Exemple #1
0
static void applyLedBatteryLayer(bool updateNow, uint32_t *timer)
{
    static bool flash = false;

    int state;
    int timeOffset = 1;

    if (updateNow) {
       state = getBatteryState();

       switch (state) {
           case BATTERY_OK:
               flash = false;
               timeOffset = 1;
               break;
           case BATTERY_WARNING:
               timeOffset = 2;
               break;
           default:
               timeOffset = 8;
               break;
       }
       flash = !flash;
    }

    *timer += LED_STRIP_HZ(timeOffset);

    if (!flash) {
       hsvColor_t *bgc = getSC(LED_SCOLOR_BACKGROUND);
       applyLedHsv(LED_MOV_FUNCTION(LED_FUNCTION_BATTERY), bgc);
    }
}
Exemple #2
0
static void applyLedBatteryLayer(bool updateNow, timeUs_t *timer)
{
    static bool flash = false;

    int timerDelayUs = HZ_TO_US(1);

    if (updateNow) {

        switch (getBatteryState()) {
            case BATTERY_OK:
                flash = true;
                timerDelayUs = HZ_TO_US(1);

                break;
            case BATTERY_WARNING:
                flash = !flash;
                timerDelayUs = HZ_TO_US(2);

                break;
            default:
                flash = !flash;
                timerDelayUs = HZ_TO_US(8);

                break;
        }
    }

    *timer += timerDelayUs;

    if (!flash) {
       const hsvColor_t *bgc = getSC(LED_SCOLOR_BACKGROUND);
       applyLedHsv(LED_MOV_FUNCTION(LED_FUNCTION_BATTERY), bgc);
    }
}
Exemple #3
0
void applyLedWarningLayer(uint8_t updateNow)
{
    const ledConfig_t *ledConfig;
    uint8_t ledIndex;
    static uint8_t warningFlashCounter = 0;

    if (updateNow && warningFlashCounter == 0) {
        warningFlags = WARNING_FLAG_NONE;
        if (feature(FEATURE_VBAT) && getBatteryState() != BATTERY_OK) {
            warningFlags |= WARNING_FLAG_LOW_BATTERY;
        }
        if (feature(FEATURE_FAILSAFE) && failsafeIsActive()) {
            warningFlags |= WARNING_FLAG_FAILSAFE;
        }
        if (!ARMING_FLAG(ARMED) && !ARMING_FLAG(OK_TO_ARM)) {
            warningFlags |= WARNING_FLAG_ARMING_DISABLED;
        }
    }

    if (warningFlags || warningFlashCounter > 0) {
        const hsvColor_t *warningColor = &hsv_black;

        if ((warningFlashCounter & 1) == 0) {
            if (warningFlashCounter < 4 && (warningFlags & WARNING_FLAG_ARMING_DISABLED)) {
                warningColor = &hsv_green;
            }
            if (warningFlashCounter >= 4 && warningFlashCounter < 12 && (warningFlags & WARNING_FLAG_LOW_BATTERY)) {
                warningColor = &hsv_red;
            }
            if (warningFlashCounter >= 12 && warningFlashCounter < 16 && (warningFlags & WARNING_FLAG_FAILSAFE)) {
                warningColor = &hsv_yellow;
            }
        }  else {
            if (warningFlashCounter >= 12 && warningFlashCounter < 16 && (warningFlags & WARNING_FLAG_FAILSAFE)) {
                warningColor = &hsv_blue;
            }
        }

        for (ledIndex = 0; ledIndex < ledCount; ledIndex++) {

            ledConfig = &ledConfigs[ledIndex];

            if (!(ledConfig->flags & LED_FUNCTION_WARNING)) {
                continue;
            }
            setLedHsv(ledIndex, warningColor);
        }
    }

    if (updateNow && (warningFlags || warningFlashCounter)) {
        warningFlashCounter++;
        if (warningFlashCounter == 20) {
            warningFlashCounter = 0;
        }
    }
}
Exemple #4
0
static char osdGetBatterySymbol(int cellVoltage)
{
    if (getBatteryState() == BATTERY_CRITICAL) {
        return SYM_MAIN_BATT; // FIXME: currently the BAT- symbol, ideally replace with a battery with exclamation mark
    } else {
        // Calculate a symbol offset using cell voltage over full cell voltage range
        const int symOffset = scaleRange(cellVoltage, batteryConfig()->vbatmincellvoltage * 10, batteryConfig()->vbatmaxcellvoltage * 10, 0, 7);
        return SYM_BATT_EMPTY - constrain(symOffset, 0, 6);
    }
}
Exemple #5
0
static void applyLedWarningLayer(bool updateNow, timeUs_t *timer)
{
    static uint8_t warningFlashCounter = 0;
    static uint8_t warningFlags = 0;          // non-zero during blinks

    if (updateNow) {
        // keep counter running, so it stays in sync with blink
        warningFlashCounter++;
        warningFlashCounter &= 0xF;

        if (warningFlashCounter == 0) {      // update when old flags was processed
            warningFlags = 0;
            if (batteryConfig()->voltageMeterSource != VOLTAGE_METER_NONE && getBatteryState() != BATTERY_OK)
                warningFlags |= 1 << WARNING_LOW_BATTERY;
            if (failsafeIsActive())
                warningFlags |= 1 << WARNING_FAILSAFE;
            if (!ARMING_FLAG(ARMED) && isArmingDisabled())
                warningFlags |= 1 << WARNING_ARMING_DISABLED;
        }
        *timer += HZ_TO_US(10);
    }

    const hsvColor_t *warningColor = NULL;

    if (warningFlags) {
        bool colorOn = (warningFlashCounter % 2) == 0;   // w_w_
        warningFlags_e warningId = warningFlashCounter / 4;
        if (warningFlags & (1 << warningId)) {
            switch (warningId) {
                case WARNING_ARMING_DISABLED:
                    warningColor = colorOn ? &HSV(GREEN)  : &HSV(BLACK);
                    break;
                case WARNING_LOW_BATTERY:
                    warningColor = colorOn ? &HSV(RED)    : &HSV(BLACK);
                    break;
                case WARNING_FAILSAFE:
                    warningColor = colorOn ? &HSV(YELLOW) : &HSV(BLUE);
                    break;
                default:;
            }
        }
    } else {
        if (isBeeperOn()) {
            warningColor = &HSV(ORANGE);
        }
    }

