Exemple #1
0
void print_power (char *filename)
{
	AFfilehandle	file;
	double		*sums, *frames;
	int		channelCount, windowSize, frameCount;
	int		i, c;
	struct smooth	*powsmooth;
	int		winStart, winEnd;
	int		lastWindow = FALSE;
	double		pow, maxpow;

	double		level, peak, minSample = 1, maxSample = -1;

	file = afOpenFile(filename, "r", NULL);
	if (file == AF_NULL_FILEHANDLE)
	{
		fprintf(stderr, "Could not open file %s.\n", filename);
		return;
	}

	channelCount = afGetChannels(file, AF_DEFAULT_TRACK);
	windowSize = afGetRate(file, AF_DEFAULT_TRACK) / 100;
	frameCount = afGetFrameCount(file, AF_DEFAULT_TRACK);

	sums = calloc(channelCount, sizeof (double));
	for (c=0; c<channelCount; c++)
		sums[c] = 0;

	frames = calloc(channelCount * windowSize, sizeof (double));

	afSetVirtualSampleFormat(file, AF_DEFAULT_TRACK, AF_SAMPFMT_DOUBLE,
		sizeof (double));

	powsmooth = calloc(channelCount, sizeof (struct smooth));
	for (c=0; c<channelCount; c++)
	{
		/* Use a 100-element (1 second) window. */
		powsmooth[c].length = 100;
		powsmooth[c].buf = calloc(powsmooth[c].length, sizeof (double));
		powsmooth[c].start = 0;
		powsmooth[c].n = 0;
	}

	winStart = 0;
	winEnd = 0;
	lastWindow = FALSE;
	maxpow = 0;

	do
	{
		winEnd = winStart + windowSize;

		if (winEnd >= frameCount)
		{
			winEnd = frameCount;
			lastWindow = TRUE;
		}

		afReadFrames(file, AF_DEFAULT_TRACK, frames, windowSize);

		for (c=0; c<channelCount; c++)
		{
			sums[c] = 0;

			for (i=0; i < winEnd - winStart; i++)
			{
				double	sample;

				sample = frames[i*channelCount + c];
				sums[c] += sample*sample;

				if (sample > maxSample)
					maxSample = sample;
				if (sample < minSample)
					minSample = sample;
			}
		}

		/* Compute power for each channel. */
		for (c=0; c<channelCount; c++)
		{
			double pow;
			int end;

			pow = sums[c] / (winEnd - winStart);

			end = (powsmooth[c].start + powsmooth[c].n) %
				powsmooth[c].length;
			powsmooth[c].buf[end] = pow;

			if (powsmooth[c].n == powsmooth[c].length)
			{
				powsmooth[c].start = (powsmooth[c].start + 1) % powsmooth[c].length;
				pow = get_smoothed_data(&powsmooth[c]);
				if (pow > maxpow)
					maxpow = pow;
			}
			else
			{
				powsmooth[c].n++;
			}
		}

		winStart += windowSize;
	} while (!lastWindow);

	for (c = 0; c < channelCount; c++)
	{
		pow = get_smoothed_data(&powsmooth[c]);
		if (pow > maxpow)
			maxpow = pow;
	}

	free(sums);
	free(frames);
	for (c=0; c<channelCount; c++)
		free(powsmooth[c].buf);
	free(powsmooth);

	level = sqrt(maxpow);

	afCloseFile(file);

	printf("file: %s\n", filename);

	printf("level (dB): %f\n", 20 * log10(level));
	printf("peak-: %f\n", minSample);
	printf("peak+: %f\n", maxSample);

	peak = abs(minSample);
	if (peak < abs(maxSample))
		peak = abs(maxSample);

	printf("peak (dB): %f\n", 20 * log10(peak));
}
Exemple #2
0
static int filter_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter from the frame
	mlt_filter this = mlt_frame_pop_audio( frame );

	// Get the properties from the filter
	mlt_properties filter_props = MLT_FILTER_PROPERTIES( this );

	// Get the frame's filter instance properties
	mlt_properties instance_props = mlt_frame_unique_properties( frame, MLT_FILTER_SERVICE( this ) );

