Exemple #1
0
Handle poly_ffi(TaskData *taskData, Handle args, Handle code)
{
    unsigned c = get_C_unsigned(taskData, code->Word());
    switch (c)
    {
    case 0: // malloc
        {
            POLYUNSIGNED size = getPolyUnsigned(taskData, args->Word());
            return toSysWord(taskData, malloc(size));
        }
    case 1: // free
        {
            void *mem = *(void**)(args->WordP());
            free(mem);
            return taskData->saveVec.push(TAGGED(0));
        }

    case 2: // Load library
        {
            TempString libName(args->Word());
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HINSTANCE lib = LoadLibrary(libName);
            if (lib == NULL)
            {
                char buf[256];
#if (defined(UNICODE))
                _snprintf(buf, sizeof(buf), "Loading <%S> failed. Error %lu", libName, GetLastError());
#else
                _snprintf(buf, sizeof(buf), "Loading <%s> failed. Error %lu", libName, GetLastError());
#endif
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#else
            void *lib = dlopen(libName, RTLD_LAZY);
            if (lib == NULL)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "Loading <%s> failed: %s", (const char *)libName, dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return toSysWord(taskData, lib);
        }

    case 3: // Load address of executable.
        {
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HINSTANCE lib = hApplicationInstance;
#else
            void *lib = dlopen(NULL, RTLD_LAZY);
            if (lib == NULL)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "Loading address of executable failed: %s", dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return toSysWord(taskData, lib);
        }
    case 4: // Unload library - Is this actually going to be used?
        {
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HMODULE hMod = *(HMODULE*)(args->WordP());
            if (! FreeLibrary(hMod))
                raise_syscall(taskData, "FreeLibrary failed", -(int)GetLastError());
#else
            void *lib = *(void**)(args->WordP());
            if (dlclose(lib) != 0)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "dlclose failed: %s", dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return taskData->saveVec.push(TAGGED(0));
        }
    case 5: // Load the address of a symbol from a library.
        {
            TempCString symName(args->WordP()->Get(1));
#if (defined(_WIN32) && ! defined(__CYGWIN__))
            HMODULE hMod = *(HMODULE*)(args->WordP()->Get(0).AsAddress());
            void *sym = (void*)GetProcAddress(hMod, symName);
            if (sym == NULL)
            {
                char buf[256];
                _snprintf(buf, sizeof(buf), "Loading symbol <%s> failed. Error %lu", symName, GetLastError());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#else
            void *lib = *(void**)(args->WordP()->Get(0).AsAddress());
            void *sym = dlsym(lib, symName);
            if (sym == NULL)
            {
                char buf[256];
                snprintf(buf, sizeof(buf), "load_sym <%s> : %s", (const char *)symName, dlerror());
                buf[sizeof(buf)-1] = 0; // Terminate just in case
                raise_exception_string(taskData, EXC_foreign, buf);
            }
#endif
            return toSysWord(taskData, sym);
        }

        // Libffi functions
    case 50: // Return a list of available ABIs
            return makeList(taskData, sizeof(abiTable)/sizeof(abiTable[0]),
                            (char*)abiTable, sizeof(abiTable[0]), 0, mkAbitab);

    case 51: // A constant from the table
        {
            unsigned index = get_C_unsigned(taskData, args->Word());
            if (index >= sizeof(constantTable) / sizeof(constantTable[0]))
                raise_exception_string(taskData, EXC_foreign, "Index out of range");
            return Make_arbitrary_precision(taskData, constantTable[index]);
        }

    case 52: // Return an FFI type
        {
            unsigned index = get_C_unsigned(taskData, args->Word());
            if (index >= sizeof(ffiTypeTable) / sizeof(ffiTypeTable[0]))
                raise_exception_string(taskData, EXC_foreign, "Index out of range");
            return toSysWord(taskData, ffiTypeTable[index]);
        }