    if (warningColor) {
        applyLedHsv(LED_MOV_OVERLAY(LED_FLAG_OVERLAY(LED_OVERLAY_WARNING)), warningColor);
    }
}
Exemple #6
0
static inline void updateAlarmBatteryStatus(HOTT_EAM_MSG_t *hottEAMMessage)
{
    static uint32_t lastHottAlarmSoundTime = 0;

    if (((millis() - lastHottAlarmSoundTime) >= (telemetryConfig()->hottAlarmSoundInterval * MILLISECONDS_IN_A_SECOND))){
        lastHottAlarmSoundTime = millis();
        const batteryState_e batteryState = getBatteryState();
        if (batteryState == BATTERY_WARNING  || batteryState == BATTERY_CRITICAL){
            hottEAMMessage->warning_beeps = 0x10;
            hottEAMMessage->alarm_invers1 = HOTT_EAM_ALARM1_FLAG_BATTERY_1;
        } else {
            hottEAMMessage->warning_beeps = HOTT_EAM_ALARM1_FLAG_NONE;
            hottEAMMessage->alarm_invers1 = HOTT_EAM_ALARM1_FLAG_NONE;
        }
    }
}
Exemple #7
0
static inline void updateAlarmBatteryStatus(HOTT_EAM_MSG_t *hottEAMMessage)
{
    batteryState_e batteryState;

    if (shouldTriggerBatteryAlarmNow()){
        lastHottAlarmSoundTime = millis();
        batteryState = getBatteryState();
        if (batteryState == BATTERY_WARNING  || batteryState == BATTERY_CRITICAL){
            hottEAMMessage->warning_beeps = 0x10;
            hottEAMMessage->alarm_invers1 = HOTT_EAM_ALARM1_FLAG_BATTERY_1;
        }
        else {
            hottEAMMessage->warning_beeps = HOTT_EAM_ALARM1_FLAG_NONE;
            hottEAMMessage->alarm_invers1 = HOTT_EAM_ALARM1_FLAG_NONE;
        }
    }
}
Exemple #8
0
static void updateBatteryBeeperAlert(void)
{
    switch (getBatteryState()) {
        case BATTERY_WARNING:
            beeper(BEEPER_BAT_LOW);

            break;
        case BATTERY_CRITICAL:
            beeper(BEEPER_BAT_CRIT_LOW);

            break;
        case BATTERY_OK:
        case BATTERY_NOT_PRESENT:
        case BATTERY_INIT:
            break;
    }
}
Exemple #9
0
static void applyLedWarningLayer(bool updateNow, uint32_t *timer)
{
    static uint8_t warningFlashCounter = 0;
    static uint8_t warningFlags = 0;          // non-zero during blinks

    if (updateNow) {
        // keep counter running, so it stays in sync with blink
        warningFlashCounter++;
        warningFlashCounter &= 0xF;

        if (warningFlashCounter == 0) {      // update when old flags was processed
            warningFlags = 0;
            if (feature(FEATURE_VBAT) && getBatteryState() != BATTERY_OK)
                warningFlags |= 1 << WARNING_LOW_BATTERY;
            if (feature(FEATURE_FAILSAFE) && failsafeIsActive())
                warningFlags |= 1 << WARNING_FAILSAFE;
            if (!ARMING_FLAG(ARMED) && !ARMING_FLAG(OK_TO_ARM))
                warningFlags |= 1 << WARNING_ARMING_DISABLED;
        }
        *timer += LED_STRIP_HZ(10);
    }

    if (warningFlags) {
        const hsvColor_t *warningColor = NULL;

        bool colorOn = (warningFlashCounter % 2) == 0;   // w_w_
        warningFlags_e warningId = warningFlashCounter / 4;
        if (warningFlags & (1 << warningId)) {
            switch (warningId) {
                case WARNING_ARMING_DISABLED:
                    warningColor = colorOn ? &HSV(GREEN)  : &HSV(BLACK);
                    break;
                case WARNING_LOW_BATTERY:
                    warningColor = colorOn ? &HSV(RED)    : &HSV(BLACK);
                    break;
                case WARNING_FAILSAFE:
                    warningColor = colorOn ? &HSV(YELLOW) : &HSV(BLUE);
                    break;
                default:;
            }
        }
        if (warningColor)
            applyLedHsv(LED_MOV_OVERLAY(LED_FLAG_OVERLAY(LED_OVERLAY_WARNING)), warningColor);
    }
}
Exemple #10
0
/*
 * Called to activate/deactivate beeper, using the given "BEEPER_..." value.
 * This function returns immediately (does not block).
 */
void beeper(beeperMode_e mode)
{
    if (
        mode == BEEPER_SILENCE || (
            (getBeeperOffMask() & (1 << (BEEPER_USB - 1)))
            && getBatteryState() == BATTERY_NOT_PRESENT
        )
    ) {
        beeperSilence();
        return;
    }

    const beeperTableEntry_t *selectedCandidate = NULL;
    for (uint32_t i = 0; i < BEEPER_TABLE_ENTRY_COUNT; i++) {
        const beeperTableEntry_t *candidate = &beeperTable[i];
        if (candidate->mode != mode) {
            continue;
        }

        if (!currentBeeperEntry) {
            selectedCandidate = candidate;
            break;
        }

        if (candidate->priority < currentBeeperEntry->priority) {
            selectedCandidate = candidate;
        }

        break;
    }

    if (!selectedCandidate) {
        return;
    }

    currentBeeperEntry = selectedCandidate;

    beeperPos = 0;
    beeperNextToggleTime = 0;
}
Exemple #11
0
const char * getBatteryStateString(void)
{
    return batteryStateStrings[getBatteryState()];
}
Exemple #12
0
void mavlinkSendSystemStatus(void)
{
    uint16_t msgLength;

    uint32_t onboardControlAndSensors = 35843;

