bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& mesh) { rcAssert(ctx); ctx->startTimer(RC_TIMER_BUILD_POLYMESH); rcVcopy(mesh.bmin, cset.bmin); rcVcopy(mesh.bmax, cset.bmax); mesh.cs = cset.cs; mesh.ch = cset.ch; int maxVertices = 0; int maxTris = 0; int maxVertsPerCont = 0; for (int i = 0; i < cset.nconts; ++i) { // Skip null contours. if (cset.conts[i].nverts < 3) continue; maxVertices += cset.conts[i].nverts; maxTris += cset.conts[i].nverts - 2; maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts); } if (maxVertices >= 0xfffe) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices); return false; } rcScopedDelete<unsigned char> vflags = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP); if (!vflags) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); return false; } memset(vflags, 0, maxVertices); mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM); if (!mesh.verts) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); return false; } mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2*2, RC_ALLOC_PERM); if (!mesh.polys) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2); return false; } mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM); if (!mesh.regs) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris); return false; } mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM); if (!mesh.areas) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris); return false; } mesh.nverts = 0; mesh.npolys = 0; mesh.nvp = nvp; mesh.maxpolys = maxTris; memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3); memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2); memset(mesh.regs, 0, sizeof(unsigned short)*maxTris); memset(mesh.areas, 0, sizeof(unsigned char)*maxTris); rcScopedDelete<int> nextVert = (int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP); if (!nextVert) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices); return false; } memset(nextVert, 0, sizeof(int)*maxVertices); rcScopedDelete<int> firstVert = (int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP); if (!firstVert) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); return false; } for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) firstVert[i] = -1; rcScopedDelete<int> indices = (int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP); if (!indices) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont); return false; } rcScopedDelete<int> tris = (int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP); if (!tris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3); return false; } rcScopedDelete<unsigned short> polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP); if (!polys) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp); return false; } unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp]; for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // Skip null contours. if (cont.nverts < 3) continue; // Triangulate contour for (int j = 0; j < cont.nverts; ++j) indices[j] = j; int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]); if (ntris <= 0) { // Bad triangulation, should not happen. /* printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]); printf("\tconst float cs = %ff;\n", cset.cs); printf("\tconst float ch = %ff;\n", cset.ch); printf("\tconst int verts[] = {\n"); for (int k = 0; k < cont.nverts; ++k) { const int* v = &cont.verts[k*4]; printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]); } printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/ ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i); ntris = -ntris; } // Add and merge vertices. for (int j = 0; j < cont.nverts; ++j) { const int* v = &cont.verts[j*4]; indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2], mesh.verts, firstVert, nextVert, mesh.nverts); if (v[3] & RC_BORDER_VERTEX) { // This vertex should be removed. vflags[indices[j]] = 1; } } // Build initial polygons. int npolys = 0; memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { int* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*nvp+0] = (unsigned short)indices[t[0]]; polys[npolys*nvp+1] = (unsigned short)indices[t[1]]; polys[npolys*nvp+2] = (unsigned short)indices[t[2]]; npolys++; } } if (!npolys) continue; // Merge polygons. if (nvp > 3) { for(;;) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*nvp]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*nvp]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*nvp]; unsigned short* pb = &polys[bestPb*nvp]; mergePolys(pa, pb, bestEa, bestEb, tmpPoly, nvp); memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp); npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int