void GravityComponent::update(const float timeDelta, GameObject* pParentObject)
{
	Vector3 impulseVector = pParentObject->getRuntimeData()->getVector("velocity");
	impulseVector += getGravity() * timeDelta;
	pParentObject->getRuntimeData()->insertVector(impulseVector, "velocity");
	pParentObject->getRuntimeData()->insertVector(getGravity(), "gravity");
}
        void CollisionDestroyPositioner::affect(float ms)
        {
            Entity *entity = getEntity();
            CollisionDetector *collisionDetector =
                    entity->getLevel()->getCollisionDetector();

            /* Convert vectors to ellipse space. */
            Vector2D position = entity->getPosition();
            Vector2D velocity = entity->getVelocity() * ms;

            /* Used later. */
            float time;
            Vector2D collision;

            if(collisionDetector->getClosestCollision(
                    entity->getRadius(), position, velocity,
                    &time, &collision)) {
                entity->setGarbage();
                entity->setPosition(collision);
            } else {
                entity->setPosition(position + velocity);
            }

            velocity = entity->getVelocity() + getGravity() * ms;
            entity->setVelocity(velocity);
        }
Exemple #3
0
void GSystem::calcDynamicsWithZeroGravityAndVelocity()
{
	Vec3 g = getGravity();
	setGravity(Vec3(0,0,0));

	double ddq[6];
	for (std::list<GBody *>::iterator iter_pbody = pBodies.begin(); iter_pbody != pBodies.end(); iter_pbody++) {
		(*iter_pbody)->pBaseJoint->get_ddq(ddq);
		matSet_multAB((*iter_pbody)->Sddq.GetArray(), (*iter_pbody)->S.GetPtr(), ddq, 6, (*iter_pbody)->bjDOF, (*iter_pbody)->bjDOF, 1);
	}

	for (std::list<GBody *>::reverse_iterator riter_pbody = pBodies.rbegin(); riter_pbody != pBodies.rend(); riter_pbody++) {
		(*riter_pbody)->update_aB_zeroV_zeroeta();
		(*riter_pbody)->update_beta_zeroeta();
	}

	for (std::list<GBody *>::iterator iter_pbody = pBodies.begin(); iter_pbody != pBodies.end(); iter_pbody++) {
		if ( (*iter_pbody)->pBaseJoint->isPrescribed() ) {
			(*iter_pbody)->update_dV(false);
			(*iter_pbody)->update_F_fs();
			(*iter_pbody)->update_tau();
		} else {
			(*iter_pbody)->update_ddq();
			(*iter_pbody)->update_dV(true);
			//(*iter_pbody)->update_F_fs(); // we do not need this.
		}
	}

	setGravity(g);
}
void PlayerPhysicsObject::handleInput(float delta)
{
    std::vector<int> playerAttributes = itrPhysics_3.ownerAt(attributeIndex_)->getAttributes(ATTRIBUTE_PLAYER);
    if(playerAttributes.size() > 1)
    {
        ERROR_MESSAGEBOX("More than one controller for one player. Not tested.")
    }
    for(unsigned int i=0; i<playerAttributes.size(); i++)
    {
        AttributePtr<Attribute_Player> ptr_player = ptr_player = itrPlayer.at(playerAttributes.at(i));
        AttributePtr<Attribute_Input> ptr_input = ptr_player->ptr_input;
        AttributePtr<Attribute_Health> health = ptr_player->ptr_health;
        if(health->health <= 0)
        {
            continue;
        }

        //--------------------------------------------------------------------------------------
        //Look and move
        //--------------------------------------------------------------------------------------
        yaw_ += ptr_input->rotation.x;
        btVector3 move = ptr_player->currentSpeed*btVector3(ptr_input->position.x, 0, ptr_input->position.y);

        //lower player speed when recently damaged
        if(ptr_player->timeSinceLastDamageTaken < 1.0f)
        {
            move *= 0.75f;
        }

        //Move player
        move = move.rotate(btVector3(0,1,0),yaw_);
        move = btVector3(move.x(), getLinearVelocity().y(), move.z());
        setLinearVelocity(move);

        //Rotate player
        btTransform world;
        world = getWorldTransform();
        world.setRotation(btQuaternion(yaw_,0,0));
        setWorldTransform(world);

        //Jetpack
        if(ptr_player->jetpack)
        {
            float jetpackPower = -getGravity().y()*1.5f;
            world = getWorldTransform();
            btVector3 velocity = getLinearVelocity();
            if(world.getOrigin().y() < 18.0f)
            {
                setLinearVelocity(btVector3(move.x(), velocity.y()+jetpackPower*delta, move.z()));
            }
        }
        else if(ptr_input->jump && ptr_player->hovering) //Jump
        {
            float jumpPower = 600.0f;
            applyCentralImpulse(btVector3(0.0f, jumpPower, 0.0f));
            //applyCentralForce(btVector3(0.0f, jumpPower, 0.0f));
        }
    }
}
Exemple #5
0
gReal GSystem::getGravitationalPotentialEnergy()
{
	gReal e = 0;
	for (std::list<GBody *>::iterator iter_pbody = pBodies.begin(); iter_pbody != pBodies.end(); iter_pbody++) {
		e += Inner((*iter_pbody)->getPositionCOMGlobal(), -getGravity()) * (*iter_pbody)->getMass(); // e += <c,-mg>
	}
	return e;
}
Exemple #6
0
bool GSystem::calcProductOfInvMassAndMatrix(RMatrix &invM_A, const RMatrix &A)
{
	if ( (size_t)A.RowSize() != pCoordinates.size() ) return false;
	invM_A.SetZero(A.RowSize(), A.ColSize());

	int i;
	std::list<GJoint *>::iterator iter_pjoint;
	std::vector<bool> isprescribed(pJoints.size());

	// save current info
	for (i=0, iter_pjoint = pJoints.begin(); iter_pjoint != pJoints.end(); i++, iter_pjoint++) {
		isprescribed[i] = (*iter_pjoint)->isPrescribed();
	}
	Vec3 g = getGravity();

	// set all joint unprescribed and set zero gravity
	setAllJointsPrescribed(false);
	setGravity(Vec3(0,0,0));

	update_joint_local_info_short();

	for (std::list<GBody *>::iterator iter_pbody = pBodies.begin(); iter_pbody != pBodies.end(); iter_pbody++) {
		(*iter_pbody)->update_base_joint_info();
		(*iter_pbody)->update_T();
		(*iter_pbody)->set_eta_zero();
	}

	for (std::list<GBody *>::reverse_iterator riter_pbody = pBodies.rbegin(); riter_pbody != pBodies.rend(); riter_pbody++) {
		(*riter_pbody)->update_aI();
		(*riter_pbody)->update_Psi();
		(*riter_pbody)->update_Pi();
	}

	for (i=0; i<A.ColSize(); i++) {
		set_ddq(Zeros(pCoordinates.size(),1)); // this isn't necessary for real tree structure systems, but works for the cut joints in closed-loop
		set_tau(&(A[i*A.RowSize()]));

		for (std::list<GBody *>::reverse_iterator riter_pbody = pBodies.rbegin(); riter_pbody != pBodies.rend(); riter_pbody++) {
			(*riter_pbody)->update_aB_zeroV_zeroeta();
			(*riter_pbody)->update_beta_zeroeta();
		}

		for (std::list<GBody *>::iterator iter_pbody = pBodies.begin(); iter_pbody != pBodies.end(); iter_pbody++) {
			(*iter_pbody)->update_ddq();
			(*iter_pbody)->update_dV(true);
		}

		get_ddq(&(invM_A[i*invM_A.RowSize()]));
	}

	// restore
	for (i=0, iter_pjoint = pJoints.begin(); iter_pjoint != pJoints.end(); i++, iter_pjoint++) {
		(*iter_pjoint)->setPrescribed(isprescribed[i]);
	}
	setGravity(g);

	return true;
}
void ContinuedGameMenuWindow::on_stage4Button_clicked()
{
    //switch to debate window
    emit setOpponent(4);
    emit switchToWindow(7);
    emit getQuestions();
    emit stageSelected(4);
    emit updatePhysicsWorld(getGravity(), getBounce(), getOppBounce());
}
Exemple #8
0
  void actionUpdate() {
    jump_power_ += jump_velocity_;

    jump_power_ <= 0.0f
      ? jump_power_ = 0.0f
      : jump_velocity_ += getGravity();

    if (!isJumping()) jump_velocity_ = 0.0f;
  }
//-----------------------------------------------------------------------------
//
// VActorPhysicsController::applyGravity( pElapsedTime );
//
// Apply gravity for the elapsed period.
//
//-----------------------------------------------------------------------------
void VActorPhysicsController::applyGravity( const F32 &pElapsedTime )
{
    // Get Velocity.
    VectorF velocity = getVelocity();
    // Add Tick Gravity.
    velocity += getGravity() * pElapsedTime;
    // Apply.
    setVelocity( velocity );
}
Exemple #10
0
void PhysicsObject::writeNonSynchronizedPhysicsObjectDataToPhysicsAttribute()
{
	AttributePtr<Attribute_Physics> ptr_physics = itrPhysics_.at(attributeIndex_);