    /*
    onboard_control_sensors_present Bitmask
    fedcba9876543210
    1000110000000011    For all   = 35843
    0001000000000100    With Mag  = 4100
    0010000000001000    With Baro = 8200
    0100000000100000    With GPS  = 16416
    0000001111111111
    */

    if (sensors(SENSOR_MAG))  onboardControlAndSensors |=  4100;
    if (sensors(SENSOR_BARO)) onboardControlAndSensors |=  8200;
    if (sensors(SENSOR_GPS))  onboardControlAndSensors |= 16416;

    uint16_t batteryVoltage = 0;
    int16_t batteryAmperage = -1;
    int8_t batteryRemaining = 100;

    if (getBatteryState() < BATTERY_NOT_PRESENT) {
        batteryVoltage = isBatteryVoltageConfigured() ? getBatteryVoltage() * 100 : batteryVoltage;
        batteryAmperage = isAmperageConfigured() ? getAmperage() : batteryAmperage;
        batteryRemaining = isBatteryVoltageConfigured() ? calculateBatteryPercentageRemaining() : batteryRemaining;
    }

    mavlink_msg_sys_status_pack(0, 200, &mavMsg,
        // onboard_control_sensors_present Bitmask showing which onboard controllers and sensors are present.
        //Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure,
        // 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position,
        // 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization,
        // 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
        onboardControlAndSensors,
        // onboard_control_sensors_enabled Bitmask showing which onboard controllers and sensors are enabled
        onboardControlAndSensors,
        // onboard_control_sensors_health Bitmask showing which onboard controllers and sensors are operational or have an error.
        onboardControlAndSensors & 1023,
        // load Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000
        0,
        // voltage_battery Battery voltage, in millivolts (1 = 1 millivolt)
        batteryVoltage,
        // current_battery Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current
        batteryAmperage,
        // battery_remaining Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery
        batteryRemaining,
        // drop_rate_comm Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV)
        0,
        // errors_comm Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV)
        0,
        // errors_count1 Autopilot-specific errors
        0,
        // errors_count2 Autopilot-specific errors
        0,
        // errors_count3 Autopilot-specific errors
        0,
        // errors_count4 Autopilot-specific errors
        0);
    msgLength = mavlink_msg_to_send_buffer(mavBuffer, &mavMsg);
    mavlinkSerialWrite(mavBuffer, msgLength);
}
Exemple #13
0
int mspServerCommandHandler(mspPacket_t *cmd, mspPacket_t *reply)
{
    sbuf_t *src = &cmd->buf;
    sbuf_t *dst = &reply->buf;
    int len = sbufBytesRemaining(src);

    switch (cmd->cmd) {
        case MSP_API_VERSION:
            sbufWriteU8(dst, MSP_PROTOCOL_VERSION);

            sbufWriteU8(dst, API_VERSION_MAJOR);
            sbufWriteU8(dst, API_VERSION_MINOR);
            break;

        case MSP_FC_VARIANT:
            sbufWriteData(dst, flightControllerIdentifier, FLIGHT_CONTROLLER_IDENTIFIER_LENGTH);
            break;

        case MSP_FC_VERSION:
            sbufWriteU8(dst, FC_VERSION_MAJOR);
            sbufWriteU8(dst, FC_VERSION_MINOR);
            sbufWriteU8(dst, FC_VERSION_PATCH_LEVEL);
            break;

        case MSP_BOARD_INFO:
            sbufWriteData(dst, boardIdentifier, BOARD_IDENTIFIER_LENGTH);
            sbufWriteU16(dst, 0);  // hardware revision
            sbufWriteU8(dst, 1);  // 0 == FC, 1 == OSD
            break;

        case MSP_BUILD_INFO:
            sbufWriteData(dst, buildDate, BUILD_DATE_LENGTH);
            sbufWriteData(dst, buildTime, BUILD_TIME_LENGTH);
            sbufWriteData(dst, shortGitRevision, GIT_SHORT_REVISION_LENGTH);
            break;

            // DEPRECATED - Use MSP_API_VERSION
        case MSP_IDENT:
            sbufWriteU8(dst, MW_VERSION);
            sbufWriteU8(dst, 0); // mixer mode
            sbufWriteU8(dst, MSP_PROTOCOL_VERSION);
            sbufWriteU32(dst, CAP_DYNBALANCE); // "capability"
            break;

        case MSP_STATUS_EX:
        case MSP_STATUS:
            sbufWriteU16(dst, cycleTime);
#ifdef USE_I2C
            sbufWriteU16(dst, i2cGetErrorCounter());
#else
            sbufWriteU16(dst, 0);
#endif
            sbufWriteU16(dst, 0); // sensors
            sbufWriteU32(dst, 0); // flight mode flags
            sbufWriteU8(dst, 0);  // profile index
            if(cmd->cmd == MSP_STATUS_EX) {
                sbufWriteU16(dst, averageSystemLoadPercent);
            }
            break;

        case MSP_DEBUG:
            // output some useful QA statistics
            // debug[x] = ((hse_value / 1000000) * 1000) + (SystemCoreClock / 1000000);         // XX0YY [crystal clock : core clock]

            for (int i = 0; i < DEBUG16_VALUE_COUNT; i++)
                sbufWriteU16(dst, debug[i]);      // 4 variables are here for general monitoring purpose
            break;

        case MSP_UID:
            sbufWriteU32(dst, U_ID_0);
            sbufWriteU32(dst, U_ID_1);
            sbufWriteU32(dst, U_ID_2);
            break;

