n";
            exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_FILES, *P);
        } else {
                    sharedMemory->Clean();
            P->inOut->logMain <<"DONE: removed the genome from shared memory\n"<<flush;            
                    return;
        };
            }
     
            if (sharedMemory->NeedsAllocation()){
                P->inOut->logMain <<"Allocating shared memory for genome\n"<<flush;
                sharedMemory->Allocate(shmSize);
            }
        }
        catch (const SharedMemoryException & exc)
        {
            HandleSharedMemoryException(exc, shmSize);
        }
    
        shmStart = (char*) sharedMemory->GetMapped();
        shmNG= (uint*) (shmStart+SHM_sizeG);
        shmNSA= (uint*) (shmStart+SHM_sizeSA);       
   
        if (!sharedMemory->IsAllocator())
        {
            // genome is in shared memory or being loaded
            // wait for the process that will populate it
            // and record the sizes
        
        uint iwait=0;
            while (*shmNG != P->nGenome) {
            iwait++;
            P->inOut->logMain <<"Another job is still loading the genome, sleeping for 1 min\n" <<flush;
            sleep(60);                    
            if (iwait==100) {
                ostringstream errOut;
                errOut << "EXITING because of FATAL ERROR: waited too long for the other job to finish loading the genome" << strerror(errno) << "\n" <<flush;
                    errOut << "SOLUTION: remove the shared memory chunk by running STAR with --genomeLoad Remove, and restart STAR" <<flush;     
                    exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_GENOME_LOADING_WAITED_TOO_LONG, *P);                
            };
        };

            if (P->nSAbyte!=*shmNSA)
            {
                ostringstream errOut;
                errOut << "EXITING because of FATAL ERROR: the SA file size did not match what we found in shared memory" << "\n" << flush;
                errOut << "SOLUTION: remove the shared memory chunk by running STAR with --genomeLoad Remove, and restart STAR" << flush;     
                exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_INCONSISTENT_DATA, *P);  
            }
        
            P->inOut->logMain << "Using shared memory for genome. key=0x" <<hex<<shmKey<<dec<< ";   shmid="<< sharedMemory->GetId() <<endl<<flush;
        }

        G1=shmStart+SHM_startG;
        SA.pointArray(G1+P->nGenome+L+L);
        char* shmNext=SA.charArray+P->nSAbyte;

        SAi.pointArray(shmNext);
        shmNext += SAi.lengthByte;
    
//     if (twoPass.pass1readsN==0) {//not 2-pass
//         shmStartG=SHM_startSHM;
//         shmStartSA=0;
//     } else {//2-pass
//         ostringstream errOut;
//         errOut << "EXITING because of FATAL ERROR: 2-pass procedure cannot be used with genome already loaded im memory'  "\n" ;
//         errOut << "SOLUTION: check shared memory settigns as explained in STAR manual, OR run STAR with --genomeLoad NoSharedMemory to avoid using shared memory\n" <<flush;     
//         exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_SHM, *P);
//     };
     if (P->annotScoreScale>0) {//optional allocation
            sigG = shmNext;
            shmNext += P->nGenome;
        }    
    }
    else if (P->genomeLoad=="NoSharedMemory") // simply allocate memory, do not use shared memory
    {
        P->genomeInsertL=0;
        if (P->genomeFastaFiles.at(0)!="-")
        {//will insert sequences in the genome, now estimate the extra size
           uint oldlen=P->chrStart.back();//record the old length
           P->genomeInsertL=genomeScanFastaFiles(P,G,false)-oldlen; 
        };
        
        try {
            
            if (P->sjdbInsert.pass1 || P->sjdbInsert.pass2)
            {//reserve extra memory for insertion at the 1st and/or 2nd step
                nGenomePass1=P->nGenome+P->genomeInsertL;
                nSApass1=P->nSA+2*P->genomeInsertL;
                if (P->sjdbInsert.pass1)
                {
                    nGenomePass1+=P->limitSjdbInsertNsj*P->sjdbLength;
                    nSApass1+=2*P->limitSjdbInsertNsj*P->sjdbLength;
                };
                nGenomePass2=nGenomePass1;
                nSApass2=nSApass1;
                if (P->sjdbInsert.pass2)
                {
                    nGenomePass2+=P->limitSjdbInsertNsj*P->sjdbLength;
                    nSApass2+=2*P->limitSjdbInsertNsj*P->sjdbLength;                    
                };                
                
