static double tune_trx_phase_offset(struct iio_device *ldev, int *ret, long long cal_freq, long long cal_tone, double sign, double abort, void (*tune)(struct iio_device *, gdouble)) { int i; double offset, mag; double phase = 0.0, increment; for (i = 0; i < 10; i++) { get_markers(&offset, &mag); get_markers(&offset, &mag); increment = calc_phase_offset(cal_freq, cal_tone, offset, mag); increment *= sign; phase += increment; phase = scale_phase_0_360(phase); tune(ldev, phase); DBG("Step: %i increment %f Phase: %f\n", i, increment, phase); if (fabs(offset) < 0.001) break; } if (fabs(offset) > 0.1) *ret = -EFAULT; else *ret = 0; return phase * sign; }
static double tune_trx_phase_offset(struct iio_device *ldev, int *ret, long long cal_freq, long long cal_tone, double sign, double abort, void (*tune)(struct iio_device *, gdouble)) { long long y, y1, y2, delta = LLONG_MAX, min_delta = LLONG_MAX, x1; int i, offset, pos = 0, neg = 0; double min_phase, phase = 0.0, step = 1.0; for (i = 0; i < 30; i++) { get_markers(&offset, &y, &y1, &y2, &x1); get_markers(&offset, &y, &y1, &y2, &x1); if (i == 0) { phase = calc_phase_offset(cal_freq, cal_tone, offset, y); tune(ldev, phase * sign); continue; } if (offset != 0) { phase += (360.0 / ((cal_freq / cal_tone) / offset) / 2); tune(ldev, phase * sign); continue; } delta = abs(y1) - abs(y2); if (delta < min_delta) { min_delta = delta; min_phase = phase; } if (x1 > 0) { if (pos == 1) { step /= 2; pos = 0; } phase -= step; neg = 1; } else { if (neg == 1) { step /= 2; neg = 0; } phase += step; pos = 1; } if (step < abort) break; DBG("Step: %f Phase: %f, min_Phase: %f\ndelta %d, pdelta %d, min_delta %d\n", step, phase, min_phase, (int)delta, (int)min_delta); tune(ldev, phase * sign); } if (offset) *ret = -EFAULT; else *ret = 0; return phase * sign; }
NeuralNetwork* Phenotype::get_network(Individual* individual) { NeuralNetwork* network = new NeuralNetwork(); // Locate markers vector< pair<int, int> > raw_markers = get_markers(individual); vector< pair<int, int> > markers; for (int i = 0; i < raw_markers.size(); i++) { if (get_slice_size(individual, raw_markers[i]) >= 7) { markers.push_back(raw_markers[i]); } } // Create input neurons for (int i = 0; i < individual->input_units_; i++) { Neuron neuron; neuron.label_ = i; network->input_neurons_.push_back(neuron); } // Create hidden neurons for (int i = 0; i < markers.size(); i++) { Neuron neuron; neuron.label_ = get_label(individual, markers[i]); neuron.bias_ = get_bias(individual, markers[i]); neuron.output_ = neuron.bias_; network->hidden_neurons_.push_back(neuron); } // Create output neurons for (int i = 0; i < individual->output_units_; i++) { Neuron neuron; neuron.label_ = i; neuron.bias_ = individual->genes_[(individual->genes_.size()-individual->output_units_) + i]; network->output_neurons_.push_back(neuron); } // Create links for (int i = 0; i < markers.size(); i++) { Neuron& neuron = network->hidden_neurons_[i]; int connections = (get_slice_size(individual, markers[i]) - 2) / 3; for (int j = 0; j < connections; j++) { signed char key = get_nth_key(individual, markers[i], j); int label = get_nth_label(individual, markers[i], j); signed char weight = get_nth_weight(individual, markers[i], j); // Link to input/output layer if (key > 0) { // Input if (label > 0) { Neuron& input = network->input_neurons_[label % network->input_neurons_.size()]; input.outputs_.push_back(&neuron); neuron.inputs_.push_back(pair<signed char, Neuron*>(weight, &input)); } // Output else { Neuron& output = network->output_neurons_[abs(label) % network->output_neurons_.size()]; neuron.outputs_.push_back(&output); output.inputs_.push_back(pair<signed char, Neuron*>(weight, &neuron)); } } // Link to hidden layer else { int hidden_label = get_hidden_label(individual, label); Neuron* hidden = get_closest_neuron(hidden_label, network->hidden_neurons_); hidden->outputs_.push_back(&neuron); neuron.inputs_.push_back(pair<signed char, Neuron*>(weight, hidden)); } } } return network; }