void TranslatorESSL::translate(TIntermBlock *root, ShCompileOptions compileOptions, PerformanceDiagnostics * /*perfDiagnostics*/) { TInfoSinkBase &sink = getInfoSink().obj; int shaderVer = getShaderVersion(); if (shaderVer > 100) { sink << "#version " << shaderVer << " es\n"; } // Write built-in extension behaviors. writeExtensionBehavior(compileOptions); // Write pragmas after extensions because some drivers consider pragmas // like non-preprocessor tokens. writePragma(compileOptions); bool precisionEmulation = getResources().WEBGL_debug_shader_precision && getPragma().debugShaderPrecision; if (precisionEmulation) { EmulatePrecision emulatePrecision(&getSymbolTable()); root->traverse(&emulatePrecision); emulatePrecision.updateTree(); emulatePrecision.writeEmulationHelpers(sink, shaderVer, SH_ESSL_OUTPUT); } RecordConstantPrecision(root, &getSymbolTable()); // Write emulated built-in functions if needed. if (!getBuiltInFunctionEmulator().isOutputEmpty()) { sink << "// BEGIN: Generated code for built-in function emulation\n\n"; if (getShaderType() == GL_FRAGMENT_SHADER) { sink << "#if defined(GL_FRAGMENT_PRECISION_HIGH)\n" << "#define emu_precision highp\n" << "#else\n" << "#define emu_precision mediump\n" << "#endif\n\n"; } else { sink << "#define emu_precision highp\n"; } getBuiltInFunctionEmulator().outputEmulatedFunctions(sink); sink << "// END: Generated code for built-in function emulation\n\n"; } // Write array bounds clamping emulation if needed. getArrayBoundsClamper().OutputClampingFunctionDefinition(sink); if (getShaderType() == GL_COMPUTE_SHADER && isComputeShaderLocalSizeDeclared()) { const sh::WorkGroupSize &localSize = getComputeShaderLocalSize(); sink << "layout (local_size_x=" << localSize[0] << ", local_size_y=" << localSize[1] << ", local_size_z=" << localSize[2] << ") in;\n"; } if (getShaderType() == GL_GEOMETRY_SHADER_EXT) { WriteGeometryShaderLayoutQualifiers( sink, getGeometryShaderInputPrimitiveType(), getGeometryShaderInvocations(), getGeometryShaderOutputPrimitiveType(), getGeometryShaderMaxVertices()); } // Write translated shader. TOutputESSL outputESSL(sink, getArrayIndexClampingStrategy(), getHashFunction(), getNameMap(), &getSymbolTable(), getShaderType(), shaderVer, precisionEmulation, compileOptions); root->traverse(&outputESSL); }
void TranslatorGLSL::translate(TIntermBlock *root, ShCompileOptions compileOptions, PerformanceDiagnostics * /*perfDiagnostics*/) { TInfoSinkBase &sink = getInfoSink().obj; // Write GLSL version. writeVersion(root); // Write extension behaviour as needed writeExtensionBehavior(root, compileOptions); // Write pragmas after extensions because some drivers consider pragmas // like non-preprocessor tokens. writePragma(compileOptions); // If flattening the global invariant pragma, write invariant declarations for built-in // variables. It should be harmless to do this twice in the case that the shader also explicitly // did this. However, it's important to emit invariant qualifiers only for those built-in // variables that are actually used, to avoid affecting the behavior of the shader. if ((compileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) != 0 && getPragma().stdgl.invariantAll && !sh::RemoveInvariant(getShaderType(), getShaderVersion(), getOutputType(), compileOptions)) { ASSERT(wereVariablesCollected()); switch (getShaderType()) { case GL_VERTEX_SHADER: sink << "invariant gl_Position;\n"; // gl_PointSize should be declared invariant in both ESSL 1.00 and 3.00 fragment // shaders if it's statically referenced. conditionallyOutputInvariantDeclaration("gl_PointSize"); break; case GL_FRAGMENT_SHADER: // The preprocessor will reject this pragma if it's used in ESSL 3.00 fragment // shaders, so we can use simple logic to determine whether to declare these // variables invariant. conditionallyOutputInvariantDeclaration("gl_FragCoord"); conditionallyOutputInvariantDeclaration("gl_PointCoord"); break; default: // Currently not reached, but leave this in for future expansion. ASSERT(false); break; } } if ((compileOptions & SH_REWRITE_TEXELFETCHOFFSET_TO_TEXELFETCH) != 0) { sh::RewriteTexelFetchOffset(root, getSymbolTable(), getShaderVersion()); } if ((compileOptions & SH_REWRITE_FLOAT_UNARY_MINUS_OPERATOR) != 0) { sh::RewriteUnaryMinusOperatorFloat(root); } bool precisionEmulation = getResources().WEBGL_debug_shader_precision && getPragma().debugShaderPrecision; if (precisionEmulation) { EmulatePrecision emulatePrecision(&getSymbolTable()); root->traverse(&emulatePrecision); emulatePrecision.updateTree(); emulatePrecision.writeEmulationHelpers(sink, getShaderVersion(), getOutputType()); } // Write emulated built-in functions if needed. if (!getBuiltInFunctionEmulator().isOutputEmpty()) { sink << "// BEGIN: Generated code for built-in function emulation\n\n"; sink << "#define emu_precision\n\n"; getBuiltInFunctionEmulator().outputEmulatedFunctions(sink); sink << "// END: Generated code for built-in function emulation\n\n"; } // Write array bounds clamping emulation if needed. getArrayBoundsClamper().OutputClampingFunctionDefinition(sink); // Declare gl_FragColor and glFragData as webgl_FragColor and webgl_FragData // if it's core profile shaders and they are used. if (getShaderType() == GL_FRAGMENT_SHADER) { const bool mayHaveESSL1SecondaryOutputs = IsExtensionEnabled(getExtensionBehavior(), TExtension::EXT_blend_func_extended) && getShaderVersion() == 100; const bool declareGLFragmentOutputs = IsGLSL130OrNewer(getOutputType()); bool hasGLFragColor = false; bool hasGLFragData = false; bool hasGLSecondaryFragColor = false; bool hasGLSecondaryFragData = false; for (const auto &outputVar : outputVariables) { if (declareGLFragmentOutputs) { if (outputVar.name == "gl_FragColor") { ASSERT(!hasGLFragColor); hasGLFragColor = true; continue; } else if (outputVar.name == "gl_FragData") { ASSERT(!hasGLFragData); hasGLFragData = true; continue; } } if (mayHaveESSL1SecondaryOutputs) { if (outputVar.name == "gl_SecondaryFragColorEXT") { ASSERT(!hasGLSecondaryFragColor); hasGLSecondaryFragColor = true; continue; } else if (outputVar.name == "gl_SecondaryFragDataEXT") { ASSERT(!hasGLSecondaryFragData); hasGLSecondaryFragData = true; continue; } } } ASSERT(!((hasGLFragColor || hasGLSecondaryFragColor) && (hasGLFragData || hasGLSecondaryFragData))); if (hasGLFragColor) { sink << "out vec4 webgl_FragColor;\n"; } if (hasGLFragData) { sink << "out vec4 webgl_FragData[gl_MaxDrawBuffers];\n"; } if (hasGLSecondaryFragColor) { sink << "out vec4 angle_SecondaryFragColor;\n"; } if (hasGLSecondaryFragData) { sink << "out vec4 angle_SecondaryFragData[" << getResources().MaxDualSourceDrawBuffers << "];\n"; } } if (getShaderType() == GL_COMPUTE_SHADER && isComputeShaderLocalSizeDeclared()) { const sh::WorkGroupSize &localSize = getComputeShaderLocalSize(); sink << "layout (local_size_x=" << localSize[0] << ", local_size_y=" << localSize[1] << ", local_size_z=" << localSize[2] << ") in;\n"; } if (getShaderType() == GL_GEOMETRY_SHADER_EXT) { WriteGeometryShaderLayoutQualifiers( sink, getGeometryShaderInputPrimitiveType(), getGeometryShaderInvocations(), getGeometryShaderOutputPrimitiveType(), getGeometryShaderMaxVertices()); } // Write translated shader. TOutputGLSL outputGLSL(sink, getArrayIndexClampingStrategy(), getHashFunction(), getNameMap(), &getSymbolTable(), getShaderType(), getShaderVersion(), getOutputType(), compileOptions); root->traverse(&outputGLSL); }