	// Get the parameters
	double gain = mlt_properties_get_double( instance_props, "gain" );
	double max_gain = mlt_properties_get_double( instance_props, "max_gain" );
	double limiter_level = 0.5; /* -6 dBFS */
	int normalise =  mlt_properties_get_int( instance_props, "normalise" );
	double amplitude =  mlt_properties_get_double( instance_props, "amplitude" );
	int i, j;
	double sample;
	int16_t peak;

	if ( mlt_properties_get( instance_props, "limiter" ) != NULL )
		limiter_level = mlt_properties_get_double( instance_props, "limiter" );
	
	// Get the producer's audio
	*format = mlt_audio_s16;
	mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );
//	fprintf( stderr, "filter_volume: frequency %d\n", *frequency );

	// Determine numeric limits
	int bytes_per_samp = (samp_width - 1) / 8 + 1;
	int samplemax = (1 << (bytes_per_samp * 8 - 1)) - 1;
	int samplemin = -samplemax - 1;

	mlt_service_lock( MLT_FILTER_SERVICE( this ) );

	if ( normalise )
	{
		int window = mlt_properties_get_int( filter_props, "window" );
		double *smooth_buffer = mlt_properties_get_data( filter_props, "smooth_buffer", NULL );

		if ( window > 0 && smooth_buffer != NULL )
		{
			int smooth_index = mlt_properties_get_int( filter_props, "_smooth_index" );
			
			// Compute the signal power and put into smoothing buffer
			smooth_buffer[ smooth_index ] = signal_max_power( *buffer, *channels, *samples, &peak );
//			fprintf( stderr, "filter_volume: raw power %f ", smooth_buffer[ smooth_index ] );
			if ( smooth_buffer[ smooth_index ] > EPSILON )
			{
				mlt_properties_set_int( filter_props, "_smooth_index", ( smooth_index + 1 ) % window );

				// Smooth the data and compute the gain
//				fprintf( stderr, "smoothed %f over %d frames\n", get_smoothed_data( smooth_buffer, window ), window );
				gain *= amplitude / get_smoothed_data( smooth_buffer, window );
			}
		}
		else
		{
			gain *= amplitude / signal_max_power( (int16_t*) *buffer, *channels, *samples, &peak );
		}
	}
	
//	if ( gain > 1.0 && normalise )
//		fprintf(stderr, "filter_volume: limiter level %f gain %f\n", limiter_level, gain );

	if ( max_gain > 0 && gain > max_gain )
		gain = max_gain;

	// Initialise filter's previous gain value to prevent an inadvertant jump from 0
	mlt_position last_position = mlt_properties_get_position( filter_props, "_last_position" );
	mlt_position current_position = mlt_frame_get_position( frame );
	if ( mlt_properties_get( filter_props, "_previous_gain" ) == NULL
	     || current_position != last_position + 1 )
		mlt_properties_set_double( filter_props, "_previous_gain", gain );

	// Start the gain out at the previous
	double previous_gain = mlt_properties_get_double( filter_props, "_previous_gain" );

	// Determine ramp increment
	double gain_step = ( gain - previous_gain ) / *samples;
//	fprintf( stderr, "filter_volume: previous gain %f current gain %f step %f\n", previous_gain, gain, gain_step );

	// Save the current gain for the next iteration
	mlt_properties_set_double( filter_props, "_previous_gain", gain );
	mlt_properties_set_position( filter_props, "_last_position", current_position );

	mlt_service_unlock( MLT_FILTER_SERVICE( this ) );

	// Ramp from the previous gain to the current
	gain = previous_gain;

	int16_t *p = (int16_t*) *buffer;

	// Apply the gain
	for ( i = 0; i < *samples; i++ )
	{
		for ( j = 0; j < *channels; j++ )
		{
			sample = *p * gain;
			*p = ROUND( sample );
		
			if ( gain > 1.0 )
			{
				/* use limiter function instead of clipping */
				if ( normalise )
					*p = ROUND( samplemax * limiter( sample / (double) samplemax, limiter_level ) );
				
				/* perform clipping */
				else if ( sample > samplemax )
					*p = samplemax;
				else if ( sample < samplemin )
					*p = samplemin;
			}
			p++;
		}
		gain += gain_step;
	}
	
	return 0;
}
Exemple #3
0
static int filter_get_audio( mlt_frame frame, void **buffer, mlt_audio_format *format, int *frequency, int *channels, int *samples )
{
	// Get the filter from the frame
	mlt_filter filter = mlt_frame_pop_audio( frame );

	// Get the properties from the filter
	mlt_properties filter_props = MLT_FILTER_PROPERTIES( filter );