                G1=new char[nGenomePass2+L+L];        
                
                SApass2.defineBits(P->GstrandBit+1,nSApass2);
                SApass2.allocateArray();
                
                SApass1.defineBits(P->GstrandBit+1,nSApass1);
                SApass1.pointArray(SApass2.charArray+SApass2.lengthByte-SApass1.lengthByte);
                
                SA.pointArray(SApass1.charArray+SApass1.lengthByte-SA.lengthByte);
            } else 
            {//no sjdb insertions
                if (P->genomeInsertL==0)
                {// no sequence insertion, simple allocation
                    G1=new char[P->nGenome+L+L];        
                    SA.allocateArray();
                } else 
                {
                    G1=new char[P->nGenome+L+L+P->genomeInsertL];        
                    SApass1.defineBits(P->GstrandBit+1,P->nSA+2*P->genomeInsertL);//TODO: re-define GstrandBit if necessary
                    SApass1.allocateArray();
                    SA.pointArray(SApass1.charArray+SApass1.lengthByte-SA.lengthByte);
                };

            };            
            SAi.allocateArray();
            P->inOut->logMain <<"Shared memory is not used for genomes. Allocated a private copy of the genome.\n"<<flush;                
        } catch (exception & exc) {
            ostringstream errOut;           
            errOut <<"EXITING: fatal error trying to allocate genome arrays, exception thrown: "<<exc.what()<<endl;
            errOut <<"Possible cause 1: not enough RAM. Check if you have enough RAM " << P->nGenome+L+L+SA.lengthByte+SAi.lengthByte+2000000000 << " bytes\n";
            errOut <<"Possible cause 2: not enough virtual memory allowed with ulimit. SOLUTION: run ulimit -v " <<  P->nGenome+L+L+SA.lengthByte+SAi.lengthByte+2000000000<<endl <<flush;
            exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_MEMORY_ALLOCATION, *P);            
        };
        
    }

        
//     if (twopass1readsN==0) {//not 2-pass
//         shmStartG=SHM_startSHM;
//         shmStartSA=0;
//     } else {//2-pass
//         ostringstream errOut;
//         errOut << "EXITING because of FATAL ERROR: 2-pass procedure cannot be used with genome already loaded im memory'  "\n" ;
//         errOut << "SOLUTION: check shared memory settings as explained in STAR manual, OR run STAR with --genomeLoad NoSharedMemory to avoid using shared memory\n" <<flush;     
//         exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_SHM, *P);
//     };


    G=G1+L;

    bool isAllocatorProcess = sharedMemory != NULL && sharedMemory->IsAllocator();

    if (P->genomeLoad=="NoSharedMemory" || isAllocatorProcess) {//load genome and SAs from files
        //load genome
        P->inOut->logMain <<"Genome file size: "<<P->nGenome <<" bytes; state: good=" <<GenomeIn.good()\
                <<" eof="<<GenomeIn.eof()<<" fail="<<GenomeIn.fail()<<" bad="<<GenomeIn.bad()<<"\n"<<flush;        
        P->inOut->logMain <<"Loading Genome ... " << flush;        
        uint genomeReadBytesN=fstreamReadBig(GenomeIn,G,P->nGenome);    
        P->inOut->logMain <<"done! state: good=" <<GenomeIn.good()\
                <<" eof="<<GenomeIn.eof()<<" fail="<<GenomeIn.fail()<<" bad="<<GenomeIn.bad()<<"; loaded "<<genomeReadBytesN<<" bytes\n" << flush;            
        GenomeIn.close();
        
        for (uint ii=0;ii<L;ii++) {// attach a tail with the largest symbol
            G1[ii]=K-1;
            G[P->nGenome+ii]=K-1;        
        };    
      