	ptr_physics->angularVelocity = convert(&getAngularVelocity());
	ptr_physics->collisionFilterGroup = getCollisionFilterGroup();
	ptr_physics->collisionResponse = (getCollisionFlags() & btCollisionObject::CF_NO_CONTACT_RESPONSE) == 0;
	ptr_physics->gravity = convert(&getGravity());
	ptr_physics->linearVelocity = convert(&getLinearVelocity());
	//ptr_physics->collisionFilterMask = 
	//ptr_physics->mass = physicsObject->getInvMass(); //only mass inverse is stored in physics object
	//ptr_physics->meshID = //not stored in physics object
}
uint8_t Accelerometer::getYawPitchRoll(float *data)
{
    uint8_t fifoBuffer[64];
    Quaternion q;
    VectorFloat gravity;
    uint16_t packetSize = getFIFOPacketSize();

    getFIFOBytes(fifoBuffer, packetSize);
    getQuaternion(&q, fifoBuffer);
    getGravity(&gravity, &q);
    getYawPitchRoll(data, &q, &gravity);
    data[0] = (data[0] * 180/M_PI) - zeroValues[0];
    data[1] = (data[1] * 180/M_PI) - zeroValues[1];
    data[2] = (data[2] * 180/M_PI) - zeroValues[2];
    return 0;
}
void CPhysics::UpdatePeeing(std::vector<CParticle*>myParticleList, std::vector<unsigned char> &heightMap, const Vector3& terrainSize, Camera3& camera, double& dt)
{
	//this should trigger when the right mouse click is triggered
	for(std::vector<CParticle* >::iterator it = myParticleList.begin(); it != myParticleList.end(); ++it)
	{
		CParticle* go = (CParticle *)*it;

		if(go->type == CParticle::PARTICLE_PEE)
		{
			go->vel += getGravity() * (float)dt;
			go->pos += go->vel * (float)dt;
		}
		if(go->pos.y <= GetHeightMapY(go->pos.x, go->pos.z, heightMap, terrainSize))
		{
			go->active = false;
		}
	}
}
void PhysicsSystem::HandleEvents(const frame_tp& timepoint) {
    // Remove access to old updated transforms
    TransformMap::GetAsyncUpdatedTransforms().Unpublish(timepoint);
    // Remove access to forces
    async_forces.Unpublish(timepoint);
    // Remove access to torques
    async_torques.Unpublish(timepoint);
    // publish the forces of the current frame immediately without making a copy of the list
    async_forces.Publish(std::make_shared<const std::map<id_t,btVector3>>(this->forces.Poll()));
    // publish the torques of the current frame
    async_torques.Publish(std::make_shared<const std::map<id_t,btVector3>>(this->torques.Poll()));

    static frame_tp last_tp;
    this->delta = timepoint - last_tp;
    last_tp = timepoint;

    // Set the rigid bodies linear velocity. Must be done each frame otherwise,
    // other forces will stop the linear velocity.
    // We use the published list
    for (auto& force : *async_forces.GetFuture(timepoint).get()) {
        auto body = this->bodies[force.first]->GetRigidBody();
        body->setLinearVelocity(force.second + body->getGravity());
    }
    // Set the rigid bodies angular velocity. Must be done each frame otherwise,
    // other forces will stop the angular velocity.
    for (auto& torque : *async_torques.GetFuture(timepoint).get()) {
        auto body = this->bodies[torque.first]->GetRigidBody();
        body->setAngularVelocity(torque.second);
    }
    if (this->dynamicsWorld) {
        dynamicsWorld->stepSimulation(delta.count() * 1.0E-9, 10);
    }
    // Set out transform updates.
    for (auto& shape : this->bodies) {
        shape.second->UpdateTransform();
    }
    // Publish the new updated transforms map
    auto ntm = std::make_shared<std::map<id_t,const Transform*>>(TransformMap::GetUpdatedTransforms().Poll());
    TransformMap::GetAsyncUpdatedTransforms().Publish(std::move(ntm));
}
Exemple #14
0
void EntityItem::update(const quint64& updateTime) {
    bool wantDebug = false;
    
    if (_lastUpdated == 0) {
        _lastUpdated = updateTime;
    }

    float timeElapsed = (float)(updateTime - _lastUpdated) / (float)(USECS_PER_SECOND);

    if (wantDebug) {
        qDebug() << "********** EntityItem::update()";
        qDebug() << "    entity ID=" << getEntityItemID();
        qDebug() << "    updateTime=" << updateTime;
        qDebug() << "    _lastUpdated=" << _lastUpdated;
        qDebug() << "    timeElapsed=" << timeElapsed;
        qDebug() << "    hasVelocity=" << hasVelocity();
        qDebug() << "    hasGravity=" << hasGravity();
        qDebug() << "    isRestingOnSurface=" << isRestingOnSurface();
        qDebug() << "    hasAngularVelocity=" << hasAngularVelocity();
        qDebug() << "    getAngularVelocity=" << getAngularVelocity();
        qDebug() << "    isMortal=" << isMortal();
        qDebug() << "    getAge()=" << getAge();
        qDebug() << "    getLifetime()=" << getLifetime();


        if (hasVelocity() || (hasGravity() && !isRestingOnSurface())) {
            qDebug() << "    MOVING...=";
            qDebug() << "        hasVelocity=" << hasVelocity();
            qDebug() << "        hasGravity=" << hasGravity();
            qDebug() << "        isRestingOnSurface=" << isRestingOnSurface();
            qDebug() << "        hasAngularVelocity=" << hasAngularVelocity();
            qDebug() << "        getAngularVelocity=" << getAngularVelocity();
        }
        if (hasAngularVelocity()) {
            qDebug() << "    CHANGING...=";
            qDebug() << "        hasAngularVelocity=" << hasAngularVelocity();
            qDebug() << "        getAngularVelocity=" << getAngularVelocity();
        }
        if (isMortal()) {
            qDebug() << "    MORTAL...=";
            qDebug() << "        isMortal=" << isMortal();
            qDebug() << "        getAge()=" << getAge();
            qDebug() << "        getLifetime()=" << getLifetime();
        }
    }

    _lastUpdated = updateTime;

    if (wantDebug) {
        qDebug() << "     ********** EntityItem::update() .... SETTING _lastUpdated=" << _lastUpdated;
    }

    if (hasAngularVelocity()) {
        glm::quat rotation = getRotation();
        glm::vec3 angularVelocity = glm::radians(getAngularVelocity());
        float angularSpeed = glm::length(angularVelocity);
        
        if (angularSpeed < EPSILON_VELOCITY_LENGTH) {
            setAngularVelocity(NO_ANGULAR_VELOCITY);
        } else {
            float angle = timeElapsed * angularSpeed;
            glm::quat  dQ = glm::angleAxis(angle, glm::normalize(angularVelocity));
            rotation = dQ * rotation;
            setRotation(rotation);

            // handle damping for angular velocity
            if (getAngularDamping() > 0.0f) {
                glm::vec3 dampingResistance = getAngularVelocity() * getAngularDamping();
                glm::vec3 newAngularVelocity = getAngularVelocity() - (dampingResistance * timeElapsed);
                setAngularVelocity(newAngularVelocity);
                if (wantDebug) {        
                    qDebug() << "    getDamping():" << getDamping();
                    qDebug() << "    dampingResistance:" << dampingResistance;
                    qDebug() << "    newAngularVelocity:" << newAngularVelocity;
                }
            }
        }
    }

    if (hasVelocity() || hasGravity()) {
        glm::vec3 position = getPosition();
        glm::vec3 velocity = getVelocity();
        glm::vec3 newPosition = position + (velocity * timeElapsed);

        if (wantDebug) {        
            qDebug() << "  EntityItem::update()....";
            qDebug() << "    timeElapsed:" << timeElapsed;
            qDebug() << "    old AACube:" << getMaximumAACube();
            qDebug() << "    old position:" << position;
            qDebug() << "    old velocity:" << velocity;
            qDebug() << "    old getAABox:" << getAABox();
            qDebug() << "    getDistanceToBottomOfEntity():" << getDistanceToBottomOfEntity() * (float)TREE_SCALE << " in meters";
            qDebug() << "    newPosition:" << newPosition;
            qDebug() << "    glm::distance(newPosition, position):" << glm::distance(newPosition, position);
        }
        
        position = newPosition;

        // handle bounces off the ground... We bounce at the distance to the bottom of our entity
        if (position.y <= getDistanceToBottomOfEntity()) {
            velocity = velocity * glm::vec3(1,-1,1);

            // if we've slowed considerably, then just stop moving
            if (glm::length(velocity) <= EPSILON_VELOCITY_LENGTH) {
                velocity = NO_VELOCITY;
            }
            
            position.y = getDistanceToBottomOfEntity();
        }

        // handle gravity....
        if (hasGravity() && !isRestingOnSurface()) {
            velocity += getGravity() * timeElapsed;
        }

        // handle resting on surface case, this is definitely a bit of a hack, and it only works on the
        // "ground" plane of the domain, but for now it
        if (hasGravity() && isRestingOnSurface()) {
            velocity.y = 0.0f;
            position.y = getDistanceToBottomOfEntity();
        }

        // handle damping for velocity
        glm::vec3 dampingResistance = velocity * getDamping();
        if (wantDebug) {        
            qDebug() << "    getDamping():" << getDamping();
            qDebug() << "    dampingResistance:" << dampingResistance;
            qDebug() << "    dampingResistance * timeElapsed:" << dampingResistance * timeElapsed;
        }
        velocity -= dampingResistance * timeElapsed;

        if (wantDebug) {        
            qDebug() << "    velocity AFTER dampingResistance:" << velocity;
            qDebug() << "    glm::length(velocity):" << glm::length(velocity);
            qDebug() << "    EPSILON_VELOCITY_LENGTH:" << EPSILON_VELOCITY_LENGTH;
        }
        