    case 53: // Extract fields from ffi type.
        {
            ffi_type *ffit = *(ffi_type**)(args->WordP());
            Handle sizeHandle = Make_arbitrary_precision(taskData, ffit->size);
            Handle alignHandle = Make_arbitrary_precision(taskData, ffit->alignment);
            Handle typeHandle = Make_arbitrary_precision(taskData, ffit->type);
            Handle elemHandle = toSysWord(taskData, ffit->elements);
            Handle resHandle = alloc_and_save(taskData, 4);
            resHandle->WordP()->Set(0, sizeHandle->Word());
            resHandle->WordP()->Set(1, alignHandle->Word());
            resHandle->WordP()->Set(2, typeHandle->Word());
            resHandle->WordP()->Set(3, elemHandle->Word());
            return resHandle;
        }

    case 54: // Construct an ffi type.
        {
            // This is probably only used to create structs.
            size_t size = getPolyUnsigned(taskData, args->WordP()->Get(0));
            unsigned short align = get_C_ushort(taskData, args->WordP()->Get(1));
            unsigned short type = get_C_ushort(taskData, args->WordP()->Get(2));
            unsigned nElems = 0;
            for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
                nElems++;
            size_t space = sizeof(ffi_type);
            // If we need the elements add space for the elements plus
            // one extra for the zero terminator.
            if (nElems != 0) space += (nElems+1) * sizeof(ffi_type *);
            ffi_type *result = (ffi_type*)malloc(space);
            // Raise an exception rather than returning zero.
            if (result == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM);
            ffi_type **elem = 0;
            if (nElems != 0) elem = (ffi_type **)(result+1);
            memset(result, 0, sizeof(ffi_type)); // Zero it in case they add fields
            result->size = size;
            result->alignment = align;
            result->type = type;
            result->elements = elem;
            if (elem != 0)
            {
                for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
                {
                    PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h;
                    *elem++ = *(ffi_type**)(e.AsAddress());
                }
                *elem = 0;
            }
            return toSysWord(taskData, result);
        }

    case 55: // Create a CIF.  This contains all the types and some extra information.
        // The result is in allocated memory followed immediately by the argument type vector.
        {
            ffi_abi abi = (ffi_abi)get_C_ushort(taskData, args->WordP()->Get(0));
            ffi_type *rtype = *(ffi_type **)args->WordP()->Get(1).AsAddress();
            unsigned nArgs = 0;
            for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
                nArgs++;
            // Allocate space for the cif followed by the argument type vector
            size_t space = sizeof(ffi_cif) + nArgs * sizeof(ffi_type*);
            ffi_cif *cif = (ffi_cif *)malloc(space);
            if (cif == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM);
            ffi_type **atypes = (ffi_type **)(cif+1);
            // Copy the arguments types.
            ffi_type **at = atypes;
            for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
            {
                PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h;
                *at++ = *(ffi_type**)(e.AsAddress());
            }
            ffi_status status = ffi_prep_cif(cif, abi, nArgs, rtype, atypes);
            if (status == FFI_BAD_TYPEDEF)
                raise_exception_string(taskData, EXC_foreign, "Bad typedef in ffi_prep_cif");
            else if (status == FFI_BAD_ABI)
                raise_exception_string(taskData, EXC_foreign, "Bad ABI in ffi_prep_cif");
            else if (status != FFI_OK)
                raise_exception_string(taskData, EXC_foreign, "Error in ffi_prep_cif");
            return toSysWord(taskData, cif);
        }

    case 56: // Call a function.
        {
            ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(0).AsAddress();
            void *f = *(void**)args->WordP()->Get(1).AsAddress();
            void *res = *(void**)args->WordP()->Get(2).AsAddress();
            void **arg = *(void***)args->WordP()->Get(3).AsAddress();
            // We release the ML memory across the call so a GC can occur
            // even if this thread is blocked in the C code.
            processes->ThreadReleaseMLMemory(taskData);
            ffi_call(cif, FFI_FN(f), res, arg);
            processes->ThreadUseMLMemory(taskData);
            return taskData->saveVec.push(TAGGED(0));
        }

    case 57: // Create a callback.
        {
#ifdef INTERPRETED
            raise_exception_string(taskData, EXC_foreign, "Callbacks are not implemented in the byte code interpreter");
#endif
            Handle mlFunction = taskData->saveVec.push(args->WordP()->Get(0));
            ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(1).AsAddress();

            void *resultFunction;
            // Allocate the memory.  resultFunction is set to the executable address in or related to
            // the memory.
            ffi_closure *closure = (ffi_closure *)ffi_closure_alloc(sizeof(ffi_closure), &resultFunction);
            if (closure == 0)
                raise_exception_string(taskData, EXC_foreign, "Callbacks not implemented or insufficient memory");

