void test_writing(char *cfgfile, char *weightfile, char *filename) { network * net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(net, weightfile); } set_batch_network(net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); resize_network(net, im.w, im.h); printf("%d %d %d\n", im.h, im.w, im.c); float *X = im.data; time=clock(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); image pred = get_network_image(net); image upsampled = resize_image(pred, im.w, im.h); image thresh = threshold_image(upsampled, .5); pred = thresh; show_image(pred, "prediction"); show_image(im, "orig"); #ifdef OPENCV cvWaitKey(0); cvDestroyAllWindows(); #endif free_image(upsampled); free_image(thresh); free_image(im); if (filename) break; } }
void demo_segmenter(char *datacfg, char *cfg, char *weights, int cam_index, const char *filename) { #ifdef OPENCV printf("Classifier Demo\n"); network *net = load_network(cfg, weights, 0); set_batch_network(net, 1); srand(2222222); void * cap = open_video_stream(filename, cam_index, 0,0,0); if(!cap) error("Couldn't connect to webcam.\n"); float fps = 0; while(1){ struct timeval tval_before, tval_after, tval_result; gettimeofday(&tval_before, NULL); image in = get_image_from_stream(cap); image in_s = letterbox_image(in, net->w, net->h); network_predict(net, in_s.data); printf("\033[2J"); printf("\033[1;1H"); printf("\nFPS:%.0f\n",fps); image pred = get_network_image(net); image prmask = mask_to_rgb(pred); show_image(prmask, "Segmenter", 10); free_image(in_s); free_image(in); free_image(prmask); gettimeofday(&tval_after, NULL); timersub(&tval_after, &tval_before, &tval_result); float curr = 1000000.f/((long int)tval_result.tv_usec); fps = .9*fps + .1*curr; } free_network(net); #endif }
void predict_segmenter(char *datafile, char *cfg, char *weights, char *filename) { network * net = load_network(cfg, weights, 0); set_batch_network(net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image sized = letterbox_image(im, net->w, net->h); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); image pred = get_network_image(net); image prmask = mask_to_rgb(pred); printf("Predicted: %f\n", predictions[0]); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); show_image(sized, "orig", 1); show_image(prmask, "pred", 0); free_image(im); free_image(sized); free_image(prmask); if (filename) break; } free_network(net); }
void test_super(char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); resize_network(&net, im.w, im.h); printf("%d %d\n", im.w, im.h); float *X = im.data; time=clock(); network_predict(net, X); image out = get_network_image(net); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); save_image(out, "out"); free_image(im); if (filename) break; } }
void test_writing(char *cfgfile, char *weightfile, char *outfile) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char filename[256]; fgets(filename, 256, stdin); strtok(filename, "\n"); image im = load_image_color(filename, 0, 0); //image im = load_image_color("/home/pjreddie/darknet/data/figs/C02-1001-Figure-1.png", 0, 0); image sized = resize_image(im, 256, 256); printf("%d %d %d\n", im.h, im.w, im.c); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); image pred = get_network_image(net); if (outfile) { printf("Save image as %s.png (shape: %d %d)\n", outfile, pred.w, pred.h); save_image(pred, outfile); } else { show_image(pred, "prediction"); #ifdef OPENCV cvWaitKey(0); #endif } free_image(im); free_image(sized); }
void run_nightmare(int argc, char **argv) { srand(0); if(argc < 4){ fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[2]; char *weights = argv[3]; char *input = argv[4]; int max_layer = atoi(argv[5]); int range = find_int_arg(argc, argv, "-range", 1); int norm = find_int_arg(argc, argv, "-norm", 1); int rounds = find_int_arg(argc, argv, "-rounds", 1); int iters = find_int_arg(argc, argv, "-iters", 10); int octaves = find_int_arg(argc, argv, "-octaves", 4); float zoom = find_float_arg(argc, argv, "-zoom", 1.); float rate = find_float_arg(argc, argv, "-rate", .04); float thresh = find_float_arg(argc, argv, "-thresh", 1.); float rotate = find_float_arg(argc, argv, "-rotate", 0); float momentum = find_float_arg(argc, argv, "-momentum", .9); float lambda = find_float_arg(argc, argv, "-lambda", .01); char *prefix = find_char_arg(argc, argv, "-prefix", 0); int reconstruct = find_arg(argc, argv, "-reconstruct"); int smooth_size = find_int_arg(argc, argv, "-smooth", 1); network net = parse_network_cfg(cfg); load_weights(&net, weights); char *cfgbase = basecfg(cfg); char *imbase = basecfg(input); set_batch_network(&net, 1); image im = load_image_color(input, 0, 0); if(0){ float scale = 1; if(im.w > 512 || im.h > 512){ if(im.w > im.h) scale = 512.0/im.w; else scale = 512.0/im.h; } image resized = resize_image(im, scale*im.w, scale*im.h); free_image(im); im = resized; } float *features = 0; image update; if (reconstruct){ resize_network(&net, im.w, im.h); int