        // round velocity to zero if it's close enough...
        if (glm::length(velocity) <= EPSILON_VELOCITY_LENGTH) {
            velocity = NO_VELOCITY;
        }

        setPosition(position); // this will automatically recalculate our collision shape
        setVelocity(velocity);
        
        if (wantDebug) {        
            qDebug() << "    new position:" << position;
            qDebug() << "    new velocity:" << velocity;
            qDebug() << "    new AACube:" << getMaximumAACube();
            qDebug() << "    old getAABox:" << getAABox();
        }
    }
}
Exemple #15
0
void Simulation::configure(const config::Configuration& config)
{
    // Resize world
    {
        auto size = config.get<SizeVector>("world-size");

        if (size.getWidth() == Zero || size.getHeight() == Zero)
            throw config::Exception("Width or height is zero!");

        setWorldSize(size);
    }

    // Time step
    setTimeStep(config.get<units::Time>("dt"));

    if (config.has("length-coefficient"))
    {
        m_converter.setLengthCoefficient(config.get<RealType>("length-coefficient"));
    }

    // Set gravity
    setGravity(config.get("gravity", getGravity()));

    // Number of iterations
    setIterations(config.get("iterations", getIterations()));

    // Background color
    setBackgroundColor(config.get("background", getBackgroundColor()));

#if CONFIG_RENDER_TEXT_ENABLE
    setFontColor(config.get("text-color", getBackgroundColor().inverted()));
#endif

#if CONFIG_RENDER_TEXT_ENABLE
    setFontSize(config.get("text-size", getFontSize()));
#endif

#if CONFIG_RENDER_TEXT_ENABLE
    setSimulationTimeRender(config.get("show-simulation-time", isSimulationTimeRender()));
#endif

#ifdef CECE_ENABLE_RENDER
    setVisualized(config.get("visualized", isVisualized()));
#endif

    // Parse plugins
    for (auto&& pluginConfig : config.getConfigurations("plugin"))
    {
        // Returns valid pointer or throws an exception
        requirePlugin(pluginConfig.get("name"))->configure(*this, pluginConfig);
    }

    // Parse parameters
    for (auto&& parameterConfig : config.getConfigurations("parameter"))
    {
        setParameter(parameterConfig.get("name"), units::parse(parameterConfig.get("value")));
    }

    // Register user types
    for (auto&& typeConfig : config.getConfigurations("type"))
    {
        addObjectType({
            typeConfig.get("name"),
            typeConfig.get("base"),
            typeConfig.toMemory()
        });
    }

    // Parse init
    for (auto&& initConfig : config.getConfigurations("init"))
    {
        const String typeName = initConfig.has("language")
            ? initConfig.get("language")
            : initConfig.get("type");

        auto initializer = getPluginContext().createInitializer(typeName);

        if (initializer)
        {
            // Configure initializer
            initializer->loadConfig(*this, initConfig);

            // Register initializer
            addInitializer(std::move(initializer));
        }
    }

    // Parse modules
    for (auto&& moduleConfig : config.getConfigurations("module"))
    {
        // Get name
        auto name = moduleConfig.get("name");

        if (hasModule(name))
            continue;

        const String typeName = moduleConfig.has("language")
            ? moduleConfig.get("language")
            : moduleConfig.has("type")
                ? moduleConfig.get("type")
                : name
        ;

        auto module = getPluginContext().createModule(typeName, *this);

        if (module)
        {
            module->loadConfig(*this, moduleConfig);

            addModule(std::move(name), std::move(module));
        }
    }

    // Parse programs
    for (auto&& programConfig : config.getConfigurations("program"))
    {
        const String typeName = programConfig.has("language")
            ? programConfig.get("language")
            : programConfig.get("type");

        auto program = getPluginContext().createProgram(typeName);

        if (program)
        {
            // Configure program
            program->loadConfig(*this, programConfig);

            // Register program
            addProgram(programConfig.get("name"), std::move(program));
        }
    }

    // Parse objects
    for (auto&& objectConfig : config.getConfigurations("object"))
    {
        // Create object
        auto object = buildObject(
            objectConfig.get("class"),
            objectConfig.get("type", object::Object::Type::Dynamic)
        );

        if (object)
            object->configure(objectConfig, *this);
    }

    if (config.has("data-out-objects-filename"))
    {
        m_dataOutObjects = makeUnique<OutFileStream>(config.get("data-out-objects-filename"));
        *m_dataOutObjects << "iteration;totalTime;id;typeName;posX;posY;velX;velY\n";
    }
}
//--------------------------------------------------------------------------
float Physics::getVerticalPosition(int initialVelocity, int trajectoryAngle, float time)
{
    // !NOTE! Make sure the trajectoryAngle is in radians.
    return (initialVelocity * Math::getSin(trajectoryAngle)) * time - (getGravity() / 2.0f) * (time * time);
}
Exemple #17
0
void PhysicsWorld::step(float deltaTime)
{
    //TODO:
    /*
     how to clear out friction? currently, no friction
     */
    Player* player = GlobalEngine::sharedGlobalEngine()->getPlayer();
    CCArray* planets = GlobalEngine::sharedGlobalEngine()->getLevelMapLayer()->getPlanets();
    
    //add gravity
    b2Vec2 force;
    force.SetZero();
    
    b2Body* playerBody = player->getB2Body();
    
    if (player->isGrounded() && player->getCurrentGround()->getType() == GameObjectTypePlanet)
    {
        //only apply gravity of current planet
        force = getGravity(player, (Planet*)player->getCurrentGround());
    }
    else
    {
        for (int i = 0; i < planets->count(); i++)
        {
            force += getGravity(player, (Planet*)planets->objectAtIndex(i));
        }
    }
    
    //rotate to gravity
    float angle = atan2(force.y, force.x) + b2_pi / 2.0f;
    playerBody->SetTransform(playerBody->GetPosition(), angle);
    
    playerBody->ApplyForceToCenter(force);
    
    //apply movement by force
    /*b2Vec2 localForce;
     switch (_player->getMoveState()) {
     case PlayerMoveStateLeft:
     localForce.Set(-PLAYER_MOVE_FORCE, 0);
     break;
     
     case PlayerMoveStateRight:
     localForce.Set(PLAYER_MOVE_FORCE, 0);
     break;
     
     default:
     localForce.SetZero();
     break;
     }
     
     b2Rot rotation(angle);
     b2Vec2 globalForce = b2Mul(rotation, localForce);
     playerBody->ApplyForceToCenter(globalForce);
     
     //b2Vec2 impulse = globalSpeed - playerBody->GetLinearVelocity();
     //impulse *= playerBody->GetMass();
     //playerBody->ApplyLinearImpulse(impulse, playerBody->GetWorldCenter());
     */
    
    
    //apply movement by impulse
    if (player->isGrounded() && player->getJumpState() != PlayerJumpStateLeaving)
    {
        b2Vec2 localSpeed;
        switch (player->getMoveState()) {
            case PlayerMoveStateLeft:
                localSpeed.Set(-PLAYER_MOVE_SPEED, 0);
                break;
                
            case PlayerMoveStateRight:
                localSpeed.Set(PLAYER_MOVE_SPEED, 0);
                break;
                
            default:
                localSpeed.SetZero();
                break;
        }
        
        b2Rot rotation(angle);
        b2Vec2 globalSpeed = b2Mul(rotation, localSpeed);
        b2Vec2 impulse = globalSpeed - playerBody->GetLinearVelocity();
        impulse *= playerBody->GetMass();
        
        playerBody->ApplyLinearImpulse(impulse, playerBody->GetWorldCenter());
    }
    
    //apply jumping
    if (player->getJumpState() == PlayerJumpStatePending)
    {
        player->setJumpState(PlayerJumpStateLeaving);
        
        if (player->isGrounded())
        {
            b2Vec2 localJumpSpeed;
            localJumpSpeed.Set(PLAYER_JUMP_SPEED, 0);
            b2Rot jumpRotation(angle + b2_pi / 2.0f);
            b2Vec2 globalJumpSpeed = b2Mul(jumpRotation, localJumpSpeed);
            b2Vec2 jumpImpulse = globalJumpSpeed;
            jumpImpulse *= playerBody->GetMass();
            
            playerBody->ApplyLinearImpulse(jumpImpulse, playerBody->GetWorldCenter());
        }
    }
    
    //check damping
    if (player->isGrounded())
    {
        playerBody->SetLinearDamping(0);
    }
    else
    {
        playerBody->SetLinearDamping(PLAYER_DAMPING);
    }
    