        case MSP_VOLTAGE_METER_CONFIG:
            for (int i = 0; i < MAX_VOLTAGE_METERS; i++) {
                // FIXME update for multiple voltage sources  i.e.  use `i` and support at least OSD VBAT, OSD 12V, OSD 5V
                sbufWriteU8(dst, batteryConfig()->vbatscale);
                sbufWriteU8(dst, batteryConfig()->vbatmincellvoltage);
                sbufWriteU8(dst, batteryConfig()->vbatmaxcellvoltage);
                sbufWriteU8(dst, batteryConfig()->vbatwarningcellvoltage);
            }
            break;

        case MSP_CURRENT_METER_CONFIG:
            sbufWriteU16(dst, batteryConfig()->currentMeterScale);
            sbufWriteU16(dst, batteryConfig()->currentMeterOffset);
            sbufWriteU8(dst, batteryConfig()->currentMeterType);
            sbufWriteU16(dst, batteryConfig()->batteryCapacity);
            break;

        case MSP_CF_SERIAL_CONFIG:
            for (int i = 0; i < serialGetAvailablePortCount(); i++) {
                if (!serialIsPortAvailable(serialConfig()->portConfigs[i].identifier)) {
                    continue;
                };
                sbufWriteU8(dst, serialConfig()->portConfigs[i].identifier);
                sbufWriteU16(dst, serialConfig()->portConfigs[i].functionMask);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_MSP_SERVER]);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_MSP_CLIENT]);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_RESERVED1]);
                sbufWriteU8(dst, serialConfig()->portConfigs[i].baudRates[BAUDRATE_RESERVED2]);
            }
            break;

        case MSP_BF_BUILD_INFO:
            sbufWriteData(dst, buildDate, 11); // MMM DD YYYY as ascii, MMM = Jan/Feb... etc
            sbufWriteU32(dst, 0); // future exp
            sbufWriteU32(dst, 0); // future exp
            break;

        case MSP_DATAFLASH_SUMMARY: // FIXME update GUI and remove this.
            sbufWriteU8(dst, 0); // FlashFS is neither ready nor supported
            sbufWriteU32(dst, 0);
            sbufWriteU32(dst, 0);
            sbufWriteU32(dst, 0);
            break;

        case MSP_BATTERY_STATES:
            // write out battery states, once for each battery
            sbufWriteU8(dst, (uint8_t)getBatteryState() == BATTERY_NOT_PRESENT ? 0 : 1); // battery connected - 0 not connected, 1 connected
            sbufWriteU8(dst, (uint8_t)constrain(vbat, 0, 255));
            sbufWriteU16(dst, (uint16_t)constrain(mAhDrawn, 0, 0xFFFF)); // milliamp hours drawn from battery
            break;

        case MSP_CURRENT_METERS:
            // write out amperage, once for each current meter.
            sbufWriteU16(dst, (uint16_t)constrain(amperage * 10, 0, 0xFFFF)); // send amperage in 0.001 A steps. Negative range is truncated to zero
            break;

        case MSP_VOLTAGE_METERS:
            // write out voltage, once for each meter.
            for (int i = 0; i < 3; i++) {
                // FIXME hack that needs cleanup, see issue #2221
                // This works for now, but the vbat scale also changes the 12V and 5V readings.
                switch(i) {
                    case 0:
                        sbufWriteU8(dst, (uint8_t)constrain(vbat, 0, 255));
                        break;
                    case 1:
                        sbufWriteU8(dst, (uint8_t)constrain(batteryAdcToVoltage(adcGetChannel(ADC_12V)), 0, 255));
                        break;
                    case 2:
                        sbufWriteU8(dst, (uint8_t)constrain(batteryAdcToVoltage(adcGetChannel(ADC_5V)), 0, 255));
                        break;
                }
            }
            break;
        case MSP_OSD_VIDEO_CONFIG:
            sbufWriteU8(dst, osdVideoConfig()->videoMode); // 0 = NTSC, 1 = PAL
            break;

        case MSP_RESET_CONF:
            resetEEPROM();
            readEEPROM();
            break;

        case MSP_EEPROM_WRITE:
            writeEEPROM();
            readEEPROM();
            break;

        case MSP_SET_VOLTAGE_METER_CONFIG: {
            uint8_t i = sbufReadU8(src);
            if (i >= MAX_VOLTAGE_METERS) {
                return -1;
            }
            // FIXME use `i`, see MSP_VOLTAGE_METER_CONFIG
            batteryConfig()->vbatscale = sbufReadU8(src);               // actual vbatscale as intended
            batteryConfig()->vbatmincellvoltage = sbufReadU8(src);      // vbatlevel_warn1 in MWC2.3 GUI
            batteryConfig()->vbatmaxcellvoltage = sbufReadU8(src);      // vbatlevel_warn2 in MWC2.3 GUI
            batteryConfig()->vbatwarningcellvoltage = sbufReadU8(src);  // vbatlevel when buzzer starts to alert
            break;
        }

        case MSP_SET_CURRENT_METER_CONFIG:
            batteryConfig()->currentMeterScale = sbufReadU16(src);
            batteryConfig()->currentMeterOffset = sbufReadU16(src);
            batteryConfig()->currentMeterType = sbufReadU8(src);
            batteryConfig()->batteryCapacity = sbufReadU16(src);
            break;

        case MSP_SET_CF_SERIAL_CONFIG: {
            int portConfigSize = sizeof(uint8_t) + sizeof(uint16_t) + (sizeof(uint8_t) * 4);

            if (len % portConfigSize != 0)
                return -1;

            while (sbufBytesRemaining(src) >= portConfigSize) {
                uint8_t identifier = sbufReadU8(src);

                serialPortConfig_t *portConfig = serialFindPortConfiguration(identifier);
                if (!portConfig)
                    return -1;

                portConfig->identifier = identifier;
                portConfig->functionMask = sbufReadU16(src);
                portConfig->baudRates[BAUDRATE_MSP_SERVER] = sbufReadU8(src);
                portConfig->baudRates[BAUDRATE_MSP_CLIENT] = sbufReadU8(src);
                portConfig->baudRates[BAUDRATE_RESERVED1] = sbufReadU8(src);
                portConfig->baudRates[BAUDRATE_RESERVED2] = sbufReadU8(src);
            }
            break;
        }