        //load SAs
        P->inOut->logMain <<"SA file size: "<<SA.lengthByte <<" bytes; state: good=" <<SAin.good()\
                <<" eof="<<SAin.eof()<<" fail="<<SAin.fail()<<" bad="<<SAin.bad()<<"\n"<<flush;        
        P->inOut->logMain <<"Loading SA ... " << flush;               
        genomeReadBytesN=fstreamReadBig(SAin,SA.charArray, SA.lengthByte);
        P->inOut->logMain <<"done! state: good=" <<SAin.good()\
                <<" eof="<<SAin.eof()<<" fail="<<SAin.fail()<<" bad="<<SAin.bad()<<"; loaded "<<genomeReadBytesN<<" bytes\n" << flush;            
        SAin.close();
        
        P->inOut->logMain <<"Loading SAindex ... " << flush;             
        SAiInBytes +=fstreamReadBig(SAiIn,SAi.charArray, SAi.lengthByte);
        P->inOut->logMain <<"done: "<<SAiInBytes<<" bytes\n" << flush;       
    };
    
    SAiIn.close();            

    if ((P->genomeLoad=="LoadAndKeep" || 
         P->genomeLoad=="LoadAndRemove" || 
         P->genomeLoad=="LoadAndExit") && isAllocatorProcess ) 
    {
        //record sizes. This marks the end of genome loading
        *shmNG=P->nGenome;
        *shmNSA=P->nSAbyte;
    };
    
    time ( &rawtime );
    P->inOut->logMain << "Finished loading the genome: " << asctime (localtime ( &rawtime )) <<"\n"<<flush;    
      
    #ifdef COMPILE_FOR_MAC
    {
        uint sum1=0;
        for (uint ii=0;ii<P->nGenome; ii++) sum1 +=  (uint) (unsigned char) G[ii];
        P->inOut->logMain << "Sum of all Genome bytes: " <<sum1 <<"\n"<<flush;  
        sum1=0;        
        for (uint ii=0;ii<SA.lengthByte; ii++) sum1 +=  (uint) (unsigned char) SA.charArray[ii];
        P->inOut->logMain << "Sum of all SA bytes: " <<sum1 <<"\n"<<flush;
        sum1=0;        
        for (uint ii=0;ii<SAi.lengthByte; ii++) sum1 +=  (uint) (unsigned char) SAi.charArray[ii];
        P->inOut->logMain << "Sum of all SAi bytes: " <<sum1 <<"\n"<<flush;
    };
    #endif
    
    if (P->genomeLoad=="LoadAndExit") {
	uint shmSum=0;
	for (uint ii=0;ii<shmSize;ii++) shmSum+=shmStart[ii];
        P->inOut->logMain << "genomeLoad=LoadAndExit: completed, the genome is loaded and kept in RAM, EXITING now.\n"<<flush;
        return;
    };
    
    insertSequences();

    P->chrBinFill();
 
    //splice junctions database
    if (P->nGenome==P->chrStart[P->nChrReal]) {//no sjdb
        P->sjdbN=0;
        P->sjGstart=P->chrStart[P->nChrReal]+1; //not sure why I need that
    } else {//there are sjdb chromosomes
        ifstream sjdbInfo((P->genomeDir+"/sjdbInfo.txt").c_str());
        if (sjdbInfo.fail()) {
            ostringstream errOut;                            
            errOut << "EXITING because of FATAL error, could not open file " << (P->genomeDir+"/sjdbInfo.txt") <<"\n";
            errOut << "SOLUTION: check that the path to genome files, specified in --genomeDir is correct and the files are present, and have user read permsissions\n" <<flush;     
            exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_INPUT_FILES, *P);
        };
    
        
        sjdbInfo >> P->sjdbN >> P->sjdbOverhang;
        P->inOut->logMain << "Processing splice junctions database sjdbN=" <<P->sjdbN<<",   sjdbOverhang=" <<P->sjdbOverhang <<" \n";    
        
        P->sjChrStart=P->nChrReal;
        P->sjGstart=P->chrStart[P->sjChrStart];

        //fill the sj-db to genome translation array
        P->sjDstart=new uint [P->sjdbN];
        P->sjAstart=new uint [P->sjdbN];
        P->sjdbStart=new uint [P->sjdbN];
        P->sjdbEnd=new uint [P->sjdbN];
        