    _world->Step(deltaTime, VELOCITY_ITERATIONS, POSITION_ITERATIONS);
}
Vec2 PhysicsForceField::getGravity(Vec2 p)
{
    cpVect res = getGravity(cpVect{p.x, p.y});
    return Vec2(res.x, res.y);
}
void ADXL335::update()
{
  _xg = getGravity(analogRead(_pin_x));
  _yg = getGravity(analogRead(_pin_y));
  _zg = getGravity(analogRead(_pin_z));
}
Exemple #20
0
//==============================================================================
TEST(Issue1184, Accuracy)
{

  struct ShapeInfo
  {
    dart::dynamics::ShapePtr shape;
    double offset;
  };

  std::function<ShapeInfo()> makePlaneGround =
      []()
  {
    return ShapeInfo{
      std::make_shared<dart::dynamics::PlaneShape>(
            Eigen::Vector3d::UnitZ(), 0.0),
      0.0};
  };

  std::function<ShapeInfo()> makeBoxGround =
      []()
  {
    const double thickness = 0.1;
    return ShapeInfo{
      std::make_shared<dart::dynamics::BoxShape>(
            Eigen::Vector3d(100.0, 100.0, thickness)),
      -thickness/2.0};
  };

  std::function<dart::dynamics::ShapePtr(double)> makeBoxObject =
      [](const double s) -> dart::dynamics::ShapePtr
  {
    return std::make_shared<dart::dynamics::BoxShape>(
          Eigen::Vector3d::Constant(2*s));
  };

  std::function<dart::dynamics::ShapePtr(double)> makeSphereObject =
      [](const double s) -> dart::dynamics::ShapePtr
  {
    return std::make_shared<dart::dynamics::SphereShape>(s);
  };


#ifndef NDEBUG
  const auto groundInfoFunctions = {makePlaneGround};
  const auto objectShapeFunctions = {makeSphereObject};
  const auto halfsizes = {10.0};
  const auto fallingModes = {true};
  const double dropHeight = 0.1;
  const double tolerance = 1e-3;
#else
  const auto groundInfoFunctions = {makePlaneGround, makeBoxGround};
  const auto objectShapeFunctions = {makeBoxObject, makeSphereObject};
  const auto halfsizes = {0.25, 1.0, 5.0, 10.0, 20.0};
  const auto fallingModes = {true, false};
  const double dropHeight = 1.0;
  const double tolerance = 1e-3;
#endif

  for(const auto& groundInfoFunction : groundInfoFunctions)
  {
    for(const auto& objectShapeFunction : objectShapeFunctions)
    {
      for(const double halfsize : halfsizes)
      {
        for(const bool falling : fallingModes)
        {
          auto world = dart::simulation::World::create("test");
          world->getConstraintSolver()->setCollisionDetector(
                dart::collision::BulletCollisionDetector::create());

          Eigen::Isometry3d tf_object = Eigen::Isometry3d::Identity();
          const double initialHeight = falling? dropHeight+halfsize : halfsize;
          tf_object.translate(initialHeight*Eigen::Vector3d::UnitZ());

          auto object = dart::dynamics::Skeleton::create("ball");
          object->createJointAndBodyNodePair<dart::dynamics::FreeJoint>()
              .first->setTransform(tf_object);

          const auto objectShape = objectShapeFunction(halfsize);
          object->getBodyNode(0)->createShapeNodeWith<
              dart::dynamics::VisualAspect,
              dart::dynamics::CollisionAspect>(objectShape);


          world->addSkeleton(object);

          const ShapeInfo groundInfo = groundInfoFunction();
          auto ground = dart::dynamics::Skeleton::create("ground");
          ground->createJointAndBodyNodePair<dart::dynamics::WeldJoint>()
              .second->createShapeNodeWith<
                dart::dynamics::VisualAspect,
                dart::dynamics::CollisionAspect>(groundInfo.shape);

          Eigen::Isometry3d tf_ground = Eigen::Isometry3d::Identity();
          tf_ground.translate(groundInfo.offset*Eigen::Vector3d::UnitZ());
          ground->getJoint(0)->setTransformFromParentBodyNode(tf_ground);

          world->addSkeleton(ground);

          // time until the object will strike
          const double t_strike = falling?
              sqrt(-2.0*dropHeight/world->getGravity()[2]) : 0.0;

          // give the object some time to settle
          const double min_time = 0.5;
          const double t_limit = 30.0*t_strike + min_time;

          double lowestHeight = std::numeric_limits<double>::infinity();
          double time = 0.0;
          while(time < t_limit)
          {
            world->step();
            const double currentHeight =
                object->getBodyNode(0)->getTransform().translation()[2];

            if(currentHeight < lowestHeight)
              lowestHeight = currentHeight;

            time = world->getTime();
          }

          // The simulation should have run for at least two seconds
          ASSERT_LE(min_time, time);

          EXPECT_GE(halfsize+tolerance, lowestHeight)
              << "object type: " << objectShape->getType()
              << "\nground type: " << groundInfo.shape->getType()
              << "\nfalling: " << falling << "\n";

          const double finalHeight =
              object->getBodyNode(0)->getTransform().translation()[2];

          EXPECT_NEAR(halfsize, finalHeight, tolerance)
              << "object type: " << objectShape->getType()
              << "\nground type: " << groundInfo.shape->getType()
              << "\nfalling: " << falling << "\n";
        }
      }
    }
  }

}
Exemple #21
0
void World::update(float dt)
{
	Player* player = NULL;

	// Update all the objects.
	for(int i = 0; i < mObjectList.size(); i++)
	{
		Object3D* object = mObjectList[i];
		// Remove from the list if dead.
		if(!object->getAlive()) {
			// Inform the current wave about the dead enemy. [TODO] Check if we are in PlayState.
			if(object->getType() == ENEMY)
				PlayState::Instance()->getCurrentWave()->enemyKilled();

			removeObject(object);
			continue;
		}

		// Get the distance above the ground.
		float distance = object->getPosition().y - mTerrain->getHeight(object->getPosition().x, object->getPosition().z);

		// Snap to ground.
		// Note the +50 to give it some margin (only for enemies).
		float margin = object->getType() != PLAYER ? 50 : 0;
		if(distance < object->getHeightOffset() + margin && object->getVelocity().y <= 0)
		{
			object->setPosition(object->getPosition() - D3DXVECTOR3(0, distance, 0) + D3DXVECTOR3(0, object->getHeightOffset(), 0));
			object->setVelocity(D3DXVECTOR3(object->getVelocity().x, 0, object->getVelocity().z));
		}

		// Set on ground.
		if(distance < object->getHeightOffset() + 0.2)
			object->setOnGround(true);
		else
			object->setOnGround(false);

		// Update the object.
		object->update(dt);

		// Gravity.
		object->accelerate(0, getGravity(), 0);

		// Friction.
		if(object->getOnGround())
		{
			D3DXVECTOR3 norm;
			D3DXVec3Normalize(&norm, &object->getVelocity());
			D3DXVECTOR3 velocity = norm * mFriction * object->getFriction();//object->getVelocity()
			object->accelerate(velocity.x, 0.0f, velocity.z);
		}

		// Move the object with it's speed. 
		// [NOTE] Only update the objects position here! Change the speed on other places instead!
		D3DXVECTOR3 speed = object->getVelocity();
		object->move(speed.x, speed.y, speed.z);

		if(object->getType() == PLAYER)
			player = dynamic_cast<Player*>(object);
	}

	// [HACK]
	// Test if player is in range of a powerup.
	if(player != NULL) 
	{
		for(int i = 0; i < mObjectList.size(); i++) {
			if(mObjectList[i]->getType() == ENERGY_POWERUP) {
				D3DXVECTOR3 dist = mObjectList[i]->getPosition() - player->getPosition();
				dist.y = 0.0f;
				float d = sqrt(dist.x*dist.x + dist.z*dist.z);
				if(d < 70) // PICKUP_RADIUS
					(dynamic_cast<Powerup*>(mObjectList[i]))->pickup(player);
			}
			else
				continue;
		}
	}

	// Terrain editing.
	// [NOTE] Disabled.
	//editTerrain();
}
void Player::update(sf::Time dt)
{


	if(mIsMovingLeft || mIsMovingRight || mIsJumping)
		mMovement.x*=mFrictionStart;
	else
		mMovement.x*=mFrictionStop;

	if(mIsJumping)
		mMovement.y+=mFrictionVertical;

 
	
	sf::FloatRect playerRect = getTransform().transformRect(mAnimation.getGlobalBounds());
	playerRect.left+=mMovement.x*dt.asSeconds();
	playerRect.top+=mMovement.y*dt.asSeconds();

	// Update player's collision points
	mCollPoints.up[0]=sf::Vector2f(playerRect.left+mCollMarg,playerRect.top);
	mCollPoints.up[1]=sf::Vector2f(playerRect.left+playerRect.width-mCollMarg,playerRect.top);
	mCollPoints.down[0]=sf::Vector2f(playerRect.left+mCollMarg,playerRect.top+playerRect.height);
	mCollPoints.down[1]=sf::Vector2f(playerRect.left+playerRect.width-mCollMarg,playerRect.top+playerRect.height);
	mCollPoints.left[0]=sf::Vector2f(playerRect.left,playerRect.top+mCollMarg);
	mCollPoints.left[1]=sf::Vector2f(playerRect.left,playerRect.top+playerRect.height-mCollMarg);
	mCollPoints.left[2]=sf::Vector2f(playerRect.left,playerRect.top+playerRect.height/2);
	mCollPoints.right[0]=sf::Vector2f(playerRect.left+playerRect.width,playerRect.top+mCollMarg);
	mCollPoints.right[1]=sf::Vector2f(playerRect.left+playerRect.width,playerRect.top+playerRect.height-mCollMarg);
	mCollPoints.right[2]=sf::Vector2f(playerRect.left+playerRect.width,playerRect.top+playerRect.height/2);

