Exemple #1
0
static int f2fs_readdir(struct file *file, struct dir_context *ctx)
{
	struct inode *inode = file_inode(file);
	unsigned long npages = dir_blocks(inode);
	unsigned int bit_pos = 0;
	struct f2fs_dentry_block *dentry_blk = NULL;
	struct f2fs_dir_entry *de = NULL;
	struct page *dentry_page = NULL;
	struct file_ra_state *ra = &file->f_ra;
	unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
	unsigned char d_type = DT_UNKNOWN;

	bit_pos = ((unsigned long)ctx->pos % NR_DENTRY_IN_BLOCK);

	/* readahead for multi pages of dir */
	if (npages - n > 1 && !ra_has_index(ra, n))
		page_cache_sync_readahead(inode->i_mapping, ra, file, n,
				min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));

	for (; n < npages; n++) {
		dentry_page = get_lock_data_page(inode, n);
		if (IS_ERR(dentry_page))
			continue;

		dentry_blk = kmap(dentry_page);
		while (bit_pos < NR_DENTRY_IN_BLOCK) {
			bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
							NR_DENTRY_IN_BLOCK,
							bit_pos);
			if (bit_pos >= NR_DENTRY_IN_BLOCK)
				break;

			de = &dentry_blk->dentry[bit_pos];
			if (de->file_type < F2FS_FT_MAX)
				d_type = f2fs_filetype_table[de->file_type];
			else
				d_type = DT_UNKNOWN;
			if (!dir_emit(ctx,
					dentry_blk->filename[bit_pos],
					le16_to_cpu(de->name_len),
					le32_to_cpu(de->ino), d_type))
				goto stop;

			bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
			ctx->pos = n * NR_DENTRY_IN_BLOCK + bit_pos;
		}
		bit_pos = 0;
		ctx->pos = (n + 1) * NR_DENTRY_IN_BLOCK;
		kunmap(dentry_page);
		f2fs_put_page(dentry_page, 1);
		dentry_page = NULL;
	}
stop:
	if (dentry_page && !IS_ERR(dentry_page)) {
		kunmap(dentry_page);
		f2fs_put_page(dentry_page, 1);
	}

	return 0;
}
Exemple #2
0
static int truncate_partial_data_page(struct inode *inode, u64 from,
								bool cache_only)
{
	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
	pgoff_t index = from >> PAGE_CACHE_SHIFT;
	struct address_space *mapping = inode->i_mapping;
	struct page *page;

	if (!offset && !cache_only)
		return 0;

	if (cache_only) {
		page = grab_cache_page(mapping, index);
		if (page && PageUptodate(page))
			goto truncate_out;
		f2fs_put_page(page, 1);
		return 0;
	}

	page = get_lock_data_page(inode, index);
	if (IS_ERR(page))
		return 0;
truncate_out:
	f2fs_wait_on_page_writeback(page, DATA);
	zero_user(page, offset, PAGE_CACHE_SIZE - offset);
	if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
		set_page_dirty(page);
	f2fs_put_page(page, 1);
	return 0;
}
Exemple #3
0
bool f2fs_empty_dir(struct inode *dir)
{
	unsigned long bidx;
	struct page *dentry_page;
	unsigned int bit_pos;
	struct	f2fs_dentry_block *dentry_blk;
	unsigned long nblock = dir_blocks(dir);

	for (bidx = 0; bidx < nblock; bidx++) {
		dentry_page = get_lock_data_page(dir, bidx);
		if (IS_ERR(dentry_page)) {
			if (PTR_ERR(dentry_page) == -ENOENT)
				continue;
			else
				return false;
		}


		dentry_blk = kmap_atomic(dentry_page);
		if (bidx == 0)
			bit_pos = 2;
		else
			bit_pos = 0;
		bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
						NR_DENTRY_IN_BLOCK,
						bit_pos);
		kunmap_atomic(dentry_blk);

		f2fs_put_page(dentry_page, 1);

		if (bit_pos < NR_DENTRY_IN_BLOCK)
			return false;
	}
	return true;
}
Exemple #4
0
static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir)
{
	unsigned long pos = file->f_pos;
	unsigned int bit_pos = 0;
	struct inode *inode = file_inode(file);
	unsigned long npages = dir_blocks(inode);
	struct f2fs_dentry_block *dentry_blk = NULL;
	struct page *dentry_page = NULL;
	struct file_ra_state *ra = &file->f_ra;
	struct f2fs_dentry_ptr d;
	unsigned int n = 0;

	if (f2fs_has_inline_dentry(inode))
		return f2fs_read_inline_dir(file, dirent, filldir);

	bit_pos = (pos % NR_DENTRY_IN_BLOCK);
	n = (pos / NR_DENTRY_IN_BLOCK);