zz = 0; network_predict(net, im.data); image out_im = get_network_image(net); image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz); //flip_image(crop); image f_im = resize_image(crop, out_im.w, out_im.h); free_image(crop); printf("%d features\n", out_im.w*out_im.h*out_im.c); im = resize_image(im, im.w, im.h); f_im = resize_image(f_im, f_im.w, f_im.h); features = f_im.data; int i; for(i = 0; i < 14*14*512; ++i){ features[i] += rand_uniform(-.19, .19); } free_image(im); im = make_random_image(im.w, im.h, im.c); update = make_image(im.w, im.h, im.c); } int e; int n; for(e = 0; e < rounds; ++e){ fprintf(stderr, "Iteration: "); fflush(stderr); for(n = 0; n < iters; ++n){ fprintf(stderr, "%d, ", n); fflush(stderr); if(reconstruct){ reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1); //if ((n+1)%30 == 0) rate *= .5; show_image(im, "reconstruction"); #ifdef OPENCV cvWaitKey(10); #endif }else{ int layer = max_layer + rand()%range - range/2; int octave = rand()%octaves; optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm); } } fprintf(stderr, "done\n"); if(0){ image g = grayscale_image(im); free_image(im); im = g; } char buff[256]; if (prefix){ sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e); }else{ sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e); } printf("%d %s\n", e, buff); save_image(im, buff); //show_image(im, buff); //cvWaitKey(0); if(rotate){ image rot = rotate_image(im, rotate); free_image(im); im = rot; } image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom); image resized = resize_image(crop, im.w, im.h); free_image(im); free_image(crop); im = resized; } }
void train_writing(char *cfgfile, char *weightfile) { char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network * net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); int imgs = net->batch*net->subdivisions; list *plist = get_paths("figures.list"); char **paths = (char **)list_to_array(plist); clock_t time; int N = plist->size; printf("N: %d\n", N); image out = get_network_image(net); data train, buffer; load_args args = {0}; args.w = net->w; args.h = net->h; args.out_w = out.w; args.out_h = out.h; args.paths = paths; args.n = imgs; args.m = N; args.d = &buffer; args.type = WRITING_DATA; pthread_t load_thread = load_data_in_thread(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded %lf seconds\n",sec(clock()-time)); time=clock(); float loss = train_network(net, train); /* image pred = float_to_image(64, 64, 1, out); print_image(pred); */ /* image im = float_to_image(256, 256, 3, train.X.vals[0]); image lab = float_to_image(64, 64, 1, train.y.vals[0]); image pred = float_to_image(64, 64, 1, out); show_image(im, "image"); show_image(lab, "label"); print_image(lab); show_image(pred, "pred"); cvWaitKey(0); */ if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); free_data(train); if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net)); save_weights(net, buff); } if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } } }
void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int display) { int i; float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network ** nets = calloc(ngpus, sizeof(network*)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = load_network(cfgfile, weightfile, clear); nets[i]->learning_rate *= ngpus; } srand(time(0)); network * net = nets[0]; image pred = get_network_image(net); int div = net->w/pred.w; assert(pred.w * div == net->w); assert(pred.h * div == net->h); int imgs = net->batch * net->subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *train_list = option_find_str(options, "train", "data/train.list"); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; load_args args = {0}; args.w = net->w; args.h = net->h; args.threads = 32; args.scale = div; args.min = net->min_crop; args.max = net->max_crop; args.angle = net->angle; args.aspect = net->aspect; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; args.size = net->w; args.classes = 80; args.paths = paths; args.n = imgs; args.m = N; args.type = SEGMENTATION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ double time = what_time_is_it_now(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); time = what_time_is_it_now(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if(display){ image tr = float_to_image(net->w/div, net->h/div, 80, train.y.vals[net->batch*(net->subdivisions-1)]); image im = float_to_image(net->w, net->h, net->c, train.X.vals[net->batch*(net->subdivisions-1)]); image mask = mask_to_rgb(tr); image prmask = mask_to_rgb(pred); show_image(im, "input", 1); show_image(prmask, "pred", 1); show_image(mask, "truth", 100); free_image(mask); free_image(prmask); } if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen); free_data(train); if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); for(i = 0; i < ngpus; ++i){ free_network(nets[i]); } free(nets); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); }