	//Collision detection
	collisionDetection(playerRect);
	pickupCollisionDetection(playerRect);



	if(mCollisionRight)
		if(mMovement.x>0)
			mMovement.x*=-0.1f;
			
	if(mCollisionLeft)
		if(mMovement.x<0)
			mMovement.x*=-0.1f;

	if(mCollisionUp)
		if(mMovement.y<0)
			mMovement.y*=-0.1f;

	if(mCollisionDown)
	{
		if(!(mIsMovingLeft || mIsMovingRight || mPlayerDead))
			mAnimation.playAnimation("stay");
		if(mMovement.y>0)
		//	mMovement.y*=-0.1f;
			mMovement.y=0;

		mIsJumping=false;
	}
	else
	{
		/*if(mAnimation.getCurrentAnimation()!="jump")
			mAnimation.playAnimation("fall");*/
		mIsJumping=true;
		mMovement.y+=getGravity();
	}


	
	mAnimation.update(dt);

	move(mMovement*dt.asSeconds());

	if(mEnemyManager->intersection(getAABB()))
	{
			mPlayerDead=true;
			mAnimation.playAnimation("dead");
	}

	if(mStar->getGlobalBounds().intersects(getAABB()))
		mLevelCompleted=true;

	//ss.str("");
	//ss << "Left: "<<(int)mCollisionLeft<< "\nRight: "<<(int)mCollisionRight<<"\nUp: "<<(int)mCollisionUp<<"\nDown: "<<(int)mCollisionDown;// put float into string buffer
	
	//Reset variables

	mIsMovingLeft=false;
	mIsMovingRight=false;

	mCollisionDown=false;
	mCollisionLeft=false;
	mCollisionRight=false;
	mCollisionUp=false; 
	
}
Exemple #23
0
OctreeElement::AppendState EntityItem::appendEntityData(OctreePacketData* packetData, EncodeBitstreamParams& params, 
                                            EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData) const {
                                            
    // ALL this fits...
    //    object ID [16 bytes]
    //    ByteCountCoded(type code) [~1 byte]
    //    last edited [8 bytes]
    //    ByteCountCoded(last_edited to last_updated delta) [~1-8 bytes]
    //    PropertyFlags<>( everything ) [1-2 bytes]
    // ~27-35 bytes...
    
    OctreeElement::AppendState appendState = OctreeElement::COMPLETED; // assume the best

    // encode our ID as a byte count coded byte stream
    QByteArray encodedID = getID().toRfc4122();

    // encode our type as a byte count coded byte stream
    ByteCountCoded<quint32> typeCoder = getType();
    QByteArray encodedType = typeCoder;

    quint64 updateDelta = getLastUpdated() <= getLastEdited() ? 0 : getLastUpdated() - getLastEdited();
    ByteCountCoded<quint64> updateDeltaCoder = updateDelta;
    QByteArray encodedUpdateDelta = updateDeltaCoder;
    EntityPropertyFlags propertyFlags(PROP_LAST_ITEM);
    EntityPropertyFlags requestedProperties = getEntityProperties(params);
    EntityPropertyFlags propertiesDidntFit = requestedProperties;

    // If we are being called for a subsequent pass at appendEntityData() that failed to completely encode this item,
    // then our entityTreeElementExtraEncodeData should include data about which properties we need to append.
    if (entityTreeElementExtraEncodeData && entityTreeElementExtraEncodeData->entities.contains(getEntityItemID())) {
        requestedProperties = entityTreeElementExtraEncodeData->entities.value(getEntityItemID());
    }

    LevelDetails entityLevel = packetData->startLevel();

    quint64 lastEdited = getLastEdited();

    const bool wantDebug = false;
    if (wantDebug) {
        float editedAgo = getEditedAgo();
        QString agoAsString = formatSecondsElapsed(editedAgo);
        qDebug() << "Writing entity " << getEntityItemID() << " to buffer, lastEdited =" << lastEdited 
                        << " ago=" << editedAgo << "seconds - " << agoAsString;
    }

    bool successIDFits = false;
    bool successTypeFits = false;
    bool successCreatedFits = false;
    bool successLastEditedFits = false;
    bool successLastUpdatedFits = false;
    bool successPropertyFlagsFits = false;
    int propertyFlagsOffset = 0;
    int oldPropertyFlagsLength = 0;
    QByteArray encodedPropertyFlags;
    int propertyCount = 0;

    successIDFits = packetData->appendValue(encodedID);
    if (successIDFits) {
        successTypeFits = packetData->appendValue(encodedType);
    }
    if (successTypeFits) {
        successCreatedFits = packetData->appendValue(_created);
    }
    if (successCreatedFits) {
        successLastEditedFits = packetData->appendValue(lastEdited);
    }
    if (successLastEditedFits) {
        successLastUpdatedFits = packetData->appendValue(encodedUpdateDelta);
    }
    
    if (successLastUpdatedFits) {
        propertyFlagsOffset = packetData->getUncompressedByteOffset();
        encodedPropertyFlags = propertyFlags;
        oldPropertyFlagsLength = encodedPropertyFlags.length();
        successPropertyFlagsFits = packetData->appendValue(encodedPropertyFlags);
    }

    bool headerFits = successIDFits && successTypeFits && successCreatedFits && successLastEditedFits 
                              && successLastUpdatedFits && successPropertyFlagsFits;

    int startOfEntityItemData = packetData->getUncompressedByteOffset();

    if (headerFits) {
        bool successPropertyFits;

        propertyFlags -= PROP_LAST_ITEM; // clear the last item for now, we may or may not set it as the actual item

        // These items would go here once supported....
        //      PROP_PAGED_PROPERTY,
        //      PROP_CUSTOM_PROPERTIES_INCLUDED,

        APPEND_ENTITY_PROPERTY(PROP_POSITION, appendPosition, getPosition());
        APPEND_ENTITY_PROPERTY(PROP_DIMENSIONS, appendValue, getDimensions()); // NOTE: PROP_RADIUS obsolete

        if (wantDebug) {
            qDebug() << "    APPEND_ENTITY_PROPERTY() PROP_DIMENSIONS:" << getDimensions();
        }

        APPEND_ENTITY_PROPERTY(PROP_ROTATION, appendValue, getRotation());
        APPEND_ENTITY_PROPERTY(PROP_MASS, appendValue, getMass());
        APPEND_ENTITY_PROPERTY(PROP_VELOCITY, appendValue, getVelocity());
        APPEND_ENTITY_PROPERTY(PROP_GRAVITY, appendValue, getGravity());
        APPEND_ENTITY_PROPERTY(PROP_DAMPING, appendValue, getDamping());
        APPEND_ENTITY_PROPERTY(PROP_LIFETIME, appendValue, getLifetime());
        APPEND_ENTITY_PROPERTY(PROP_SCRIPT, appendValue, getScript());
        APPEND_ENTITY_PROPERTY(PROP_REGISTRATION_POINT, appendValue, getRegistrationPoint());
        APPEND_ENTITY_PROPERTY(PROP_ANGULAR_VELOCITY, appendValue, getAngularVelocity());
        APPEND_ENTITY_PROPERTY(PROP_ANGULAR_DAMPING, appendValue, getAngularDamping());
        APPEND_ENTITY_PROPERTY(PROP_VISIBLE, appendValue, getVisible());
        APPEND_ENTITY_PROPERTY(PROP_IGNORE_FOR_COLLISIONS, appendValue, getIgnoreForCollisions());
        APPEND_ENTITY_PROPERTY(PROP_COLLISIONS_WILL_MOVE, appendValue, getCollisionsWillMove());

        appendSubclassData(packetData, params, entityTreeElementExtraEncodeData,
                                requestedProperties,
                                propertyFlags,
                                propertiesDidntFit,
                                propertyCount,
                                appendState);
    }

    if (propertyCount > 0) {
        int endOfEntityItemData = packetData->getUncompressedByteOffset();
        encodedPropertyFlags = propertyFlags;
        int newPropertyFlagsLength = encodedPropertyFlags.length();
        packetData->updatePriorBytes(propertyFlagsOffset, 
                (const unsigned char*)encodedPropertyFlags.constData(), encodedPropertyFlags.length());
        
        // if the size of the PropertyFlags shrunk, we need to shift everything down to front of packet.
        if (newPropertyFlagsLength < oldPropertyFlagsLength) {
            int oldSize = packetData->getUncompressedSize();
            const unsigned char* modelItemData = packetData->getUncompressedData(propertyFlagsOffset + oldPropertyFlagsLength);
            int modelItemDataLength = endOfEntityItemData - startOfEntityItemData;
            int newEntityItemDataStart = propertyFlagsOffset + newPropertyFlagsLength;
            packetData->updatePriorBytes(newEntityItemDataStart, modelItemData, modelItemDataLength);
            int newSize = oldSize - (oldPropertyFlagsLength - newPropertyFlagsLength);
            packetData->setUncompressedSize(newSize);

        } else {
            assert(newPropertyFlagsLength == oldPropertyFlagsLength); // should not have grown
        }
       
        packetData->endLevel(entityLevel);
    } else {
        packetData->discardLevel(entityLevel);
        appendState = OctreeElement::NONE; // if we got here, then we didn't include the item
    }
    
    // If any part of the model items didn't fit, then the element is considered partial
    if (appendState != OctreeElement::COMPLETED) {
        // add this item into our list for the next appendElementData() pass
        entityTreeElementExtraEncodeData->entities.insert(getEntityItemID(), propertiesDidntFit);
    }

    return appendState;
}
Exemple #24
0
void Map::initPhysics ()
{
	b2Vec2 gravity;
	gravity.Set(0.0f, getGravity());
	_world = new b2World(gravity);

	_world->SetDestructionListener(&_destructionListener);