j = 0; j < npolys; ++j) { unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; unsigned short* q = &polys[j*nvp]; for (int k = 0; k < nvp; ++k) p[k] = q[k]; mesh.regs[mesh.npolys] = cont.reg; mesh.areas[mesh.npolys] = cont.area; mesh.npolys++; if (mesh.npolys > maxTris) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris); return false; } } } // Remove edge vertices. for (int i = 0; i < mesh.nverts; ++i) { if (vflags[i]) { if (!canRemoveVertex(ctx, mesh, (unsigned short)i)) continue; if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris)) { // Failed to remove vertex ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i); return false; } // Remove vertex // Note: mesh.nverts is already decremented inside removeVertex()! for (int j = i; j < mesh.nverts; ++j) vflags[j] = vflags[j+1]; --i; } } // Calculate adjacency. if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp)) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed."); return false; } // Just allocate the mesh flags array. The user is resposible to fill it. mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM); if (!mesh.flags) { ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys); return false; } memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys); if (mesh.nverts > 0xffff) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); } if (mesh.npolys > 0xffff) { ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); } ctx->stopTimer(RC_TIMER_BUILD_POLYMESH); return true; }
bool rcBuildPolyMesh(rcContourSet& cset, int nvp, rcPolyMesh& mesh) { rcTimeVal startTime = rcGetPerformanceTimer(); vcopy(mesh.bmin, cset.bmin); vcopy(mesh.bmax, cset.bmax); mesh.cs = cset.cs; mesh.ch = cset.ch; int maxVertices = 0; int maxTris = 0; int maxVertsPerCont = 0; for (int i = 0; i < cset.nconts; ++i) { maxVertices += cset.conts[i].nverts; maxTris += cset.conts[i].nverts - 2; maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts); } if (maxVertices >= 0xfffe) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices); return false; } unsigned char* vflags = 0; int* nextVert = 0; int* firstVert = 0; int* indices = 0; int* tris = 0; unsigned short* polys = 0; vflags = new unsigned char[maxVertices]; if (!vflags) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); goto failure; } memset(vflags, 0, maxVertices); mesh.verts = new unsigned short[maxVertices*3]; if (!mesh.verts) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); goto failure; } mesh.polys = new unsigned short[maxTris*nvp*2]; if (!mesh.polys) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2); goto failure; } mesh.regs = new unsigned short[maxTris]; if (!mesh.regs) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris); goto failure; } mesh.nverts = 0; mesh.npolys = 0; mesh.nvp = nvp; memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3); memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2); memset(mesh.regs, 0, sizeof(unsigned short)*maxTris); nextVert = new int[maxVertices]; if (!nextVert) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices); goto failure; } memset(nextVert, 0, sizeof(int)*maxVertices); firstVert = new int[VERTEX_BUCKET_COUNT]; if (!firstVert) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); goto failure; } for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) firstVert[i] = -1; indices = new int[maxVertsPerCont]; if (!indices) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont); goto failure; } tris = new int[maxVertsPerCont*3]; if (!tris) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3); goto failure; } polys = new unsigned short[(maxVertsPerCont+1)*nvp]; if (!polys) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp); goto failure; } unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp]; for (int i = 0; i < cset.nconts; ++i) { rcContour& cont = cset.conts[i]; // Skip empty contours. if (cont.nverts < 3) continue; // Triangulate contour for (int j = 0; j < cont.nverts; ++j) indices[j] = j; int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]); if (ntris <= 0) { // Bad triangulation, should not happen. /* for (int k = 0; k < cont.nverts; ++k) { const int* v = &cont.verts[k*4]; printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]); if (nBadPos < 100) { badPos[nBadPos*3+0] = v[0]; badPos[nBadPos*3+1] = v[1]; badPos[nBadPos*3+2] = v[2]; nBadPos++; } }*/ ntris = -ntris; } // Add and merge vertices. for (int j = 0; j < cont.nverts; ++j) { const int* v = &cont.verts[j*4]; indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2], mesh.verts, firstVert, nextVert, mesh.nverts); if (v[3] & RC_BORDER_VERTEX) { // This vertex should be removed. vflags[indices[j]] = 1; } } // Build initial polygons. int npolys = 0; memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { int* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*nvp+0] = (unsigned short)indices[t[0]]; polys[npolys*nvp+1] = (unsigned short)indices[t[1]]; polys[npolys*nvp+2] = (unsigned short)indices[t[2]]; npolys++; } } if (!npolys) continue; // Merge polygons. if (nvp > 3) { while (true) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa, bestPb, bestEa, bestEb; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*nvp]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*nvp]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*nvp]; unsigned short* pb = &polys[bestPb*nvp]; mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp); memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp); npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int j = 0; j < npolys; ++j) { unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; unsigned short* q = &polys[j*nvp]; for (int k = 0; k < nvp; ++k) p[k] = q[k]; mesh.regs[mesh.npolys] = cont.reg; mesh.npolys++; } } // Remove edge vertices. for (int i = 0; i < mesh.nverts; ++i) { if (vflags[i]) { if (!removeVertex(mesh, i, maxTris)) goto failure; for (int j = i; j < mesh.nverts-1; ++j) vflags[j] = vflags[j+1]; --i; } } delete [] vflags; delete [] firstVert; delete [] nextVert; delete [] indices; delete [] tris; // Calculate adjacency. if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp)) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed."); return false; } rcTimeVal endTime = rcGetPerformanceTimer(); // if (rcGetLog()) // rcGetLog()->log(RC_LOG_PROGRESS, "Build polymesh: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f); if (rcGetBuildTimes()) rcGetBuildTimes()->buildPolymesh += rcGetDeltaTimeUsec(startTime, endTime); return true; failure: delete [] vflags; delete [] tmpPoly; delete [] firstVert; delete [] nextVert; delete [] indices; delete [] tris; return false; }
static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris) { const int nvp = mesh.nvp; // Count number of polygons to remove. int numRemovedVerts = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); for (int j = 0; j < nv; ++j) { if (p[j] == rem) numRemovedVerts++; } } int nedges = 0; rcScopedDelete<int> edges = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP); if (!edges) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4); return false; } int nhole = 0; rcScopedDelete<int> hole = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP); if (!hole) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp); return false; } int nhreg = 0; rcScopedDelete<int> hreg = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP); if (!hreg) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp); return false; } int nharea = 0; rcScopedDelete<int> harea = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP); if (!harea) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp); return false; } for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); bool hasRem = false; for (int j = 0; j < nv; ++j) if (p[j] == rem) hasRem = true; if (hasRem) { // Collect edges which does not touch the removed vertex. for (int j = 0, k = nv-1; j < nv; k = j++) { if (p[j] != rem && p[k] != rem) { int* e = &edges[nedges*4]; e[0] = p[k]; e[1] = p[j]; e[2] = mesh.regs[i]; e[3] = mesh.areas[i]; nedges++; } } // Remove the polygon. unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2]; memcpy(p,p2,sizeof(unsigned short)*nvp); memset(p+nvp,0xff,sizeof(unsigned short)*nvp); mesh.regs[i] = mesh.regs[mesh.npolys-1]; mesh.areas[i] = mesh.areas[mesh.npolys-1]; mesh.npolys--; --i; } } // Remove vertex. for (int i = (int)rem; i < mesh.nverts; ++i) { mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0]; mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1]; mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2]; } mesh.nverts--; // Adjust indices to match the removed vertex layout. for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); for (int j = 0; j < nv; ++j) if (p[j] > rem) p[j]--; } for (int i = 0; i < nedges; ++i) { if (edges[i*4+0] > rem) edges[i*4+0]--; if (edges[i*4+1] > rem) edges[i*4+1]--; } if (nedges == 0) return true; // Start with one vertex, keep appending connected // segments to the start and end of the hole. pushBack(edges[0], hole, nhole); pushBack(edges[2], hreg, nhreg); pushBack(edges[3], harea, nharea); while (nedges) { bool match = false; for (int i = 0; i < nedges; ++i) { const int ea = edges[i*4+0]; const int eb = edges[i*4+1]; const