            PLocker pLocker(&callbackTableLock);
            // Find a free entry in the table if there is one.
            unsigned entryNo = 0;
            while (entryNo < callBackEntries && callbackTable[entryNo].closureSpace != 0) entryNo++;
            if (entryNo == callBackEntries)
            {
                // Need to grow the table.
                struct _cbStructEntry *newTable =
                    (struct _cbStructEntry*)realloc(callbackTable, (callBackEntries+1)*sizeof(struct _cbStructEntry));
                if (newTable == 0)
                    raise_exception_string(taskData, EXC_foreign, "Unable to allocate memory for callback table");
                callbackTable = newTable;
                callBackEntries++;
            }

            callbackTable[entryNo].mlFunction = mlFunction->Word();
            callbackTable[entryNo].closureSpace = closure;
            callbackTable[entryNo].resultFunction = resultFunction;

            if (ffi_prep_closure_loc(closure, cif, callbackEntryPt, (void*)((uintptr_t)entryNo), resultFunction) != FFI_OK)
                raise_exception_string(taskData, EXC_foreign,"libffi error: ffi_prep_closure_loc failed");
            return toSysWord(taskData, resultFunction);
        }

    case 58: // Free an existing callback.
        {
            // The address returned from call 57 above is the executable address that can
            // be passed as a callback function.  The writable memory address returned
            // as the result of ffi_closure_alloc may or may not be the same.  To be safe
            // we need to search the table.
            void *resFun = *(void**)args->Word().AsAddress();
            PLocker pLocker(&callbackTableLock);
            unsigned i = 0;
            while (i < callBackEntries)
            {
                if (callbackTable[i].resultFunction == resFun)
                {
                    ffi_closure_free(callbackTable[i].closureSpace);
                    callbackTable[i].closureSpace = 0;
                    callbackTable[i].resultFunction = 0;
                    callbackTable[i].mlFunction = TAGGED(0); // Release the ML function
                    return taskData->saveVec.push(TAGGED(0));
                }
            }
            raise_exception_string(taskData, EXC_foreign, "Invalid callback entry");
        }

    default:
        {
            char msg[100];
            sprintf(msg, "Unknown ffi function: %d", c);
            raise_exception_string(taskData, EXC_foreign, msg);
            return 0;
        }
    }
}
Exemple #2
0
Handle poly_dispatch_c(TaskData *taskData, Handle args, Handle code)
{
    unsigned c = get_C_unsigned(taskData, DEREFWORDHANDLE(code));
    switch (c)
    {
    case 1:
        return exportNative(taskData, args); // Export
    case 2:
        raise_syscall(taskData, "C Export has been withdrawn", 0);
        return 0;
    case 3:
        return exportPortable(taskData, args); // Export as portable format

    case 9: // Return the GIT version if appropriate
        {
             return SAVE(C_string_to_Poly(taskData, GitVersion));
        }

    case 10: // Return the RTS version string.
        {
            const char *version;
            switch (machineDependent->MachineArchitecture())
            {
            case MA_Interpreted:    version = "Portable-" TextVersion; break;
            case MA_I386:           version = "I386-" TextVersion; break;
            case MA_X86_64:         version = "X86_64-" TextVersion; break;
            default:                version = "Unknown-" TextVersion; break;
            }
            return SAVE(C_string_to_Poly(taskData, version));
        }

    case 11: // Return the RTS copyright string
        return SAVE(C_string_to_Poly(taskData, poly_runtime_system_copyright));

    case 12: // Return the architecture
        {
            const char *arch;
            switch (machineDependent->MachineArchitecture())
            {
            case MA_Interpreted:    arch = "Interpreted"; break;
            case MA_I386:           arch = "I386"; break;
            case MA_X86_64:         arch = "X86_64"; break;
            default:                arch = "Unknown"; break;
            }
            return SAVE(C_string_to_Poly(taskData, arch));
        }

    case 13: // Share common immutable data.
        {
            ShareData(taskData, args);
            return SAVE(TAGGED(0));
        }