        P->sjdbMotif=new uint8 [P->sjdbN];
        P->sjdbShiftLeft=new uint8 [P->sjdbN];
        P->sjdbShiftRight=new uint8 [P->sjdbN];
        P->sjdbStrand=new uint8 [P->sjdbN];

        for (uint ii=0;ii<P->sjdbN;ii++) {//get the info about junctions from sjdbInfo.txt       
            {
                uint16 d1,d2,d3,d4;
                sjdbInfo >> P->sjdbStart[ii] >> P->sjdbEnd[ii] >> d1 >> d2 >> d3 >> d4;
                P->sjdbMotif[ii]      = (uint8) d1;
                P->sjdbShiftLeft[ii]  = (uint8) d2;
                P->sjdbShiftRight[ii] = (uint8) d3;
                P->sjdbStrand[ii] = (uint8) d4;
            };
            P->sjDstart[ii]   = P->sjdbStart[ii]  - P->sjdbOverhang; 
            P->sjAstart[ii]   = P->sjdbEnd[ii] + 1;     
            if (P->sjdbMotif[ii]==0) {//shinon-canonical junctions back to their true coordinates
                P->sjDstart[ii] += P->sjdbShiftLeft[ii];
                P->sjAstart[ii] += P->sjdbShiftLeft[ii];
            };
        };
    };     
    
    //check and redefine some parameters
    //max intron size
    if (P->alignIntronMax==0 && P->alignMatesGapMax==0) {
        P->inOut->logMain << "alignIntronMax=alignMatesGapMax=0, the max intron size will be approximately determined by (2^winBinNbits)*winAnchorDistNbins=" \
                << (1LLU<<P->winBinNbits)*P->winAnchorDistNbins <<endl;
    } else {
        //redefine winBinNbits
        P->winBinNbits=max( (uint) floor(log2(P->nGenome/40000)+0.5), (uint) floor(log2(max(max(4LLU,P->alignIntronMax),P->alignMatesGapMax)/4)+0.5) );
        P->inOut->logMain << "To accomodate alignIntronMax="<<P->alignIntronMax<<" redefined winBinNbits="<< P->winBinNbits <<endl;
    };
    
    if (P->winBinNbits > P->genomeChrBinNbits) {
       P->inOut->logMain << "winBinNbits=" <<P->winBinNbits <<" > " << "genomeChrBinNbits=" << P->genomeChrBinNbits << "   redefining:\n";
       P->winBinNbits=P->genomeChrBinNbits;
       P->inOut->logMain << "winBinNbits=" <<P->winBinNbits <<endl;
    };    
    
    
    if (P->alignIntronMax==0 && P->alignMatesGapMax==0) {
    } else {
        //redefine winFlankNbins,winAnchorDistNbins
        P->winFlankNbins=max(P->alignIntronMax,P->alignMatesGapMax)/(1LLU<<P->winBinNbits)+1;
        P->winAnchorDistNbins=2*P->winFlankNbins;
        P->inOut->logMain << "To accomodate alignIntronMax="<<P->alignIntronMax<<" and alignMatesGapMax="<<P->alignMatesGapMax<<\
                ", redefined winFlankNbins="<<P->winFlankNbins<<" and winAnchorDistNbins="<<P->winAnchorDistNbins<<endl;
    };
    
    P->winBinChrNbits=P->genomeChrBinNbits-P->winBinNbits;
    P->winBinN = P->nGenome/(1LLU << P->winBinNbits)+1;//this may be chenaged later
};
Exemple #3
0
void genomeGenerate(Parameters *P) {
    
    //check parameters
    if (P->sjdbOverhang<=0 && (P->sjdbFileChrStartEnd.at(0)!="-" || P->sjdbGTFfile!="-")) 
    {
        ostringstream errOut;
        errOut << "EXITING because of FATAL INPUT PARAMETER ERROR: for generating genome with annotations (--sjdbFileChrStartEnd or --sjdbGTFfile options)\n";
        errOut << "you need to specify >0 --sjdbOverhang\n";
        errOut << "SOLUTION: re-run genome generation specifying non-zero --sjdbOverhang, which ideally should be equal to OneMateLength-1, or could be chosen generically as ~100\n";        
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_INPUT_FILES, *P);
    } 
    if (P->sjdbFileChrStartEnd.at(0)=="-" && P->sjdbGTFfile=="-") 
    {
        if (P->parArray.at(P->sjdbOverhang_par)->inputLevel>0 && P->sjdbOverhang>0)
        {
            ostringstream errOut;
            errOut << "EXITING because of FATAL INPUT PARAMETER ERROR: when generating genome without annotations (--sjdbFileChrStartEnd or --sjdbGTFfile options)\n";
            errOut << "do not specify >0 --sjdbOverhang\n";
            errOut << "SOLUTION: re-run genome generation without --sjdbOverhang option\n";        
            exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_INPUT_FILES, *P);
        };
        P->sjdbOverhang=0;
    };
    