	//_world->SetWarmStarting(false);
	//_world->SetContinuousPhysics(false);
	//_world->SetSubStepping(false);
	_world->SetAutoClearForces(true);
	_world->SetContactListener(this);
	_world->SetContactFilter(this);

	const float zeroX = 0.0f;
	const float zeroY = -0.5f;
	const float width = getMapWidth();
	// added a small offset to allow water diving out of screen
	const float height = getMapHeight() + 1.0f;

	b2BodyDef lineBodyDef;
	lineBodyDef.type = b2_staticBody;
	lineBodyDef.position.Set(0, 0);
	b2Body* boxBody = _world->CreateBody(&lineBodyDef);

	b2EdgeShape edge;
	b2FixtureDef fd;
	fd.friction = 1.0f;
	fd.restitution = 0.2f;
	fd.shape = &edge;

	_borders.resize(BORDER_MAX);
	const bool isSideBorderFail = getSetting(msn::SIDEBORDERFAIL).toBool();
	_borders[BORDER_TOP] = new Border(BorderType::TOP, *this);
	_borders[BORDER_LEFT] = new Border(BorderType::LEFT, *this, isSideBorderFail);
	_borders[BORDER_RIGHT] = new Border(BorderType::RIGHT, *this, isSideBorderFail);
	_borders[BORDER_BOTTOM] = new Border(BorderType::BOTTOM, *this);
	_borders[BORDER_PLAYER_BOTTOM] = new Border(BorderType::PLAYER_BOTTOM, *this);

	edge.Set(b2Vec2(zeroX, zeroY), b2Vec2(width, zeroY));
	b2Fixture *top = boxBody->CreateFixture(&fd);
	top->SetUserData(_borders[BORDER_TOP]);

	edge.Set(b2Vec2(zeroX, zeroY), b2Vec2(zeroX, height));
	b2Fixture *left = boxBody->CreateFixture(&fd);
	left->SetUserData(_borders[BORDER_LEFT]);

	edge.Set(b2Vec2(width, height), b2Vec2(width, zeroY));
	b2Fixture *right = boxBody->CreateFixture(&fd);
	right->SetUserData(_borders[BORDER_RIGHT]);

	edge.Set(b2Vec2(zeroX, height), b2Vec2(width, height));
	b2Fixture *bottom = boxBody->CreateFixture(&fd);
	bottom->SetUserData(_borders[BORDER_BOTTOM]);

	edge.Set(b2Vec2(zeroX, height), b2Vec2(width, getMapHeight()));
	b2Fixture *playerBottom = boxBody->CreateFixture(&fd);
	playerBottom->SetUserData(_borders[BORDER_PLAYER_BOTTOM]);

	initWater();
}
Exemple #25
0
//Do the interpolation calculations
bool SIM_SnowSolver::solveGasSubclass(SIM_Engine &engine, SIM_Object *obj, SIM_Time time, SIM_Time framerate){

	/// STEP #0: Retrieve all data objects from Houdini

	//Scalar params
	freal particle_mass = getPMass();
	freal YOUNGS_MODULUS = getYoungsModulus();
	freal POISSONS_RATIO = getPoissonsRatio();
	freal CRIT_COMPRESS = getCritComp();
	freal CRIT_STRETCH = getCritStretch();
	freal FLIP_PERCENT = getFlipPercent();
	freal HARDENING = getHardening();
	freal CFL = getCfl();
	freal COF = getCof();
	freal division_size = getDivSize();
	freal max_vel = getMaxVel();
	//Vector params
	vector3 GRAVITY = getGravity();
	vector3 bbox_min_limit = getBboxMin();
	vector3 bbox_max_limit = getBboxMax();

	//Particle params
	UT_String s_p, s_vol, s_den, s_vel, s_fe, s_fp;
	getParticles(s_p);
	getPVol(s_vol);
	getPD(s_den);
	getPVel(s_vel);
	getPFe(s_fe);
	getPFp(s_fp);

	SIM_Geometry* geometry = (SIM_Geometry*) obj->getNamedSubData(s_p);
	if (!geometry) return true;
	
	//Get particle data
	//Do we use the attribute name???
	// GU_DetailHandle gdh = geometry->getGeometry().getWriteableCopy();
	GU_DetailHandle gdh = geometry->getOwnGeometry();
	const GU_Detail* gdp_in = gdh.readLock(); // Must unlock later
	GU_Detail* gdp_out = gdh.writeLock();

	GA_RWAttributeRef p_ref_position = gdp_out->findPointAttribute("P");
	GA_RWHandleT<vector3> p_position(p_ref_position.getAttribute());

	GA_RWAttributeRef p_ref_volume = gdp_out->findPointAttribute(s_vol);
	GA_RWHandleT<freal> p_volume(p_ref_volume.getAttribute());

	GA_RWAttributeRef p_ref_density = gdp_out->findPointAttribute(s_den);
	GA_RWHandleT<freal> p_density(p_ref_density.getAttribute());

	GA_RWAttributeRef p_ref_vel = gdp_out->findPointAttribute(s_vel);
	GA_RWHandleT<vector3> p_vel(p_ref_vel.getAttribute());

	GA_RWAttributeRef p_ref_Fe = gdp_out->findPointAttribute(s_fe);
	GA_RWHandleT<matrix3> p_Fe(p_ref_Fe.getAttribute());

	GA_RWAttributeRef p_ref_Fp = gdp_out->findPointAttribute(s_fp);
	GA_RWHandleT<matrix3> p_Fp(p_ref_Fp.getAttribute());

	//EVALUATE PARAMETERS
	freal mu = YOUNGS_MODULUS/(2+2*POISSONS_RATIO);
	freal lambda = YOUNGS_MODULUS*POISSONS_RATIO/((1+POISSONS_RATIO)*(1-2*POISSONS_RATIO));

	//Get grid data
	SIM_ScalarField *g_mass_field;
	SIM_DataArray g_mass_data;
	getMatchingData(g_mass_data, obj, MPM_G_MASS);	
	g_mass_field = SIM_DATA_CAST(g_mass_data(0), SIM_ScalarField);

	SIM_VectorField *g_nvel_field;
	SIM_DataArray g_nvel_data;
	getMatchingData(g_nvel_data, obj, MPM_G_NVEL);
	g_nvel_field = SIM_DATA_CAST(g_nvel_data(0), SIM_VectorField);

	SIM_VectorField *g_ovel_field;
	SIM_DataArray g_ovel_data;
	getMatchingData(g_ovel_data, obj, MPM_G_OVEL);
	g_ovel_field = SIM_DATA_CAST(g_ovel_data(0), SIM_VectorField);

	SIM_ScalarField *g_active_field;
	SIM_DataArray g_active_data;
	getMatchingData(g_active_data, obj, MPM_G_ACTIVE);	
	g_active_field = SIM_DATA_CAST(g_active_data(0), SIM_ScalarField);

	SIM_ScalarField *g_density_field;
	SIM_DataArray g_density_data;
	getMatchingData(g_density_data, obj, MPM_G_DENSITY);	
	g_density_field = SIM_DATA_CAST(g_density_data(0), SIM_ScalarField);

	SIM_ScalarField *g_col_field;
	SIM_DataArray g_col_data;
	getMatchingData(g_col_data, obj, MPM_G_COL);	
	g_col_field = SIM_DATA_CAST(g_col_data(0), SIM_ScalarField);

	SIM_VectorField *g_colVel_field;
	SIM_DataArray g_colVel_data;
	getMatchingData(g_colVel_data, obj, MPM_G_COLVEL);	
	g_colVel_field = SIM_DATA_CAST(g_colVel_data(0), SIM_VectorField);

	SIM_VectorField *g_extForce_field;
	SIM_DataArray g_extForce_data;
	getMatchingData(g_extForce_data, obj, MPM_G_EXTFORCE);	
	g_extForce_field = SIM_DATA_CAST(g_extForce_data(0), SIM_VectorField);
	
	UT_VoxelArrayF
		*g_mass = g_mass_field->getField()->fieldNC(),
		*g_nvelX = g_nvel_field->getField(0)->fieldNC(),
		*g_nvelY = g_nvel_field->getField(1)->fieldNC(),
		*g_nvelZ = g_nvel_field->getField(2)->fieldNC(),
		*g_ovelX = g_ovel_field->getField(0)->fieldNC(),
		*g_ovelY = g_ovel_field->getField(1)->fieldNC(),
		*g_ovelZ = g_ovel_field->getField(2)->fieldNC(),
		*g_colVelX = g_colVel_field->getField(0)->fieldNC(),
		*g_colVelY = g_colVel_field->getField(1)->fieldNC(),
		*g_colVelZ = g_colVel_field->getField(2)->fieldNC(),
		*g_extForceX = g_extForce_field->getField(0)->fieldNC(),
		*g_extForceY = g_extForce_field->getField(1)->fieldNC(),
		*g_extForceZ = g_extForce_field->getField(2)->fieldNC(),
		*g_col = g_col_field->getField()->fieldNC(),
		*g_active = g_active_field->getField()->fieldNC();

	int point_count = gdp_out->getPointRange().getEntries();
	std::vector<boost::array<freal,64> > p_w(point_count);
	std::vector<boost::array<vector3,64> > p_wgh(point_count);

	//Get world-to-grid conversion ratios
	//Particle's grid position can be found via (pos - grid_origin)/voxel_dims
	vector3
		voxel_dims = g_mass_field->getVoxelSize(),
		grid_origin = g_mass_field->getOrig(),
		grid_divs = g_mass_field->getDivisions();
	//Houdini uses voxel centers for grid nodes, rather than grid corners
	grid_origin += voxel_dims/2.0;
	freal voxelArea = voxel_dims[0]*voxel_dims[1]*voxel_dims[2];
	