        // ObjSize and ShowSize have their own IO vector entries but really they don't
        // need them.  Include them here and add ObjProfile.
    case 14:
        return ObjSize(taskData, args);

    case 15:
        return ShowSize(taskData, args);

    case 16:
        return ObjProfile(taskData, args);

    /* 17 and 18 are no longer used. */

    case 19: // Return the RTS argument help string.
        return SAVE(C_string_to_Poly(taskData, RTSArgHelp()));

    case 20: // Write a saved state file.
        return SaveState(taskData, args);

    case 21: // Load a saved state file and any ancestors.
        return LoadState(taskData, false, args);

    case 22: // Show the hierarchy.
        return ShowHierarchy(taskData);

    case 23: // Change the name of the immediate parent stored in a child
        return RenameParent(taskData, args);

    case 24: // Return the name of the immediate parent stored in a child
        return ShowParent(taskData, args);

    case 25: // Old statistics - now removed
    case 26:
        raise_exception_string(taskData, EXC_Fail, "No statistics available");

    case 27: // Get number of user statistics available
        return Make_arbitrary_precision(taskData, N_PS_USER);

    case 28: // Set an entry in the user stats table.
        {
            unsigned index = get_C_unsigned(taskData, DEREFHANDLE(args)->Get(0));
            if (index >= N_PS_USER)
                raise_exception0(taskData, EXC_subscript);
            POLYSIGNED value = getPolySigned(taskData, DEREFHANDLE(args)->Get(1));
            globalStats.setUserCounter(index, value);
            Make_arbitrary_precision(taskData, 0);
        }

    case 29: // Get local statistics.
        return globalStats.getLocalStatistics(taskData);

    case 30: // Get remote statistics.  The argument is the process ID to get the statistics.
        return globalStats.getRemoteStatistics(taskData, getPolyUnsigned(taskData, DEREFHANDLE(args)));

    case 31: // Store a module
        return StoreModule(taskData, args);

    case 32: // Load a module
        return LoadModule(taskData, args);

    case 33: // Load hierarchy.  This provides a complete list of children and parents.
        return LoadState(taskData, true, args);

    case 34: // Return the system directory for modules.  This is configured differently
        // in Unix and in Windows.
#if (defined(MODULEDIR))
    return SAVE(C_string_to_Poly(taskData, Xstr(MODULEDIR)));
#elif (defined(_WIN32) && ! defined(__CYGWIN__))
        {
            // This registry key is configured when Poly/ML is installed using the installer.
            // It gives the path to the Poly/ML installation directory.  We return the
            // Modules subdirectory.
            HKEY hk;
            if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
                    _T("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App Paths\\PolyML.exe"), 0,
                    KEY_QUERY_VALUE, &hk) == ERROR_SUCCESS)
            {
                DWORD valSize;
                if (RegQueryValueEx(hk, _T("Path"), 0, NULL, NULL, &valSize) == ERROR_SUCCESS)
                {
#define MODULEDIR _T("Modules")
                    TempString buff((TCHAR*)malloc(valSize + (_tcslen(MODULEDIR) + 1)*sizeof(TCHAR)));
                    DWORD dwType;
                    if (RegQueryValueEx(hk, _T("Path"), 0, &dwType, (LPBYTE)(LPTSTR)buff, &valSize) == ERROR_SUCCESS)
                    {
                        RegCloseKey(hk);
                        // The registry entry should end with a backslash.
                        _tcscat(buff, MODULEDIR);
                        return SAVE(C_string_to_Poly(taskData, buff));
                    }
                }
                RegCloseKey(hk);
            }
            return SAVE(C_string_to_Poly(taskData, ""));
        }
#else
        return SAVE(C_string_to_Poly(taskData, ""));
#endif

    case 50: // GCD
        return gcd_arbitrary(taskData, SAVE(DEREFHANDLE(args)->Get(0)), SAVE(DEREFHANDLE(args)->Get(1)));
    case 51: // LCM
        return lcm_arbitrary(taskData, SAVE(DEREFHANDLE(args)->Get(0)), SAVE(DEREFHANDLE(args)->Get(1)));