    //time
    time_t rawTime;
    string timeString;
    
    time(&rawTime);
    P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... Starting to generate Genome files\n" <<flush;
    *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... Starting to generate Genome files\n" <<flush;
    
    //define some parameters from input parameters
    P->genomeChrBinNbases=1LLU << P->genomeChrBinNbits;
    //write genome parameters file
    genomeParametersWrite(P->genomeDir+("/genomeParameters.txt"), P, "ERROR_00102");
    
    char *G=NULL, *G1=NULL;        
    uint nGenomeReal=genomeScanFastaFiles(P,G,false);//first scan the fasta file to find all the sizes  
    P->chrBinFill();

    uint L=10000;//maximum length of genome suffix    
    uint nG1alloc=(nGenomeReal + L)*2;
    G1=new char[nG1alloc];
    G=G1+L;
    
    memset(G1,GENOME_spacingChar,nG1alloc);//initialize to K-1 all bytes
 
    genomeScanFastaFiles(P,G,true);    //load the genome sequence   

    uint N = nGenomeReal;
    P->nGenome=N;
    uint N2 = N*2;     

    ofstream chrN,chrS,chrL,chrNL;
    
    ofstrOpen(P->genomeDir+"/chrName.txt","ERROR_00103", P, chrN);   
    ofstrOpen(P->genomeDir+"/chrStart.txt","ERROR_00103", P, chrS);   
    ofstrOpen(P->genomeDir+"/chrLength.txt","ERROR_00103", P, chrL);   
    ofstrOpen(P->genomeDir+"/chrNameLength.txt","ERROR_00103", P, chrNL);   
    
    for (uint ii=0;ii<P->nChrReal;ii++) {//output names, starts, lengths               
        chrN<<P->chrName[ii]<<"\n";
        chrS<<P->chrStart[ii]<<"\n";
        chrL<<P->chrLength.at(ii)<<"\n";
        chrNL<<P->chrName[ii]<<"\t"<<P->chrLength.at(ii)<<"\n";        
    };
    chrS<<P->chrStart[P->nChrReal]<<"\n";//size of the genome
    chrN.close();chrL.close();chrS.close(); chrNL.close();   
    
    if (P->limitGenomeGenerateRAM < (nG1alloc+nG1alloc/3)) {//allocate nG1alloc/3 for SA generation
        ostringstream errOut;                            
        errOut <<"EXITING because of FATAL PARAMETER ERROR: limitGenomeGenerateRAM="<< (P->limitGenomeGenerateRAM) <<"is too small for your genome\n";
        errOut <<"SOLUTION: please specify limitGenomeGenerateRAM not less than"<< nG1alloc+nG1alloc/3 <<" and make that much RAM available \n";
        exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_INPUT_FILES, *P);
    };     
    
    //preparing to generate SA
    for (uint ii=0;ii<N;ii++) {//- strand
        G[N2-1-ii]=G[ii]<4 ? 3-G[ii] : G[ii];
    };      
    
    P->nSA=0;
    for (uint ii=0;ii<N2;ii+=P->genomeSAsparseD) {
        if (G[ii]<4) {
            P->nSA++;
        };
    };     
    
    P->GstrandBit = (uint) floor(log(N)/log(2))+1; 
    if (P->GstrandBit<32) P->GstrandBit=32; //TODO: use simple access function for SA
    
    P->GstrandMask = ~(1LLU<<P->GstrandBit);
    PackedArray SA1;//SA without sjdb
    SA1.defineBits(P->GstrandBit+1,P->nSA);
    PackedArray SA2;//SA with sjdb, reserve more space
    if (P->sjdbInsert.yes)
    {//reserve space for junction insertion
        SA2.defineBits(P->GstrandBit+1,P->nSA+2*P->limitSjdbInsertNsj*P->sjdbLength);//TODO: this allocation is wasteful, get a better estimate of the number of junctions
    } else
    {//same as SA1
        SA2.defineBits(P->GstrandBit+1,P->nSA);
    };
        