	// Get the frame's filter instance properties
	mlt_properties instance_props = mlt_frame_unique_properties( frame, MLT_FILTER_SERVICE( filter ) );

	// Get the parameters
	double gain = mlt_properties_get_double( instance_props, "gain" );
	double max_gain = mlt_properties_get_double( instance_props, "max_gain" );
	double limiter_level = 0.5; /* -6 dBFS */
	int normalise =  mlt_properties_get_int( instance_props, "normalise" );
	double amplitude =  mlt_properties_get_double( instance_props, "amplitude" );
	int i, j;
	double sample;
	int16_t peak;

	// Use animated value for gain if "level" property is set 
	char* level_property = mlt_properties_get( filter_props, "level" );
	if ( level_property != NULL )
	{
		mlt_position position = mlt_filter_get_position( filter, frame );
		mlt_position length = mlt_filter_get_length2( filter, frame );
		gain = mlt_properties_anim_get_double( filter_props, "level", position, length );
		gain = DBFSTOAMP( gain );
	}

	if ( mlt_properties_get( instance_props, "limiter" ) != NULL )
		limiter_level = mlt_properties_get_double( instance_props, "limiter" );
	
	// Get the producer's audio
	*format = normalise? mlt_audio_s16 : mlt_audio_f32le;
	mlt_frame_get_audio( frame, buffer, format, frequency, channels, samples );

	mlt_service_lock( MLT_FILTER_SERVICE( filter ) );

	if ( normalise )
	{
		int window = mlt_properties_get_int( filter_props, "window" );
		double *smooth_buffer = mlt_properties_get_data( filter_props, "smooth_buffer", NULL );

		if ( window > 0 && smooth_buffer != NULL )
		{
			int smooth_index = mlt_properties_get_int( filter_props, "_smooth_index" );
			
			// Compute the signal power and put into smoothing buffer
			smooth_buffer[ smooth_index ] = signal_max_power( *buffer, *channels, *samples, &peak );

			if ( smooth_buffer[ smooth_index ] > EPSILON )
			{
				mlt_properties_set_int( filter_props, "_smooth_index", ( smooth_index + 1 ) % window );

				// Smooth the data and compute the gain
				gain *= amplitude / get_smoothed_data( smooth_buffer, window );
			}
		}
		else
		{
			gain *= amplitude / signal_max_power( *buffer, *channels, *samples, &peak );
		}
	}

	if ( max_gain > 0 && gain > max_gain )
		gain = max_gain;

	// Initialise filter's previous gain value to prevent an inadvertant jump from 0
	mlt_position last_position = mlt_properties_get_position( filter_props, "_last_position" );
	mlt_position current_position = mlt_frame_get_position( frame );
	if ( mlt_properties_get( filter_props, "_previous_gain" ) == NULL
	     || current_position != last_position + 1 )
		mlt_properties_set_double( filter_props, "_previous_gain", gain );

	// Start the gain out at the previous
	double previous_gain = mlt_properties_get_double( filter_props, "_previous_gain" );

	// Determine ramp increment
	double gain_step = ( gain - previous_gain ) / *samples;

	// Save the current gain for the next iteration
	mlt_properties_set_double( filter_props, "_previous_gain", gain );
	mlt_properties_set_position( filter_props, "_last_position", current_position );

	mlt_service_unlock( MLT_FILTER_SERVICE( filter ) );

	// Ramp from the previous gain to the current
	gain = previous_gain;

	// Apply the gain
	if ( normalise )
	{
		int16_t *p = *buffer;
		// Determine numeric limits
		int bytes_per_samp = (samp_width - 1) / 8 + 1;
		int samplemax = (1 << (bytes_per_samp * 8 - 1)) - 1;

		for ( i = 0; i < *samples; i++, gain += gain_step ) {
			for ( j = 0; j < *channels; j++ ) {
				sample = *p * gain;
				*p = ROUND( sample );
				if ( gain > 1.0 && normalise ) {
					/* use limiter function instead of clipping */
					*p = ROUND( samplemax * limiter( sample / (double) samplemax, limiter_level ) );
				}
				p++;
			}
		}
	}
	else
	{
		float *p = *buffer;
		for ( i = 0; i < *samples; i++, gain += gain_step ) {
			for ( j = 0; j < *channels; j++, p++ ) {
				p[0] *= gain;
			}
		}
	}
	return 0;
}