        // These next ones were originally in process_env and have now been moved here,
    case 100: /* Return the maximum word segment size. */
            return taskData->saveVec.push(TAGGED(MAX_OBJECT_SIZE));
    case 101: /* Return the maximum string size (in bytes).
                 It is the maximum number of bytes in a segment
                 less one word for the length field. */
            return taskData->saveVec.push(TAGGED((MAX_OBJECT_SIZE)*sizeof(PolyWord) - sizeof(PolyWord)));
    case 102: /* Test whether the supplied address is in the io area.
                 This was previously done by having get_flags return
                 256 but this was changed so that get_flags simply
                 returns the top byte of the length word. */
        {
            PolyWord *pt = (PolyWord*)DEREFWORDHANDLE(args);
            if (gMem.IsIOPointer(pt))
                return Make_arbitrary_precision(taskData, 1);
            else return Make_arbitrary_precision(taskData, 0);
        }
    case 103: /* Return the register mask for the given function.
                 This is used by the code-generator to find out
                 which registers are modified by the function and
                 so need to be saved if they are used by the caller. */
        {
            PolyObject *pt = DEREFWORDHANDLE(args);
            if (gMem.IsIOPointer(pt))
            {
                /* IO area.  We need to get this from the vector. */
                int i;
                for (i=0; i < POLY_SYS_vecsize; i++)
                {
                    if (pt == (PolyObject*)IoEntry(i))
                    {
                        int regMask = taskData->GetIOFunctionRegisterMask(i);
                        POLYUNSIGNED props = rtsProperties(taskData, i);
                        return taskData->saveVec.push(TAGGED(regMask | props));
                    }
                }
                raise_exception_string(taskData, EXC_Fail, "Io pointer not found");
            }
            else
            {
                /* We may have a pointer to the code or a pointer to
                   a closure.  If it's a closure we have to find the
                   code. */
                if (! pt->IsCodeObject() && ! pt->IsByteObject())
                    pt = pt->Get(0).AsObjPtr();

                /* Should now be a code object. */
                if (pt->IsCodeObject())
                {
                    /* Compiled code.  This is the second constant in the
                       constant area. */
                    PolyWord *codePt = pt->ConstPtrForCode();
                    PolyWord mask = codePt[1];
                    // A real mask will be an integer.
                    if (IS_INT(mask)) return SAVE(mask);
                    else raise_exception_string(taskData, EXC_Fail, "Invalid mask");
                }
                else raise_exception_string(taskData, EXC_Fail, "Not a code pointer");
            }
        }

    case 104: return Make_arbitrary_precision(taskData, POLY_version_number);

    case 105: /* Get the name of the function. */
        {
            PolyObject *pt = DEREFWORDHANDLE(args);
            if (gMem.IsIOPointer(pt))
            {
                /* IO area. */
                int i;
                for (i=0; i < POLY_SYS_vecsize; i++)
                {
                    if (pt == (PolyObject*)IoEntry(i))
                    {
                        char buff[8];
                        sprintf(buff, "RTS%d", i);
                        return SAVE(C_string_to_Poly(taskData, buff));
                    }
                }
                raise_syscall(taskData, "Io pointer not found", 0);
            }
            else if (pt->IsCodeObject()) /* Should now be a code object. */ 
            {
                /* Compiled code.  This is the first constant in the constant area. */
                PolyWord *codePt = pt->ConstPtrForCode();
                PolyWord name = codePt[0];
                /* May be zero indicating an anonymous segment - return null string. */
                if (name == PolyWord::FromUnsigned(0))
                    return SAVE(C_string_to_Poly(taskData, ""));
                else return SAVE(name);
            }
            else raise_syscall(taskData, "Not a code pointer", 0);
        }

    default:
        {
            char msg[100];
            sprintf(msg, "Unknown poly-specific function: %d", c);
            raise_exception_string(taskData, EXC_Fail, msg);
            return 0;
        }
    }
}