    P->nSAbyte=SA2.lengthByte;
    
    P->inOut->logMain  << "Number of SA indices: "<< P->nSA << "\n"<<flush;    

    //sort SA
    time ( &rawTime );
    P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... starting to sort  Suffix Array. This may take a long time...\n" <<flush;   
    *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... starting to sort  Suffix Array. This may take a long time...\n" <<flush;
   

//     if (false)
    {//sort SA chunks
        
        for (uint ii=0;ii<N;ii++) {//re-fill the array backwards for sorting
            swap(G[N2-1-ii],G[ii]);
        };          
        globalG=G;
        globalL=L/sizeof(uint);
        //count the number of indices with 4nt prefix
        uint indPrefN=1LLU << 16;
        uint* indPrefCount = new uint [indPrefN];
        memset(indPrefCount,0,indPrefN*sizeof(indPrefCount[0]));
        P->nSA=0;
        for (uint ii=0;ii<N2;ii+=P->genomeSAsparseD) {
            if (G[ii]<4) {
                uint p1=(G[ii]<<12) + (G[ii-1]<<8) + (G[ii-2]<<4) + G[ii-3];
                indPrefCount[p1]++;
                P->nSA++;
            };
        };

        uint saChunkSize=(P->limitGenomeGenerateRAM-nG1alloc)/8/P->runThreadN; //number of SA indexes per chunk
        saChunkSize=saChunkSize*6/10; //allow extra space for qsort            
        //uint saChunkN=((P->nSA/saChunkSize+1)/P->runThreadN+1)*P->runThreadN;//ensure saChunkN is divisible by P->runThreadN
        //saChunkSize=P->nSA/saChunkN+100000;//final chunk size
        if (P->runThreadN>1) saChunkSize=min(saChunkSize,P->nSA/(P->runThreadN-1));

        uint saChunkN=P->nSA/saChunkSize;//estimate
        uint* indPrefStart = new uint [saChunkN*2]; //start and stop, *2 just in case
        uint* indPrefChunkCount = new uint [saChunkN*2];
        indPrefStart[0]=0;
        saChunkN=0;//start counting chunks
        uint chunkSize1=indPrefCount[0];
        for (uint ii=1; ii<indPrefN; ii++) {
            chunkSize1 += indPrefCount[ii];
            if (chunkSize1 > saChunkSize) {
                saChunkN++;
                indPrefStart[saChunkN]=ii;
                indPrefChunkCount[saChunkN-1]=chunkSize1-indPrefCount[ii];                    
                chunkSize1=indPrefCount[ii];
            };
        };
        saChunkN++;
        indPrefStart[saChunkN]=indPrefN+1;
        indPrefChunkCount[saChunkN-1]=chunkSize1;

        P->inOut->logMain  << "Number of chunks: " << saChunkN <<";   chunks size limit: " << saChunkSize*8 <<" bytes\n" <<flush;

        time ( &rawTime );
        P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... sorting Suffix Array chunks and saving them to disk...\n" <<flush;   
        *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... sorting Suffix Array chunks and saving them to disk...\n" <<flush;

        #pragma omp parallel for num_threads(P->runThreadN) ordered schedule(dynamic,1)
        for (int iChunk=0; iChunk < (int) saChunkN; iChunk++) {//start the chunk cycle: sort each chunk with qsort and write to a file
            uint* saChunk=new uint [indPrefChunkCount[iChunk]];//allocate local array for each chunk
            for (uint ii=0,jj=0;ii<N2;ii+=P->genomeSAsparseD) {//fill the chunk with SA indices
                if (G[ii]<4) {
                    uint p1=(G[ii]<<12) + (G[ii-1]<<8) + (G[ii-2]<<4) + G[ii-3];
                    if (p1>=indPrefStart[iChunk] && p1<indPrefStart[iChunk+1]) {
                        saChunk[jj]=ii;
                        jj++;
                    };
                    //TODO: if (jj==indPrefChunkCount[iChunk]) break;
                };
            };