        case MSP_REBOOT:
            mspPostProcessFn = mspRebootFn;
            break;

        case MSP_SET_OSD_VIDEO_CONFIG:
            osdVideoConfig()->videoMode = sbufReadU8(src);
            mspPostProcessFn = mspApplyVideoConfigurationFn;
            break;

        default:
            // we do not know how to handle the message
            return 0;
    }
    return 1;     // message was handled successfully
}
Exemple #14
0
static bool osdDrawSingleElement(uint8_t item)
{
    if (!VISIBLE(osdConfig()->item_pos[item]) || BLINK(item)) {
        return false;
    }

    uint8_t elemPosX = OSD_X(osdConfig()->item_pos[item]);
    uint8_t elemPosY = OSD_Y(osdConfig()->item_pos[item]);
    char buff[OSD_ELEMENT_BUFFER_LENGTH] = "";

    switch (item) {
    case OSD_RSSI_VALUE:
        {
            uint16_t osdRssi = getRssi() * 100 / 1024; // change range
            if (osdRssi >= 100)
                osdRssi = 99;

            tfp_sprintf(buff, "%c%2d", SYM_RSSI, osdRssi);
            break;
        }

    case OSD_MAIN_BATT_VOLTAGE:
        buff[0] = osdGetBatterySymbol(osdGetBatteryAverageCellVoltage());
        tfp_sprintf(buff + 1, "%2d.%1d%c", getBatteryVoltage() / 10, getBatteryVoltage() % 10, SYM_VOLT);
        break;

    case OSD_CURRENT_DRAW:
        {
            const int32_t amperage = getAmperage();
            tfp_sprintf(buff, "%3d.%02d%c", abs(amperage) / 100, abs(amperage) % 100, SYM_AMP);
            break;
        }

    case OSD_MAH_DRAWN:
        tfp_sprintf(buff, "%4d%c", getMAhDrawn(), SYM_MAH);
        break;

#ifdef USE_GPS
    case OSD_GPS_SATS:
        tfp_sprintf(buff, "%c%c%2d", SYM_SAT_L, SYM_SAT_R, gpsSol.numSat);
        break;

    case OSD_GPS_SPEED:
        // FIXME ideally we want to use SYM_KMH symbol but it's not in the font any more, so we use K (M for MPH)
        switch (osdConfig()->units) {
        case OSD_UNIT_IMPERIAL:
            tfp_sprintf(buff, "%3dM", CM_S_TO_MPH(gpsSol.groundSpeed));
            break;
        default:
            tfp_sprintf(buff, "%3dK", CM_S_TO_KM_H(gpsSol.groundSpeed));
            break;
        }
        break;

    case OSD_GPS_LAT:
        // The SYM_LAT symbol in the actual font contains only blank, so we use the SYM_ARROW_NORTH
        osdFormatCoordinate(buff, SYM_ARROW_NORTH, gpsSol.llh.lat);
        break;

    case OSD_GPS_LON:
        // The SYM_LON symbol in the actual font contains only blank, so we use the SYM_ARROW_EAST
        osdFormatCoordinate(buff, SYM_ARROW_EAST, gpsSol.llh.lon);
        break;

    case OSD_HOME_DIR:
        if (STATE(GPS_FIX) && STATE(GPS_FIX_HOME)) {
            if (GPS_distanceToHome > 0) {
                const int h = GPS_directionToHome - DECIDEGREES_TO_DEGREES(attitude.values.yaw);
                buff[0] = osdGetDirectionSymbolFromHeading(h);
            } else {
                // We don't have a HOME symbol in the font, by now we use this
                buff[0] = SYM_THR1;
            }

        } else {
            // We use this symbol when we don't have a FIX
            buff[0] = SYM_COLON;
        }

        buff[1] = 0;

        break;

    case OSD_HOME_DIST:
        if (STATE(GPS_FIX) && STATE(GPS_FIX_HOME)) {
            const int32_t distance = osdGetMetersToSelectedUnit(GPS_distanceToHome);
            tfp_sprintf(buff, "%d%c", distance, osdGetMetersToSelectedUnitSymbol());
        } else {
            // We use this symbol when we don't have a FIX
            buff[0] = SYM_COLON;
            // overwrite any previous distance with blanks
            memset(buff + 1, SYM_BLANK, 6);
            buff[7] = '\0';
        }
        break;

#endif // GPS

    case OSD_COMPASS_BAR:
        memcpy(buff, compassBar + osdGetHeadingIntoDiscreteDirections(DECIDEGREES_TO_DEGREES(attitude.values.yaw), 16), 9);
        buff[9] = 0;
        break;

    case OSD_ALTITUDE:
        osdFormatAltitudeString(buff, getEstimatedAltitude());
        break;

    case OSD_ITEM_TIMER_1:
    case OSD_ITEM_TIMER_2:
        osdFormatTimer(buff, true, true, item - OSD_ITEM_TIMER_1);
        break;

    case OSD_REMAINING_TIME_ESTIMATE:
        {
            const int mAhDrawn = getMAhDrawn();
            const int remaining_time = (int)((osdConfig()->cap_alarm - mAhDrawn) * ((float)flyTime) / mAhDrawn);

            if (mAhDrawn < 0.1 * osdConfig()->cap_alarm) {
                tfp_sprintf(buff, "--:--");
            } else if (mAhDrawn > osdConfig()->cap_alarm) {
                tfp_sprintf(buff, "00:00");
            } else {
                osdFormatTime(buff, OSD_TIMER_PREC_SECOND, remaining_time);
            }
            break;
        }

    case OSD_FLYMODE:
        {
            if (FLIGHT_MODE(FAILSAFE_MODE)) {
                strcpy(buff, "!FS!");
            } else if (FLIGHT_MODE(ANGLE_MODE)) {
                strcpy(buff, "STAB");
            } else if (FLIGHT_MODE(HORIZON_MODE)) {
                strcpy(buff, "HOR ");
            } else if (FLIGHT_MODE(GPS_RESCUE_MODE)) {
                strcpy(buff, "RESC");
            } else if (isAirmodeActive()) {
                strcpy(buff, "AIR ");
            } else {
                strcpy(buff, "ACRO");
            }

            break;
        }

    case OSD_ANTI_GRAVITY:
        {
            if (pidItermAccelerator() > 1.0f) {
                strcpy(buff, "AG");
            }

            break;
        }

    case OSD_CRAFT_NAME:
        // This does not strictly support iterative updating if the craft name changes at run time. But since the craft name is not supposed to be changing this should not matter, and blanking the entire length of the craft name string on update will make it impossible to configure elements to be displayed on the right hand side of the craft name.
        //TODO: When iterative updating is implemented, change this so the craft name is only printed once whenever the OSD 'flight' screen is entered.