	/* readahead for multi pages of dir */
	if (npages - n > 1 && !ra_has_index(ra, n))
		page_cache_sync_readahead(inode->i_mapping, ra, file, n,
				min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));

	for (; n < npages; n++) {
		dentry_page = get_lock_data_page(inode, n);
		if (IS_ERR(dentry_page))
			continue;

		dentry_blk = kmap(dentry_page);

		make_dentry_ptr(&d, (void *)dentry_blk, 1);

		if (f2fs_fill_dentries(file, dirent, filldir, &d, n, bit_pos))
			goto stop;

		bit_pos = 0;
		file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK;
		kunmap(dentry_page);
		f2fs_put_page(dentry_page, 1);
		dentry_page = NULL;
	}
stop:
	if (dentry_page && !IS_ERR(dentry_page)) {
		kunmap(dentry_page);
		f2fs_put_page(dentry_page, 1);
	}

	return 0;
}
Exemple #5
0
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
{
	struct page *page;
	struct f2fs_dir_entry *de;
	struct f2fs_dentry_block *dentry_blk;

	page = get_lock_data_page(dir, 0);
	if (IS_ERR(page))
		return NULL;

	dentry_blk = kmap(page);
	de = &dentry_blk->dentry[1];
	*p = page;
	unlock_page(page);
	return de;
}
Exemple #6
0
static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir)
{
	unsigned long pos = file->f_pos;
	unsigned char *types = NULL;
	unsigned int bit_pos = 0, start_bit_pos = 0;
	int over = 0;
	struct inode *inode = file_inode(file);
	unsigned long npages = dir_blocks(inode);
	struct f2fs_dentry_block *dentry_blk = NULL;
	struct f2fs_dir_entry *de = NULL;
	struct page *dentry_page = NULL;
	unsigned int n = 0;
	unsigned char d_type = DT_UNKNOWN;
	int slots;

	types = f2fs_filetype_table;
	bit_pos = (pos % NR_DENTRY_IN_BLOCK);
	n = (pos / NR_DENTRY_IN_BLOCK);

	for ( ; n < npages; n++) {
		dentry_page = get_lock_data_page(inode, n);
		if (IS_ERR(dentry_page))
			continue;

		start_bit_pos = bit_pos;
		dentry_blk = kmap(dentry_page);
		while (bit_pos < NR_DENTRY_IN_BLOCK) {
			d_type = DT_UNKNOWN;
			bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
							NR_DENTRY_IN_BLOCK,
							bit_pos);
			if (bit_pos >= NR_DENTRY_IN_BLOCK)
				break;

			de = &dentry_blk->dentry[bit_pos];
			if (types && de->file_type < F2FS_FT_MAX)
				d_type = types[de->file_type];

			over = filldir(dirent,
					dentry_blk->filename[bit_pos],
					le16_to_cpu(de->name_len),
					(n * NR_DENTRY_IN_BLOCK) + bit_pos,
					le32_to_cpu(de->ino), d_type);
			if (over) {
				file->f_pos += bit_pos - start_bit_pos;
				goto stop;
			}
			slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
			bit_pos += slots;
		}
		bit_pos = 0;
		file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK;
		kunmap(dentry_page);
		f2fs_put_page(dentry_page, 1);
		dentry_page = NULL;
	}
stop:
	if (dentry_page && !IS_ERR(dentry_page)) {
		kunmap(dentry_page);
		f2fs_put_page(dentry_page, 1);
	}

	return 0;
}
Exemple #7
0
static int __exchange_data_block(struct inode *inode, pgoff_t src,
					pgoff_t dst, bool full)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	block_t new_addr;
	bool do_replace = false;
	int ret;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
	if (ret && ret != -ENOENT) {
		return ret;
	} else if (ret == -ENOENT) {
		new_addr = NULL_ADDR;
	} else {
		new_addr = dn.data_blkaddr;
		if (!is_checkpointed_data(sbi, new_addr)) {
			dn.data_blkaddr = NULL_ADDR;
			/* do not invalidate this block address */
			set_data_blkaddr(&dn);
			f2fs_update_extent_cache(&dn);
			do_replace = true;
		}
		f2fs_put_dnode(&dn);
	}

	if (new_addr == NULL_ADDR)
		return full ? truncate_hole(inode, dst, dst + 1) : 0;