            //sort the chunk
            qsort(saChunk,indPrefChunkCount[iChunk],sizeof(saChunk[0]),funCompareSuffixes);
            for (uint ii=0;ii<indPrefChunkCount[iChunk];ii++) {    
                saChunk[ii]=N2-1-saChunk[ii];
            };  
            //write files
            ofstream saChunkFile;
            string chunkFileName=P->genomeDir+"/SA_"+to_string( (uint) iChunk);
            ofstrOpen(chunkFileName,"ERROR_00105", P, saChunkFile);   
            fstreamWriteBig(saChunkFile, (char*) saChunk, sizeof(saChunk[0])*indPrefChunkCount[iChunk],chunkFileName,"ERROR_00121",P);
            saChunkFile.close();
            delete [] saChunk;
            saChunk=NULL;
        };

        time ( &rawTime );
        P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... loading chunks from disk, packing SA...\n" <<flush;   
        *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... loading chunks from disk, packing SA...\n" <<flush;    

        //read chunks and pack into full SA1
        SA2.allocateArray();
        SA1.pointArray(SA2.charArray + SA2.lengthByte-SA1.lengthByte); //SA1 is shifted to have space for junction insertion
        uint N2bit= 1LLU << P->GstrandBit;          
        uint packedInd=0;

        #define SA_CHUNK_BLOCK_SIZE 10000000
        uint* saIn=new uint[SA_CHUNK_BLOCK_SIZE]; //TODO make adjustable
        
        #ifdef genenomeGenerate_SA_textOutput
                ofstream SAtxtStream ((P->genomeDir + "/SAtxt").c_str());
        #endif

        for (uint iChunk=0;iChunk<saChunkN;iChunk++) {//load files one by one and convert to packed
            ostringstream saChunkFileNameStream("");
            saChunkFileNameStream<< P->genomeDir << "/SA_" << iChunk;
            ifstream saChunkFile(saChunkFileNameStream.str().c_str());
            while (! saChunkFile.eof()) {//read blocks from each file
                uint chunkBytesN=fstreamReadBig(saChunkFile,(char*) saIn,SA_CHUNK_BLOCK_SIZE*sizeof(saIn[0]));
                for (uint ii=0;ii<chunkBytesN/sizeof(saIn[0]);ii++) {
                    SA1.writePacked( packedInd+ii, (saIn[ii]<N) ? saIn[ii] : ( (saIn[ii]-N) | N2bit ) );
                    
                    #ifdef genenomeGenerate_SA_textOutput
                        SAtxtStream << saIn[ii] << "\n";
                    #endif
                };
                packedInd += chunkBytesN/sizeof(saIn[0]);
            };
            saChunkFile.close();
            remove(saChunkFileNameStream.str().c_str());//remove the chunk file
        };

        #ifdef genenomeGenerate_SA_textOutput
                SAtxtStream.close();
        #endif        
        delete [] saIn;

        if (packedInd != P->nSA ) {//
            ostringstream errOut;                            
            errOut << "EXITING because of FATAL problem while generating the suffix array\n";
            errOut << "The number of indices read from chunks = "<<packedInd<<" is not equal to expected nSA="<<P->nSA<<"\n";
            errOut << "SOLUTION: try to re-run suffix array generation, if it still does not work, report this problem to the author\n"<<flush;
            exitWithError(errOut.str(),std::cerr, P->inOut->logMain, EXIT_CODE_INPUT_FILES, *P);
        };
        
        //DONE with suffix array generation
        
        for (uint ii=0;ii<N;ii++) {//return to normal order for future use
            swap(G[N2-1-ii],G[ii]);
        };         
        delete [] indPrefCount;
        delete [] indPrefStart;
        delete [] indPrefChunkCount;
    };    

    time ( &rawTime );
    timeString=asctime(localtime ( &rawTime ));
    timeString.erase(timeString.end()-1,timeString.end());
    P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... Finished generating suffix array\n" <<flush;  
    *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... Finished generating suffix array\n" <<flush;          