        if (strlen(pilotConfig()->name) == 0) {
            strcpy(buff, "CRAFT_NAME");
        } else {
            unsigned i;
            for (i = 0; i < MAX_NAME_LENGTH; i++) {
                if (pilotConfig()->name[i]) {
                    buff[i] = toupper((unsigned char)pilotConfig()->name[i]);
                } else {
                    break;
                }    
            }    
            buff[i] = '\0';
        }

        break;

    case OSD_THROTTLE_POS:
        buff[0] = SYM_THR;
        buff[1] = SYM_THR1;
        tfp_sprintf(buff + 2, "%3d", (constrain(rcData[THROTTLE], PWM_RANGE_MIN, PWM_RANGE_MAX) - PWM_RANGE_MIN) * 100 / (PWM_RANGE_MAX - PWM_RANGE_MIN));
        break;

#if defined(USE_VTX_COMMON)
    case OSD_VTX_CHANNEL:
        {
            const char vtxBandLetter = vtx58BandLetter[vtxSettingsConfig()->band];
            const char *vtxChannelName = vtx58ChannelNames[vtxSettingsConfig()->channel];
            uint8_t vtxPower = vtxSettingsConfig()->power;
            const vtxDevice_t *vtxDevice = vtxCommonDevice();
            if (vtxDevice && vtxSettingsConfig()->lowPowerDisarm) {
                vtxCommonGetPowerIndex(vtxDevice, &vtxPower);
            }
            tfp_sprintf(buff, "%c:%s:%1d", vtxBandLetter, vtxChannelName, vtxPower);
            break;
        }
#endif

    case OSD_CROSSHAIRS:
        buff[0] = SYM_AH_CENTER_LINE;
        buff[1] = SYM_AH_CENTER;
        buff[2] = SYM_AH_CENTER_LINE_RIGHT;
        buff[3] = 0;
        break;

    case OSD_ARTIFICIAL_HORIZON:
        {
            // Get pitch and roll limits in tenths of degrees
            const int maxPitch = osdConfig()->ahMaxPitch * 10;
            const int maxRoll = osdConfig()->ahMaxRoll * 10;
            const int rollAngle = constrain(attitude.values.roll, -maxRoll, maxRoll);
            int pitchAngle = constrain(attitude.values.pitch, -maxPitch, maxPitch);
            // Convert pitchAngle to y compensation value
            // (maxPitch / 25) divisor matches previous settings of fixed divisor of 8 and fixed max AHI pitch angle of 20.0 degrees
            pitchAngle = ((pitchAngle * 25) / maxPitch) - 41; // 41 = 4 * AH_SYMBOL_COUNT + 5

            for (int x = -4; x <= 4; x++) {
                const int y = ((-rollAngle * x) / 64) - pitchAngle;
                if (y >= 0 && y <= 81) {
                    displayWriteChar(osdDisplayPort, elemPosX + x, elemPosY + (y / AH_SYMBOL_COUNT), (SYM_AH_BAR9_0 + (y % AH_SYMBOL_COUNT)));
                }
            }

            return true;
        }

    case OSD_HORIZON_SIDEBARS:
        {
            // Draw AH sides
            const int8_t hudwidth = AH_SIDEBAR_WIDTH_POS;
            const int8_t hudheight = AH_SIDEBAR_HEIGHT_POS;
            for (int y = -hudheight; y <= hudheight; y++) {
                displayWriteChar(osdDisplayPort, elemPosX - hudwidth, elemPosY + y, SYM_AH_DECORATION);
                displayWriteChar(osdDisplayPort, elemPosX + hudwidth, elemPosY + y, SYM_AH_DECORATION);
            }

            // AH level indicators
            displayWriteChar(osdDisplayPort, elemPosX - hudwidth + 1, elemPosY, SYM_AH_LEFT);
            displayWriteChar(osdDisplayPort, elemPosX + hudwidth - 1, elemPosY, SYM_AH_RIGHT);

            return true;
        }

    case OSD_ROLL_PIDS:
        osdFormatPID(buff, "ROL", &currentPidProfile->pid[PID_ROLL]);
        break;

    case OSD_PITCH_PIDS:
        osdFormatPID(buff, "PIT", &currentPidProfile->pid[PID_PITCH]);
        break;

    case OSD_YAW_PIDS:
        osdFormatPID(buff, "YAW", &currentPidProfile->pid[PID_YAW]);
        break;

    case OSD_POWER:
        tfp_sprintf(buff, "%4dW", getAmperage() * getBatteryVoltage() / 1000);
        break;

    case OSD_PIDRATE_PROFILE:
        tfp_sprintf(buff, "%d-%d", getCurrentPidProfileIndex() + 1, getCurrentControlRateProfileIndex() + 1);
        break;

    case OSD_WARNINGS:
        {

#define OSD_WARNINGS_MAX_SIZE 11
#define OSD_FORMAT_MESSAGE_BUFFER_SIZE (OSD_WARNINGS_MAX_SIZE + 1)

            STATIC_ASSERT(OSD_FORMAT_MESSAGE_BUFFER_SIZE <= sizeof(buff), osd_warnings_size_exceeds_buffer_size);

            const batteryState_e batteryState = getBatteryState();

            if (osdWarnGetState(OSD_WARNING_BATTERY_CRITICAL) && batteryState == BATTERY_CRITICAL) {
                osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, " LAND NOW");
                break;
            }

