void ConcavePolygonShape2D::draw(const RID &p_to_rid, const Color &p_color) {

	PoolVector<Vector2> s = get_segments();
	int len = s.size();
	if (len == 0 || (len % 2) == 1)
		return;

	PoolVector<Vector2>::Read r = s.read();
	for (int i = 0; i < len; i += 2) {
		VisualServer::get_singleton()->canvas_item_add_line(p_to_rid, r[i], r[i + 1], p_color, 2);
	}
}
bool ConcavePolygonShape2D::_edit_is_selected_on_click(const Point2 &p_point, double p_tolerance) const {

	PoolVector<Vector2> s = get_segments();
	int len = s.size();
	if (len == 0 || (len % 2) == 1)
		return false;

	PoolVector<Vector2>::Read r = s.read();
	for (int i = 0; i < len; i += 2) {
		Vector2 closest = Geometry::get_closest_point_to_segment_2d(p_point, &r[i]);
		if (p_point.distance_to(closest) < p_tolerance)
			return true;
	}

	return false;
}
Rect2 ConcavePolygonShape2D::get_rect() const {

	PoolVector<Vector2> s = get_segments();
	int len = s.size();
	if (len == 0)
		return Rect2();

	Rect2 rect;

	PoolVector<Vector2>::Read r = s.read();
	for (int i = 0; i < len; i++) {
		if (i == 0)
			rect.position = r[i];
		else
			rect.expand_to(r[i]);
	}

	return rect;
}
bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
                                        GrPathFill fill,
                                        GrDrawTarget* target,
                                        bool antiAlias) {

    const SkPath* path = &origPath;
    if (path->isEmpty()) {
        return true;
    }
    GrDrawState* drawState = target->drawState();

    GrDrawState::AutoDeviceCoordDraw adcd(drawState);
    if (!adcd.succeeded()) {
        return false;
    }
    const GrMatrix* vm = &adcd.getOriginalMatrix();

    GrVertexLayout layout = 0;
    layout |= GrDrawTarget::kEdge_VertexLayoutBit;

    // We use the fact that SkPath::transform path does subdivision based on
    // perspective. Otherwise, we apply the view matrix when copying to the
    // segment representation.
    SkPath tmpPath;
    if (vm->hasPerspective()) {
        origPath.transform(*vm, &tmpPath);
        path = &tmpPath;
        vm = &GrMatrix::I();
    }

    QuadVertex *verts;
    uint16_t* idxs;

    int vCount;
    int iCount;
    enum {
        kPreallocSegmentCnt = 512 / sizeof(Segment),
    };
    SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
    SkPoint fanPt;

    if (!get_segments(*path, *vm, &segments, &fanPt, &vCount, &iCount)) {
        return false;
    }

    GrDrawTarget::AutoReleaseGeometry arg(target, layout, vCount, iCount);
    if (!arg.succeeded()) {
        return false;
    }
    verts = reinterpret_cast<QuadVertex*>(arg.vertices());
    idxs = reinterpret_cast<uint16_t*>(arg.indices());

    create_vertices(segments, fanPt, verts, idxs);

    GrDrawState::VertexEdgeType oldEdgeType = drawState->getVertexEdgeType();
    drawState->setVertexEdgeType(GrDrawState::kQuad_EdgeType);
    target->drawIndexed(kTriangles_GrPrimitiveType,
                        0,        // start vertex
                        0,        // start index
                        vCount,
                        iCount);
    drawState->setVertexEdgeType(oldEdgeType);

    return true;
}
Exemple #5
0
bool Shape::collide_segment(const glm::vec2& a, const glm::vec2& b,
                            glm::vec2& point, geometry::segment2& segment) const
{
  return geometry::intersect_seg_seg(a, b, get_segments(), point, segment);
}
Exemple #6
0
bool Shape::collide_ray(const glm::vec2& o, const glm::vec2& r,
                        glm::vec2& point, geometry::segment2& segment) const
{
  return geometry::intersect_ray_seg(o, r, get_segments(), point, segment);
}
    void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
        int instanceCount = fGeoData.count();

        SkMatrix invert;
        if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) {
            SkDebugf("Could not invert viewmatrix\n");
            return;
        }

        // Setup GrGeometryProcessor
        SkAutoTUnref<GrGeometryProcessor> quadProcessor(QuadEdgeEffect::Create(this->color(),
                                                                               invert));

        batchTarget->initDraw(quadProcessor, pipeline);

        // TODO remove this when batch is everywhere
        GrPipelineInfo init;
        init.fColorIgnored = fBatch.fColorIgnored;
        init.fOverrideColor = GrColor_ILLEGAL;
        init.fCoverageIgnored = fBatch.fCoverageIgnored;
        init.fUsesLocalCoords = this->usesLocalCoords();
        quadProcessor->initBatchTracker(batchTarget->currentBatchTracker(), init);