////////////////////////////////////////
//          SA index
//
//     PackedArray SAold;
// 
//     if (true)
//     {//testing: load SA from disk
//             //read chunks and pack into full SA1
//         
//         ifstream oldSAin("./DirTrue/SA");
//         oldSAin.seekg (0, ios::end);
//         P->nSAbyte=(uint) oldSAin.tellg();
//         oldSAin.clear();        
//         oldSAin.seekg (0, ios::beg);
// 
//         P->nSA=(P->nSAbyte*8)/(P->GstrandBit+1);
//         SAold.defineBits(P->GstrandBit+1,P->nSA);  
//         SAold.allocateArray();
//         
//         oldSAin.read(SAold.charArray,SAold.lengthByte);
//         oldSAin.close();
//         
//         SA1=SAold;
//         SA2=SAold;
//     };
    
    PackedArray SAip;
    genomeSAindex(G,SA1,P,SAip);

    if (P->sjdbFileChrStartEnd.at(0)!="-" || P->sjdbGTFfile!="-")
    {//insert junctions
        SjdbClass sjdbLoci;

        Genome mainGenome(P);
        mainGenome.G=G;
        mainGenome.SA=SA1;
        mainGenome.SApass1=SA2;
        mainGenome.SAi=SAip;
        P->sjdbInsert.outDir=P->genomeDir;
        P->sjdbN=0;//no junctions are loaded yet
        P->twoPass.pass2=false;
        
        Parameters *P1=new Parameters;
        *P1=*P;        
        
        sjdbInsertJunctions(P, P1, mainGenome, sjdbLoci);
        
        //write an extra 0 at the end of the array, filling the last bytes that otherwise are not accessible, but will be written to disk
        //this is - to avoid valgrind complaints. Note that SA2 is allocated with plenty of space to spare.
        SA2.writePacked(P->nSA,0);
    };
    
    //write genome to disk
    time ( &rawTime );
    P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... writing Genome to disk ...\n" <<flush;   
    *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... writing Genome to disk ...\n" <<flush;   
    
    ofstream genomeOut;
    ofstrOpen(P->genomeDir+"/Genome","ERROR_00104", P, genomeOut);   
    fstreamWriteBig(genomeOut,G,P->nGenome,P->genomeDir+"/Genome","ERROR_00120",P);
    genomeOut.close();  

    //write SA                
    time ( &rawTime );
    P->inOut->logMain  << "SA size in bytes: "<< P->nSAbyte << "\n"<<flush;

    P->inOut->logMain     << timeMonthDayTime(rawTime) <<" ... writing Suffix Array to disk ...\n" <<flush;   
    *P->inOut->logStdOut  << timeMonthDayTime(rawTime) <<" ... writing Suffix Array to disk ...\n" <<flush;   

    ofstream SAout;
    ofstrOpen(P->genomeDir+"/SA","ERROR_00106", P, SAout);   
    fstreamWriteBig(SAout,(char*) SA2.charArray, (streamsize) P->nSAbyte,P->genomeDir+"/SA","ERROR_00122",P);
    SAout.close();    
    
    //write SAi
    time(&rawTime);    
    P->inOut->logMain    << timeMonthDayTime(rawTime) <<" ... writing SAindex to disk\n" <<flush;   
    *P->inOut->logStdOut << timeMonthDayTime(rawTime) <<" ... writing SAindex to disk\n" <<flush;   
    
    //write SAi to disk
    ofstream SAiOut;
    ofstrOpen(P->genomeDir+"/SAindex","ERROR_00107", P, SAiOut);   

    fstreamWriteBig(SAiOut, (char*) &P->genomeSAindexNbases, sizeof(P->genomeSAindexNbases),P->genomeDir+"/SAindex","ERROR_00123",P);
    fstreamWriteBig(SAiOut, (char*) P->genomeSAindexStart, sizeof(P->genomeSAindexStart[0])*(P->genomeSAindexNbases+1),P->genomeDir+"/SAindex","ERROR_00124",P);        
    fstreamWriteBig(SAiOut,  SAip.charArray, SAip.lengthByte,P->genomeDir+"/SAindex","ERROR_00125",P);
    SAiOut.close();    

    SA2.deallocateArray();

    time(&rawTime);
    timeString=asctime(localtime ( &rawTime ));
    timeString.erase(timeString.end()-1,timeString.end());
    
    time(&rawTime);        
    P->inOut->logMain    << timeMonthDayTime(rawTime) << " ..... Finished successfully\n" <<flush;    
    *P->inOut->logStdOut << timeMonthDayTime(rawTime) << " ..... Finished successfully\n" <<flush;
};