	/*
	//Reset grid
	for(int iX=0; iX < grid_divs[0]; iX++){
		for(int iY=0; iY < grid_divs[1]; iY++){
			for(int iZ=0; iZ < grid_divs[2]; iZ++){
				g_mass->setValue(iX,iY,iZ,0);
				g_active->setValue(iX,iY,iZ,0);
				g_ovelX->setValue(iX,iY,iZ,0);
				g_ovelY->setValue(iX,iY,iZ,0);
				g_ovelZ->setValue(iX,iY,iZ,0);
				g_nvelX->setValue(iX,iY,iZ,0);
				g_nvelY->setValue(iX,iY,iZ,0);
				g_nvelZ->setValue(iX,iY,iZ,0);
			}
		}
	}
	*/

	/// STEP #1: Transfer mass to grid

	if (p_position.isValid()){

		//Iterate through particles
		for (GA_Iterator it(gdp_out->getPointRange()); !it.atEnd(); it.advance()){
			int pid = it.getOffset();
							
			//Get grid position
			vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
			int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
			//g_mass_field->posToIndex(p_position.get(pid),p_gridx,p_gridy,p_gridz);
			freal particle_density = p_density.get(pid);
			//Compute weights and transfer mass
			for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
				//Z-dimension interpolation
				freal z_pos = gpos[2]-z,
					wz = SIM_SnowSolver::bspline(z_pos),
					dz = SIM_SnowSolver::bsplineSlope(z_pos);
				for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
					//Y-dimension interpolation
					freal y_pos = gpos[1]-y,
						wy = SIM_SnowSolver::bspline(y_pos),
						dy = SIM_SnowSolver::bsplineSlope(y_pos);
					for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
						//X-dimension interpolation
						freal x_pos = gpos[0]-x,
							wx = SIM_SnowSolver::bspline(x_pos),
							dx = SIM_SnowSolver::bsplineSlope(x_pos);
						
						//Final weight is dyadic product of weights in each dimension
						freal weight = wx*wy*wz;
						p_w[pid-1][idx] = weight;

						//Weight gradient is a vector of partial derivatives
						p_wgh[pid-1][idx] = vector3(dx*wy*wz, wx*dy*wz, wx*wy*dz)/voxel_dims;

						//Interpolate mass
						freal node_mass = g_mass->getValue(x,y,z);
						node_mass += weight*particle_mass;
						g_mass->setValue(x,y,z,node_mass);
					}
				}
			}
		}
	}
	
	/// STEP #2: First timestep only - Estimate particle volumes using grid mass

	/*
	if (time == 0.0){
		//Iterate through particles
		for (GA_Iterator it(gdp_out->getPointRange()); !it.atEnd(); it.advance()){
			int pid = it.getOffset();
			freal density = 0;

			//Get grid position
			int p_gridx = 0, p_gridy = 0, p_gridz = 0;
			vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
			int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
			//g_nvel_field->posToIndex(0,p_position.get(pid),p_gridx,p_gridy,p_gridz);
			//Transfer grid density (within radius) to particles
			for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
				for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
					for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
						freal w = p_w[pid-1][idx];
						if (w > EPSILON){
							//Transfer density
							density += w * g_mass->getValue(x,y,z);
						}
					}
				}
			}
			
			density /= voxelArea;
			p_density.set(pid,density);
			p_volume.set(pid, particle_mass/density);
		}
	}
	//*/
	
	/// STEP #3: Transfer velocity to grid

	//This must happen after transferring mass, to conserve momentum
	//Iterate through particles and transfer
	for (GA_Iterator it(gdp_in->getPointRange()); !it.atEnd(); it.advance()){
		int pid = it.getOffset();
		vector3 vel_fac = p_vel.get(pid)*particle_mass;

		//Get grid position
		vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
		int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
		//g_nvel_field->posToIndex(0,p_position.get(pid),p_gridx,p_gridy,p_gridz);

		//Transfer to grid nodes within radius
		for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
			for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
				for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
					freal w = p_w[pid-1][idx];
					if (w > EPSILON){
						freal nodex_vel = g_ovelX->getValue(x,y,z) + vel_fac[0]*w;
						freal nodey_vel = g_ovelY->getValue(x,y,z) + vel_fac[1]*w;
						freal nodez_vel = g_ovelZ->getValue(x,y,z) + vel_fac[2]*w;
						g_ovelX->setValue(x,y,z,nodex_vel);
						g_ovelY->setValue(x,y,z,nodey_vel);
						g_ovelZ->setValue(x,y,z,nodez_vel);			
						g_active->setValue(x,y,z,1.0);			
					}
				}
			}
		}
	}
	//Division is slow (maybe?); we only want to do divide by mass once, for each active node
	for(int iX=0; iX < grid_divs[0]; iX++){
		for(int iY=0; iY < grid_divs[1]; iY++){
			for(int iZ=0; iZ < grid_divs[2]; iZ++){
				//Only check nodes that have mass
				if (g_active->getValue(iX,iY,iZ)){
					freal node_mass = 1/(g_mass->getValue(iX,iY,iZ));
					g_ovelX->setValue(iX,iY,iZ,(g_ovelX->getValue(iX,iY,iZ)*node_mass));
					g_ovelY->setValue(iX,iY,iZ,(g_ovelY->getValue(iX,iY,iZ)*node_mass));
					g_ovelZ->setValue(iX,iY,iZ,(g_ovelZ->getValue(iX,iY,iZ)*node_mass));
				}
			}
		}
	}
	
	/// STEP #4: Compute new grid velocities

	//Temporary variables for plasticity and force calculation
	//We need one set of variables for each thread that will be running
	eigen_matrix3 def_elastic, def_plastic, energy, svd_u, svd_v;
	Eigen::JacobiSVD<eigen_matrix3, Eigen::NoQRPreconditioner> svd;
	eigen_vector3 svd_e;
	matrix3  HDK_def_plastic, HDK_def_elastic, HDK_energy;
	freal* data_dp = HDK_def_plastic.data();
	freal* data_de = HDK_def_elastic.data();
	freal* data_energy = HDK_energy.data();
	//Map Eigen matrices to HDK matrices
	Eigen::Map<eigen_matrix3> data_dp_map(data_dp);
	Eigen::Map<eigen_matrix3> data_de_map(data_de);
	Eigen::Map<eigen_matrix3> data_energy_map(data_energy);	

	//Compute force at each particle and transfer to Eulerian grid
	//We use "nvel" to hold the grid force, since that variable is not in use
	for (GA_Iterator it(gdp_in->getPointRange()); !it.atEnd(); it.advance()){
		int pid = it.getOffset();
		
		//Apply plasticity to deformation gradient, before computing forces
		//We need to use the Eigen lib to do the SVD; transfer houdini matrices to Eigen matrices
		HDK_def_plastic = p_Fp.get(pid);
		HDK_def_elastic = p_Fe.get(pid);
		def_plastic = Eigen::Map<eigen_matrix3>(data_dp);
		def_elastic = Eigen::Map<eigen_matrix3>(data_de);
		
		//Compute singular value decomposition (uev*)
		svd.compute(def_elastic, Eigen::ComputeFullV | Eigen::ComputeFullU);
		svd_e = svd.singularValues();
		svd_u = svd.matrixU();
		svd_v = svd.matrixV();
		//Clamp singular values
		for (int i=0; i<3; i++){
			if (svd_e[i] < CRIT_COMPRESS) 
				svd_e[i] = CRIT_COMPRESS;
			else if (svd_e[i] > CRIT_STRETCH)
				svd_e[i] = CRIT_STRETCH;
		}
		//Put SVD back together for new elastic and plastic gradients
		def_plastic = svd_v * svd_e.asDiagonal().inverse() * svd_u.transpose() * def_elastic * def_plastic;
		svd_v.transposeInPlace();
		def_elastic = svd_u * svd_e.asDiagonal() * svd_v;
		
		//Now compute the energy partial derivative (which we use to get force at each grid node)
		energy = 2*mu*(def_elastic - svd_u*svd_v)*def_elastic.transpose();
		//Je is the determinant of def_elastic (equivalent to svd_e.prod())
		freal Je = svd_e.prod(),
			contour = lambda*Je*(Je-1),
			jp = def_plastic.determinant(),
			particle_vol = p_volume.get(pid);
		for (int i=0; i<3; i++)
			energy(i,i) += contour;
		energy *=  particle_vol * exp(HARDENING*(1-jp));
		
		//Transfer Eigen matrices back to HDK
		data_dp_map = def_plastic;
		data_de_map = def_elastic;
		data_energy_map = energy;
		
		p_Fp.set(pid,HDK_def_plastic);
		p_Fe.set(pid,HDK_def_elastic);
		
		//Transfer energy to surrounding grid nodes
		vector3 gpos = (p_position.get(pid) - grid_origin)/voxel_dims;
		int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
		for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
			for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
				for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
					freal w = p_w[pid-1][idx];
					if (w > EPSILON){
						vector3 ngrad = p_wgh[pid-1][idx];
						g_nvelX->setValue(x,y,z,g_nvelX->getValue(x,y,z) + ngrad.dot(HDK_energy[0]));
						g_nvelY->setValue(x,y,z,g_nvelY->getValue(x,y,z) + ngrad.dot(HDK_energy[1]));
						g_nvelZ->setValue(x,y,z,g_nvelZ->getValue(x,y,z) + ngrad.dot(HDK_energy[2]));						
					}
				}
			}
		}
	}