        // TODO generate all segments for all paths and use one vertex buffer
        for (int i = 0; i < instanceCount; i++) {
            Geometry& args = fGeoData[i];

            // We use the fact that SkPath::transform path does subdivision based on
            // perspective. Otherwise, we apply the view matrix when copying to the
            // segment representation.
            const SkMatrix* viewMatrix = &args.fViewMatrix;
            if (viewMatrix->hasPerspective()) {
                args.fPath.transform(*viewMatrix);
                viewMatrix = &SkMatrix::I();
            }

            int vertexCount;
            int indexCount;
            enum {
                kPreallocSegmentCnt = 512 / sizeof(Segment),
                kPreallocDrawCnt = 4,
            };
            SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
            SkPoint fanPt;

            if (!get_segments(args.fPath, *viewMatrix, &segments, &fanPt, &vertexCount,
                              &indexCount)) {
                continue;
            }

            const GrVertexBuffer* vertexBuffer;
            int firstVertex;

            size_t vertexStride = quadProcessor->getVertexStride();
            void *vertices = batchTarget->vertexPool()->makeSpace(vertexStride,
                                                                  vertexCount,
                                                                  &vertexBuffer,
                                                                  &firstVertex);

            if (!vertices) {
                SkDebugf("Could not allocate vertices\n");
                return;
            }

            const GrIndexBuffer* indexBuffer;
            int firstIndex;

            void *indices = batchTarget->indexPool()->makeSpace(indexCount,
                                                                &indexBuffer,
                                                                &firstIndex);

            if (!indices) {
                SkDebugf("Could not allocate indices\n");
                return;
            }

            QuadVertex* verts = reinterpret_cast<QuadVertex*>(vertices);
            uint16_t* idxs = reinterpret_cast<uint16_t*>(indices);

            SkSTArray<kPreallocDrawCnt, Draw, true> draws;
            create_vertices(segments, fanPt, &draws, verts, idxs);

            GrDrawTarget::DrawInfo info;
            info.setVertexBuffer(vertexBuffer);
            info.setIndexBuffer(indexBuffer);
            info.setPrimitiveType(kTriangles_GrPrimitiveType);
            info.setStartIndex(firstIndex);

            int vOffset = 0;
            for (int i = 0; i < draws.count(); ++i) {
                const Draw& draw = draws[i];
                info.setStartVertex(vOffset + firstVertex);
                info.setVertexCount(draw.fVertexCnt);
                info.setIndexCount(draw.fIndexCnt);
                batchTarget->draw(info);
                vOffset += draw.fVertexCnt;
            }
        }
    }
bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
                                        GrPathFill fill,
                                        const GrVec* translate,
                                        GrDrawTarget* target,
                                        GrDrawState::StageMask stageMask,
                                        bool antiAlias) {

    const SkPath* path = &origPath;
    if (path->isEmpty()) {
        return true;
    }
    GrDrawTarget::AutoStateRestore asr(target,
                                       GrDrawTarget::kPreserve_ASRInit);
    GrDrawState* drawState = target->drawState();

    GrMatrix vm = drawState->getViewMatrix();
    if (NULL != translate) {
        vm.postTranslate(translate->fX, translate->fY);
    }
    GrMatrix ivm;
    if (vm.invert(&ivm)) {
        drawState->preConcatSamplerMatrices(stageMask, ivm);
    }
    drawState->viewMatrix()->reset();

    GrVertexLayout layout = 0;
    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
        if ((1 << s) & stageMask) {
            layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
        }
    }
    layout |= GrDrawTarget::kEdge_VertexLayoutBit;

    // We use the fact that SkPath::transform path does subdivision based on
    // perspective. Otherwise, we apply the view matrix when copying to the
    // segment representation.
    SkPath tmpPath;
    if (vm.hasPerspective()) {
        origPath.transform(vm, &tmpPath);
        path = &tmpPath;
        vm.reset();
    }

    QuadVertex *verts;
    uint16_t* idxs;

    int vCount;
    int iCount;
    enum {
        kPreallocSegmentCnt = 512 / sizeof(Segment),
    };
    SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
    SkPoint fanPt;

    if (!get_segments(*path, vm, &segments, &fanPt, &vCount, &iCount)) {
        return false;
    }

    GrDrawTarget::AutoReleaseGeometry arg(target, layout, vCount, iCount);
    if (!arg.succeeded()) {
        return false;
    }
    verts = reinterpret_cast<QuadVertex*>(arg.vertices());
    idxs = reinterpret_cast<uint16_t*>(arg.indices());

    create_vertices(segments, fanPt, verts, idxs);

    drawState->setVertexEdgeType(GrDrawState::kQuad_EdgeType);
    target->drawIndexed(kTriangles_PrimitiveType,
                        0,        // start vertex
                        0,        // start index
                        vCount,
                        iCount);
    return true;
}