#ifdef USE_ADC_INTERNAL
            uint8_t coreTemperature = getCoreTemperatureCelsius();
            if (osdWarnGetState(OSD_WARNING_CORE_TEMPERATURE) && coreTemperature >= osdConfig()->core_temp_alarm) {
                char coreTemperatureWarningMsg[OSD_FORMAT_MESSAGE_BUFFER_SIZE];
                tfp_sprintf(coreTemperatureWarningMsg, "CORE: %3d%c", osdConvertTemperatureToSelectedUnit(getCoreTemperatureCelsius() * 10) / 10, osdGetTemperatureSymbolForSelectedUnit());

                osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, coreTemperatureWarningMsg);

                break;
            }
#endif

#ifdef USE_ESC_SENSOR
            // Show warning if we lose motor output, the ESC is overheating or excessive current draw
            if (feature(FEATURE_ESC_SENSOR) && osdWarnGetState(OSD_WARNING_ESC_FAIL)) {
                char escWarningMsg[OSD_FORMAT_MESSAGE_BUFFER_SIZE];
                unsigned pos = 0;
                
                const char *title = "ESC";

                // center justify message
                while (pos < (OSD_WARNINGS_MAX_SIZE - (strlen(title) + getMotorCount())) / 2) {
                    escWarningMsg[pos++] = ' ';
                }

                strcpy(escWarningMsg + pos, title);
                pos += strlen(title);

                unsigned i = 0;
                unsigned escWarningCount = 0;
                while (i < getMotorCount() && pos < OSD_FORMAT_MESSAGE_BUFFER_SIZE - 1) {
                    escSensorData_t *escData = getEscSensorData(i);
                    const char motorNumber = '1' + i;
                    // if everything is OK just display motor number else R, T or C
                    char warnFlag = motorNumber;
                    if (ARMING_FLAG(ARMED) && osdConfig()->esc_rpm_alarm != ESC_RPM_ALARM_OFF && calcEscRpm(escData->rpm) <= osdConfig()->esc_rpm_alarm) {
                        warnFlag = 'R';
                    }
                    if (osdConfig()->esc_temp_alarm != ESC_TEMP_ALARM_OFF && escData->temperature >= osdConfig()->esc_temp_alarm) {
                        warnFlag = 'T';
                    }
                    if (ARMING_FLAG(ARMED) && osdConfig()->esc_current_alarm != ESC_CURRENT_ALARM_OFF && escData->current >= osdConfig()->esc_current_alarm) {
                        warnFlag = 'C';
                    }

                    escWarningMsg[pos++] = warnFlag;

                    if (warnFlag != motorNumber) {
                        escWarningCount++;
                    }

                    i++;
                }

                escWarningMsg[pos] = '\0';

                if (escWarningCount > 0) {
                    osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, escWarningMsg);
                }
                break;
            }
#endif

            // Warn when in flip over after crash mode
            if (osdWarnGetState(OSD_WARNING_CRASH_FLIP) && isFlipOverAfterCrashMode()) {
                osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, "CRASH FLIP");
                break;
            }

            // Show most severe reason for arming being disabled
            if (osdWarnGetState(OSD_WARNING_ARMING_DISABLE) && IS_RC_MODE_ACTIVE(BOXARM) && isArmingDisabled()) {
                const armingDisableFlags_e flags = getArmingDisableFlags();
                for (int i = 0; i < ARMING_DISABLE_FLAGS_COUNT; i++) {
                    if (flags & (1 << i)) {
                        osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, armingDisableFlagNames[i]);
                        break;
                    }
                }
                break;
            }

            if (osdWarnGetState(OSD_WARNING_BATTERY_WARNING) && batteryState == BATTERY_WARNING) {
                osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, "LOW BATTERY");
                break;
            }

            // Show warning if battery is not fresh
            if (osdWarnGetState(OSD_WARNING_BATTERY_NOT_FULL) && !ARMING_FLAG(WAS_EVER_ARMED) && (getBatteryState() == BATTERY_OK)
                  && getBatteryAverageCellVoltage() < batteryConfig()->vbatfullcellvoltage) {
                osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, "BATT < FULL");
                break;
            }

            // Visual beeper
            if (osdWarnGetState(OSD_WARNING_VISUAL_BEEPER) && showVisualBeeper) {
                osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, "  * * * *");
                break;
            }

            osdFormatMessage(buff, OSD_FORMAT_MESSAGE_BUFFER_SIZE, NULL);
            break;
        }

    case OSD_AVG_CELL_VOLTAGE:
        {
            const int cellV = osdGetBatteryAverageCellVoltage();
            buff[0] = osdGetBatterySymbol(cellV);
            tfp_sprintf(buff + 1, "%d.%02d%c", cellV / 100, cellV % 100, SYM_VOLT);
            break;
        }

    case OSD_DEBUG:
        tfp_sprintf(buff, "DBG %5d %5d %5d %5d", debug[0], debug[1], debug[2], debug[3]);
        break;

    case OSD_PITCH_ANGLE:
    case OSD_ROLL_ANGLE:
        {
            const int angle = (item == OSD_PITCH_ANGLE) ? attitude.values.pitch : attitude.values.roll;
            tfp_sprintf(buff, "%c%02d.%01d", angle < 0 ? '-' : ' ', abs(angle / 10), abs(angle % 10));
            break;
        }

    case OSD_MAIN_BATT_USAGE:
        {
            // Set length of indicator bar
            #define MAIN_BATT_USAGE_STEPS 11 // Use an odd number so the bar can be centered.