	if (do_replace) {
		struct page *ipage = get_node_page(sbi, inode->i_ino);
		struct node_info ni;

		if (IS_ERR(ipage)) {
			ret = PTR_ERR(ipage);
			goto err_out;
		}

		set_new_dnode(&dn, inode, ipage, NULL, 0);
		ret = f2fs_reserve_block(&dn, dst);
		if (ret)
			goto err_out;

		truncate_data_blocks_range(&dn, 1);

		get_node_info(sbi, dn.nid, &ni);
		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
				ni.version, true);
		f2fs_put_dnode(&dn);
	} else {
		struct page *psrc, *pdst;

		psrc = get_lock_data_page(inode, src, true);
		if (IS_ERR(psrc))
			return PTR_ERR(psrc);
		pdst = get_new_data_page(inode, NULL, dst, false);
		if (IS_ERR(pdst)) {
			f2fs_put_page(psrc, 1);
			return PTR_ERR(pdst);
		}
		f2fs_copy_page(psrc, pdst);
		set_page_dirty(pdst);
		f2fs_put_page(pdst, 1);
		f2fs_put_page(psrc, 1);

		return truncate_hole(inode, src, src + 1);
	}
	return 0;

err_out:
	if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
		dn.data_blkaddr = new_addr;
		set_data_blkaddr(&dn);
		f2fs_update_extent_cache(&dn);
		f2fs_put_dnode(&dn);
	}
	return ret;
}
Exemple #8
0
static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
					struct file *filp,
					struct f2fs_defragment *range)
{
	struct inode *inode = file_inode(filp);
	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
	struct extent_info ei;
	pgoff_t pg_start, pg_end;
	unsigned int blk_per_seg = sbi->blocks_per_seg;
	unsigned int total = 0, sec_num;
	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
	block_t blk_end = 0;
	bool fragmented = false;
	int err;

	/* if in-place-update policy is enabled, don't waste time here */
	if (need_inplace_update(inode))
		return -EINVAL;

	pg_start = range->start >> PAGE_CACHE_SHIFT;
	pg_end = (range->start + range->len) >> PAGE_CACHE_SHIFT;

	f2fs_balance_fs(sbi, true);

	inode_lock(inode);

	/* writeback all dirty pages in the range */
	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
						range->start + range->len - 1);
	if (err)
		goto out;

	/*
	 * lookup mapping info in extent cache, skip defragmenting if physical
	 * block addresses are continuous.
	 */
	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
		if (ei.fofs + ei.len >= pg_end)
			goto out;
	}

	map.m_lblk = pg_start;

	/*
	 * lookup mapping info in dnode page cache, skip defragmenting if all
	 * physical block addresses are continuous even if there are hole(s)
	 * in logical blocks.
	 */
	while (map.m_lblk < pg_end) {
		map.m_len = pg_end - map.m_lblk;
		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
		if (err)
			goto out;

		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
			map.m_lblk++;
			continue;
		}

		if (blk_end && blk_end != map.m_pblk) {
			fragmented = true;
			break;
		}
		blk_end = map.m_pblk + map.m_len;

		map.m_lblk += map.m_len;
	}

	if (!fragmented)
		goto out;

	map.m_lblk = pg_start;
	map.m_len = pg_end - pg_start;

	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;

	/*
	 * make sure there are enough free section for LFS allocation, this can
	 * avoid defragment running in SSR mode when free section are allocated
	 * intensively
	 */
	if (has_not_enough_free_secs(sbi, sec_num)) {
		err = -EAGAIN;
		goto out;
	}

	while (map.m_lblk < pg_end) {
		pgoff_t idx;
		int cnt = 0;

do_map:
		map.m_len = pg_end - map.m_lblk;
		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
		if (err)
			goto clear_out;

		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
			map.m_lblk++;
			continue;
		}

		set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);

		idx = map.m_lblk;
		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
			struct page *page;

			page = get_lock_data_page(inode, idx, true);
			if (IS_ERR(page)) {
				err = PTR_ERR(page);
				goto clear_out;
			}

			set_page_dirty(page);
			f2fs_put_page(page, 1);

			idx++;
			cnt++;
			total++;
		}

		map.m_lblk = idx;

		if (idx < pg_end && cnt < blk_per_seg)
			goto do_map;

		clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);

		err = filemap_fdatawrite(inode->i_mapping);
		if (err)
			goto out;
	}
clear_out:
	clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
out:
	inode_unlock(inode);
	if (!err)
		range->len = (u64)total << PAGE_CACHE_SHIFT;
	return err;
}