int r = edges[i*4+2]; const int a = edges[i*4+3]; bool add = false; if (hole[0] == eb) { // The segment matches the beginning of the hole boundary. pushFront(ea, hole, nhole); pushFront(r, hreg, nhreg); pushFront(a, harea, nharea); add = true; } else if (hole[nhole-1] == ea) { // The segment matches the end of the hole boundary. pushBack(eb, hole, nhole); pushBack(r, hreg, nhreg); pushBack(a, harea, nharea); add = true; } if (add) { // The edge segment was added, remove it. edges[i*4+0] = edges[(nedges-1)*4+0]; edges[i*4+1] = edges[(nedges-1)*4+1]; edges[i*4+2] = edges[(nedges-1)*4+2]; edges[i*4+3] = edges[(nedges-1)*4+3]; --nedges; match = true; --i; } } if (!match) break; } rcScopedDelete<int> tris = (int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP); if (!tris) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3); return false; } rcScopedDelete<int> tverts = (int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP); if (!tverts) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4); return false; } rcScopedDelete<int> thole = (int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP); if (!tverts) { ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole); return false; } // Generate temp vertex array for triangulation. for (int i = 0; i < nhole; ++i) { const int pi = hole[i]; tverts[i*4+0] = mesh.verts[pi*3+0]; tverts[i*4+1] = mesh.verts[pi*3+1]; tverts[i*4+2] = mesh.verts[pi*3+2]; tverts[i*4+3] = 0; thole[i] = i; } // Triangulate the hole. int ntris = triangulate(nhole, &tverts[0], &thole[0], tris); if (ntris < 0) { ntris = -ntris; ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results."); } // Merge the hole triangles back to polygons. rcScopedDelete<unsigned short> polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP); if (!polys) { ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp); return false; } rcScopedDelete<unsigned short> pregs = (unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP); if (!pregs) { ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris); return false; } rcScopedDelete<unsigned char> pareas = (unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP); if (!pregs) { ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris); return false; } unsigned short* tmpPoly = &polys[ntris*nvp]; // Build initial polygons. int npolys = 0; memset(polys, 0xff, ntris*nvp*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { int* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*nvp+0] = (unsigned short)hole[t[0]]; polys[npolys*nvp+1] = (unsigned short)hole[t[1]]; polys[npolys*nvp+2] = (unsigned short)hole[t[2]]; pregs[npolys] = (unsigned short)hreg[t[0]]; pareas[npolys] = (unsigned char)harea[t[0]]; npolys++; } } if (!npolys) return true; // Merge polygons. if (nvp > 3) { for (;;) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*nvp]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*nvp]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*nvp]; unsigned short* pb = &polys[bestPb*nvp]; mergePolys(pa, pb, bestEa, bestEb, tmpPoly, nvp); memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp); pregs[bestPb] = pregs[npolys-1]; pareas[bestPb] = pareas[npolys-1]; npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int i = 0; i < npolys; ++i) { if (mesh.npolys >= maxTris) break; unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; memset(p,0xff,sizeof(unsigned short)*nvp*2); for (int j = 0; j < nvp; ++j) p[j] = polys[i*nvp+j]; mesh.regs[mesh.npolys] = pregs[i]; mesh.areas[mesh.npolys] = pareas[i]; mesh.npolys++; if (mesh.npolys > maxTris) { ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris); return false; } } return true; }
static bool removeVertex(rcPolyMesh& mesh, const unsigned short rem, const int maxTris) { static const int nvp = mesh.nvp; int* edges = 0; int nedges = 0; int* hole = 0; int nhole = 0; int* hreg = 0; int nhreg = 0; int* tris = 0; int* tverts = 0; int* thole = 0; unsigned short* polys = 0; unsigned short* pregs = 0; int npolys = 0; // Count number of polygons to remove. int nrem = 0; for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; for (int j = 0; j < nvp; ++j) if (p[j] == rem) { nrem++; break; } } edges = new int[nrem*nvp*3]; if (!edges) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", nrem*nvp*3); goto failure; } hole = new int[nrem*nvp]; if (!hole) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", nrem*nvp); goto failure; } hreg = new int[nrem*nvp]; if (!hreg) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", nrem*nvp); goto failure; } for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); bool hasRem = false; for (int j = 0; j < nv; ++j) if (p[j] == rem) hasRem = true; if (hasRem) { // Collect edges which does not touch the removed vertex. for (int j = 0, k = nv-1; j < nv; k = j++) { if (p[j] != rem && p[k] != rem) { int* e = &edges[nedges*3]; e[0] = p[k]; e[1] = p[j]; e[2] = mesh.regs[i]; nedges++; } } // Remove the polygon. unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2]; memcpy(p,p2,sizeof(unsigned short)*nvp); mesh.regs[i] = mesh.regs[mesh.npolys-1]; mesh.npolys--; --i; } } // Remove vertex. for (int i = (int)rem; i < mesh.nverts; ++i) { mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0]; mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1]; mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2]; } mesh.nverts--; // Adjust indices to match the removed vertex layout. for (int i = 0; i < mesh.npolys; ++i) { unsigned short* p = &mesh.polys[i*nvp*2]; const int nv = countPolyVerts(p, nvp); for (int j = 0; j < nv; ++j) if (p[j] > rem) p[j]--; } for (int i = 0; i < nedges; ++i) { if (edges[i*3+0] > rem) edges[i*3+0]--; if (edges[i*3+1] > rem) edges[i*3+1]--; } if (nedges == 0) return true; hole[nhole] = edges[0]; hreg[nhole] = edges[2]; nhole++; while (nedges) { bool match = false; for (int i = 0; i < nedges; ++i) { const int ea = edges[i*3+0]; const int eb = edges[i*3+1]; const int r = edges[i*3+2]; bool add = false; if (hole[0] == eb) { pushFront(ea, hole, nhole); pushFront(r, hreg, nhreg); add = true; } else if (hole[nhole-1] == ea) { pushBack(eb, hole, nhole); pushBack(r, hreg, nhreg); add = true; } if (add) { // Remove edge. edges[i*3+0] = edges[(nedges-1)*3+0]; edges[i*3+1] = edges[(nedges-1)*3+1]; edges[i*3+2] = edges[(nedges-1)*3+2]; --nedges; match = true; --i; } } if (!match) break; } tris = new int[nhole*3]; if (!tris) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3); goto failure; } tverts = new int[nhole*4]; if (!tverts) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4); goto failure; } thole = new int[nhole]; if (!tverts) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole); goto failure; } // Generate temp vertex array for triangulation. for (int i = 0; i < nhole; ++i) { const int pi = hole[i]; tverts[i*4+0] = mesh.verts[pi*3+0]; tverts[i*4+1] = mesh.verts[pi*3+1]; tverts[i*4+2] = mesh.verts[pi*3+2]; tverts[i*4+3] = 0; thole[i] = i; } // Triangulate the hole. int ntris = triangulate(nhole, &tverts[0], &thole[0], tris); // Merge the hole triangles back to polygons. polys = new unsigned short[(ntris+1)*nvp]; if (!polys) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp); goto failure; } pregs = new unsigned short[ntris]; if (!pregs) { if (rcGetLog()) rcGetLog()->log(RC_LOG_WARNING, "removeVertex: Out of memory 'pregs' (%d).", ntris); goto failure; } unsigned short* tmpPoly = &polys[ntris*nvp]; // Build initial polygons. memset(polys, 0xff, ntris*nvp*sizeof(unsigned short)); for (int j = 0; j < ntris; ++j) { int* t = &tris[j*3]; if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) { polys[npolys*nvp+0] = (unsigned short)hole[t[0]]; polys[npolys*nvp+1] = (unsigned short)hole[t[1]]; polys[npolys*nvp+2] = (unsigned short)hole[t[2]]; pregs[npolys] = hreg[t[0]]; npolys++; } } if (!npolys) return true; // Merge polygons. if (nvp > 3) { while (true) { // Find best polygons to merge. int bestMergeVal = 0; int bestPa, bestPb, bestEa, bestEb; for (int j = 0; j < npolys-1; ++j) { unsigned short* pj = &polys[j*nvp]; for (int k = j+1; k < npolys; ++k) { unsigned short* pk = &polys[k*nvp]; int ea, eb; int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); if (v > bestMergeVal) { bestMergeVal = v; bestPa = j; bestPb = k; bestEa = ea; bestEb = eb; } } } if (bestMergeVal > 0) { // Found best, merge. unsigned short* pa = &polys[bestPa*nvp]; unsigned short* pb = &polys[bestPb*nvp]; mergePolys(pa, pb, mesh.verts, bestEa, bestEb, tmpPoly, nvp); memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp); pregs[bestPb] = pregs[npolys-1]; npolys--; } else { // Could not merge any polygons, stop. break; } } } // Store polygons. for (int i = 0; i < npolys; ++i) { if (mesh.npolys >= maxTris) break; unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; memset(p,0xff,sizeof(unsigned short)*nvp*2); for (int j = 0; j < nvp; ++j) p[j] = polys[i*nvp+j]; mesh.regs[mesh.npolys] = pregs[i]; mesh.npolys++; } delete [] edges; delete [] hole; delete [] hreg; delete [] tris; delete [] thole; delete [] tverts; delete [] polys; delete [] pregs; return true; failure: delete [] edges; delete [] hole; delete [] hreg; delete [] tris; delete [] thole; delete [] tverts; delete [] polys; delete [] pregs; return false; }