	//Use new forces to solve for new velocities
	for(int iX=0; iX < grid_divs[0]; iX++){
		for(int iY=0; iY < grid_divs[1]; iY++){
			for(int iZ=0; iZ < grid_divs[2]; iZ++){
				//Only compute for active nodes
				if (g_active->getValue(iX,iY,iZ)){
					freal nodex_ovel = g_ovelX->getValue(iX,iY,iZ);
					freal nodey_ovel = g_ovelY->getValue(iX,iY,iZ);
					freal nodez_ovel = g_ovelZ->getValue(iX,iY,iZ);
					freal forcex = g_nvelX->getValue(iX,iY,iZ);
					freal forcey = g_nvelY->getValue(iX,iY,iZ);
					freal forcez = g_nvelZ->getValue(iX,iY,iZ);
					freal node_mass = 1/(g_mass->getValue(iX,iY,iZ));
					freal ext_forceX = GRAVITY[0] + g_extForceX->getValue(iX,iY,iZ);
					freal ext_forceY = GRAVITY[1] + g_extForceY->getValue(iX,iY,iZ);
					freal ext_forceZ = GRAVITY[2] + g_extForceZ->getValue(iX,iY,iZ);
					nodex_ovel += framerate*(ext_forceX - forcex*node_mass);
					nodey_ovel += framerate*(ext_forceY - forcey*node_mass);
					nodez_ovel += framerate*(ext_forceZ - forcez*node_mass);
					
					//Limit velocity to max_vel
					vector3 g_nvel(nodex_ovel, nodey_ovel, nodez_ovel);
					freal nvelNorm = g_nvel.length();
					if(nvelNorm > max_vel){
						freal velRatio = max_vel/nvelNorm;
						g_nvel*= velRatio;
					}

					g_nvelX->setValue(iX,iY,iZ,g_nvel[0]);
					g_nvelY->setValue(iX,iY,iZ,g_nvel[1]);
					g_nvelZ->setValue(iX,iY,iZ,g_nvel[2]);

				}
			}
		}
	}

	/// STEP #5: Grid collision resolution

	vector3 sdf_normal;
	//*
	for(int iX=1; iX < grid_divs[0]-1; iX++){
		for(int iY=1; iY < grid_divs[1]-1; iY++){
			for(int iZ=1; iZ < grid_divs[2]-1; iZ++){
				if (g_active->getValue(iX,iY,iZ)){
					if (!computeSDFNormal(g_col, iX, iY, iZ, sdf_normal))
						continue;

					//Collider velocity
					vector3 vco(
						g_colVelX->getValue(iX,iY,iZ),
						g_colVelY->getValue(iX,iY,iZ),
						g_colVelZ->getValue(iX,iY,iZ)
					);
					//Grid velocity
					vector3 v(
						g_nvelX->getValue(iX,iY,iZ),
						g_nvelY->getValue(iX,iY,iZ),
						g_nvelZ->getValue(iX,iY,iZ)
					);
					//Skip if bodies are separating
					vector3 vrel = v - vco;
					
					freal vn = vrel.dot(sdf_normal);
					if (vn >= 0) continue;
					//Resolve collisions; also add velocity of collision object to snow velocity
					//Sticks to surface (too slow to overcome static friction)
					vector3 vt = vrel - (sdf_normal*vn);

					freal stick = vn*COF, vt_norm = vt.length();
					if (vt_norm <= -stick)
						vt = vco;
					//Dynamic friction
					else vt += stick*vt/vt_norm + vco;
					
					g_nvelX->setValue(iX,iY,iZ,vt[0]);	
					g_nvelY->setValue(iX,iY,iZ,vt[1]);
					g_nvelZ->setValue(iX,iY,iZ,vt[2]);
				}
			}
		}
	}
	//*/

	/// STEP #6: Transfer grid velocities to particles and integrate
	/// STEP #7: Particle collision resolution

	vector3 pic, flip, col_vel;
	matrix3 vel_grad;
	//Iterate through particles
	for (GA_Iterator it(gdp_in->getPointRange()); !it.atEnd(); it.advance()){
		int pid = it.getOffset();
		//Particle position
		vector3 pos(p_position.get(pid));
		
		//Reset velocity
		pic[0] = 0.0;
		pic[1] = 0.0;
		pic[2] = 0.0;
		flip = p_vel.get(pid);
		vel_grad.zero();
		freal density = 0;

		 //Get grid position
		vector3 gpos = (pos - grid_origin)/voxel_dims;
		int p_gridx = (int) gpos[0], p_gridy = (int) gpos[1], p_gridz = (int) gpos[2];
		for (int idx=0, z=p_gridz-1, z_end=z+3; z<=z_end; z++){
			for (int y=p_gridy-1, y_end=y+3; y<=y_end; y++){
				for (int x=p_gridx-1, x_end=x+3; x<=x_end; x++, idx++){
					freal w = p_w[pid-1][idx];
					if (w > EPSILON){
						const vector3 node_wg = p_wgh[pid-1][idx];
						const vector3 node_nvel(
							g_nvelX->getValue(x,y,z),
							g_nvelY->getValue(x,y,z),
							g_nvelZ->getValue(x,y,z)
						);

						//Transfer velocities
						pic += node_nvel*w;	
						flip[0] += (node_nvel[0] - g_ovelX->getValue(x,y,z))*w;	
						flip[1] += (node_nvel[1]- g_ovelY->getValue(x,y,z))*w;	
						flip[2] += (node_nvel[2] - g_ovelZ->getValue(x,y,z))*w;
						//Transfer density
						density += w * g_mass->getValue(x,y,z);
						//Transfer veloctiy gradient
						vel_grad.outerproductUpdate(1.0, node_nvel, node_wg);
					}
				}
			}
		}

		//Finalize velocity update
		vector3 vel = flip*FLIP_PERCENT + pic*(1-FLIP_PERCENT);
		
		//Reset collision data
		freal col_sdf = 0;
		sdf_normal[0] = 0;
		sdf_normal[1] = 0;
		sdf_normal[2] = 0;
		col_vel[0] = 0;
		col_vel[1] = 0;
		col_vel[2] = 0;
		
		//Interpolate surrounding nodes' SDF info to the particle (trilinear interpolation)

		for (int idx=0, z=p_gridz, z_end=z+1; z<=z_end; z++){
			freal w_z = gpos[2]-z;
			for (int y=p_gridy, y_end=y+1; y<=y_end; y++){
				freal w_zy = w_z*(gpos[1]-y);
				for (int x=p_gridx, x_end=x+1; x<=x_end; x++, idx++){
					freal weight = fabs(w_zy*(gpos[0]-x));
					//cout << w_zy << "," << (gpos[0]-x) << "," << weight << endl;
					vector3 temp_normal;
					computeSDFNormal(g_col, x, y, z, temp_normal);
						//goto SKIP_PCOLLIDE;
					//cout << g_col->getValue(x, y, z) << endl;
					//Interpolate
					sdf_normal += temp_normal*weight;
					col_sdf += g_col->getValue(x, y, z)*weight;
					col_vel[0] += g_colVelX->getValue(x, y, z)*weight;
					col_vel[1] += g_colVelY->getValue(x, y, z)*weight;
					col_vel[2] += g_colVelZ->getValue(x, y, z)*weight;
				}
			}
		}

		//Resolve particle collisions	
		//cout << col_sdf << endl;
		if (col_sdf > 0){
			vector3 vrel = vel - col_vel;
			freal vn = vrel.dot(sdf_normal);
			
			//Skip if bodies are separating
			if (vn < 0){
				
				//Resolve and add velocity of collision object to snow velocity
				//Sticks to surface (too slow to overcome static friction)
				vel = vrel - (sdf_normal*vn);
				freal stick = vn*COF, vel_norm = vel.length();
				if (vel_norm <= -stick)
					vel = col_vel;
				//Dynamic friction
				else vel += stick*vel/vel_norm + col_vel;
			}
		}
		
		SKIP_PCOLLIDE:

		//Finalize density update
		density /= voxelArea;
		p_density.set(pid,density);

		//Update particle position
		pos += framerate*vel;
		//Limit particle position
		int mask = 0;
		/*		
		for (int i=0; i<3; i++){
			if (pos[i] > bbox_max_limit[i]){
				pos[i] = bbox_max_limit[i];
				vel[i] = 0.0;
				mask |= 1 << i;
			}
			else if (pos[i] < bbox_min_limit[i]){
				pos[i] = bbox_min_limit[i];
				vel[i] = 0.0;
				mask |= 1 << i;
			}
		}
		//Slow particle down at bounds (not really necessary...)
		if (mask){
			for (int i=0; i<3; i++){
				if (mask & 0x1)
					vel[i] *= .05;
				mask >>= 1;
			}
		}//*/
		p_vel.set(pid,vel);
		p_position.set(pid,pos);

		//Update particle deformation gradient
		//Note: plasticity is computed on the next timestep...
		vel_grad *= framerate;
		vel_grad(0,0) += 1;
		vel_grad(1,1) += 1;
		vel_grad(2,2) += 1;
		
		p_Fe.set(pid, vel_grad*p_Fe.get(pid));
	}

	gdh.unlock(gdp_out);
    gdh.unlock(gdp_in);
	
	return true;
}