            // Calculate constrained value
            const float value = constrain(batteryConfig()->batteryCapacity - getMAhDrawn(), 0, batteryConfig()->batteryCapacity);

            // Calculate mAh used progress
            const uint8_t mAhUsedProgress = ceilf((value / (batteryConfig()->batteryCapacity / MAIN_BATT_USAGE_STEPS)));

            // Create empty battery indicator bar
            buff[0] = SYM_PB_START;
            for (int i = 1; i <= MAIN_BATT_USAGE_STEPS; i++) {
                buff[i] = i <= mAhUsedProgress ? SYM_PB_FULL : SYM_PB_EMPTY;
            }
            buff[MAIN_BATT_USAGE_STEPS + 1] = SYM_PB_CLOSE;
            if (mAhUsedProgress > 0 && mAhUsedProgress < MAIN_BATT_USAGE_STEPS) {
                buff[1 + mAhUsedProgress] = SYM_PB_END;
            }
            buff[MAIN_BATT_USAGE_STEPS+2] = '\0';
            break;
        }

    case OSD_DISARMED:
        if (!ARMING_FLAG(ARMED)) {
            tfp_sprintf(buff, "DISARMED");
        } else {
            if (!lastArmState) {  // previously disarmed - blank out the message one time
                tfp_sprintf(buff, "        ");
            }
        }
        break;

    case OSD_NUMERICAL_HEADING:
        {
            const int heading = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
            tfp_sprintf(buff, "%c%03d", osdGetDirectionSymbolFromHeading(heading), heading);
            break;
        }

    case OSD_NUMERICAL_VARIO:
        {
            const int verticalSpeed = osdGetMetersToSelectedUnit(getEstimatedVario());
            const char directionSymbol = verticalSpeed < 0 ? SYM_ARROW_SOUTH : SYM_ARROW_NORTH;
            tfp_sprintf(buff, "%c%01d.%01d", directionSymbol, abs(verticalSpeed / 100), abs((verticalSpeed % 100) / 10));
            break;
        }

#ifdef USE_ESC_SENSOR
    case OSD_ESC_TMP:
        if (feature(FEATURE_ESC_SENSOR)) {
            tfp_sprintf(buff, "%3d%c", osdConvertTemperatureToSelectedUnit(escDataCombined->temperature * 10) / 10, osdGetTemperatureSymbolForSelectedUnit());
        }
        break;

    case OSD_ESC_RPM:
        if (feature(FEATURE_ESC_SENSOR)) {
            tfp_sprintf(buff, "%5d", escDataCombined == NULL ? 0 : calcEscRpm(escDataCombined->rpm));
        }
        break;
#endif

#ifdef USE_RTC_TIME
    case OSD_RTC_DATETIME:
        osdFormatRtcDateTime(&buff[0]);
        break;
#endif

#ifdef USE_OSD_ADJUSTMENTS
    case OSD_ADJUSTMENT_RANGE:
        tfp_sprintf(buff, "%s: %3d", adjustmentRangeName, adjustmentRangeValue);
        break;
#endif

#ifdef USE_ADC_INTERNAL
    case OSD_CORE_TEMPERATURE:
        tfp_sprintf(buff, "%3d%c", osdConvertTemperatureToSelectedUnit(getCoreTemperatureCelsius() * 10) / 10, osdGetTemperatureSymbolForSelectedUnit());
        break;
#endif

    default:
        return false;
    }

    displayWrite(osdDisplayPort, elemPosX, elemPosY, buff);

    return true;
}
Exemple #15
0
void osdUpdateAlarms(void)
{
    // This is overdone?

    int32_t alt = osdGetMetersToSelectedUnit(getEstimatedAltitude()) / 100;

    if (getRssiPercent() < osdConfig()->rssi_alarm) {
        SET_BLINK(OSD_RSSI_VALUE);
    } else {
        CLR_BLINK(OSD_RSSI_VALUE);
    }

    if (getBatteryState() == BATTERY_OK) {
        CLR_BLINK(OSD_WARNINGS);
        CLR_BLINK(OSD_MAIN_BATT_VOLTAGE);
        CLR_BLINK(OSD_AVG_CELL_VOLTAGE);
    } else {
        SET_BLINK(OSD_WARNINGS);
        SET_BLINK(OSD_MAIN_BATT_VOLTAGE);
        SET_BLINK(OSD_AVG_CELL_VOLTAGE);
    }

    if (STATE(GPS_FIX) == 0) {
        SET_BLINK(OSD_GPS_SATS);
    } else {
        CLR_BLINK(OSD_GPS_SATS);
    }

    for (int i = 0; i < OSD_TIMER_COUNT; i++) {
        const uint16_t timer = osdConfig()->timers[i];
        const timeUs_t time = osdGetTimerValue(OSD_TIMER_SRC(timer));
        const timeUs_t alarmTime = OSD_TIMER_ALARM(timer) * 60000000; // convert from minutes to us
        if (alarmTime != 0 && time >= alarmTime) {
            SET_BLINK(OSD_ITEM_TIMER_1 + i);
        } else {
            CLR_BLINK(OSD_ITEM_TIMER_1 + i);
        }
    }

    if (getMAhDrawn() >= osdConfig()->cap_alarm) {
        SET_BLINK(OSD_MAH_DRAWN);
        SET_BLINK(OSD_MAIN_BATT_USAGE);
        SET_BLINK(OSD_REMAINING_TIME_ESTIMATE);
    } else {
        CLR_BLINK(OSD_MAH_DRAWN);
        CLR_BLINK(OSD_MAIN_BATT_USAGE);
        CLR_BLINK(OSD_REMAINING_TIME_ESTIMATE);
    }

    if (alt >= osdConfig()->alt_alarm) {
        SET_BLINK(OSD_ALTITUDE);
    } else {
        CLR_BLINK(OSD_ALTITUDE);
    }

#ifdef USE_ESC_SENSOR
    if (feature(FEATURE_ESC_SENSOR)) {
        // This works because the combined ESC data contains the maximum temperature seen amongst all ESCs
        if (osdConfig()->esc_temp_alarm != ESC_TEMP_ALARM_OFF && escDataCombined->temperature >= osdConfig()->esc_temp_alarm) {
            SET_BLINK(OSD_ESC_TMP);
        } else {
            CLR_BLINK(OSD_ESC_TMP);
        }
    }
#endif
}