void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #if defined(CONFIG_HAS_FSL_DR_USB) || defined(CONFIG_HAS_FSL_MPH_USB) fdt_fixup_dr_usb(blob, bd); #endif #ifdef CONFIG_PCI pci_of_setup(blob, bd); #endif fdt_fixup_liodn(blob); #ifdef CONFIG_SYS_DPAA_FMAN fdt_fixup_fman_ethernet(blob); fdt_fixup_fman_mac_addresses(blob); #endif }
int ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #ifdef CONFIG_PCI pci_of_setup(blob, bd); #endif fdt_fixup_liodn(blob); fdt_fixup_dr_usb(blob, bd); #ifdef CONFIG_SYS_DPAA_FMAN fdt_fixup_fman_ethernet(blob); fdt_fixup_board_enet(blob); #endif return 0; }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; struct cpu_type *cpu; cpu = gd->arch.cpu; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); #if defined(CONFIG_PCI) FT_FSL_PCI_SETUP; #endif fdt_fixup_memory(blob, (u64)base, (u64)size); #if defined(CONFIG_HAS_FSL_DR_USB) fdt_fixup_dr_usb(blob, bd); #endif /* P1014 and it's derivatives don't support CAN and eTSEC3 */ if (cpu->soc_ver == SVR_P1014) { fdt_del_flexcan(blob); fdt_del_node_and_alias(blob, "ethernet2"); } #ifndef CONFIG_SDCARD /* disable sdhc due to sdhc bug */ fdt_del_sdhc(blob); if (hwconfig_subarg_cmp("fsl_p1010mux", "tdm_can", "can")) { fdt_del_tdm(blob); fdt_del_spi_slic(blob); } else if (hwconfig_subarg_cmp("fsl_p1010mux", "tdm_can", "tdm")) { fdt_del_flexcan(blob); fdt_del_spi_flash(blob); fdt_disable_uart1(blob); } else { /* * If we don't set fsl_p1010mux:tdm_can to "can" or "tdm" * explicitly, defaultly spi_cs_sel to spi-flash instead of * to tdm/slic. */ fdt_del_tdm(blob); fdt_del_flexcan(blob); fdt_disable_uart1(blob); } #endif }
static void boot_start_lmb(bootm_headers_t *images) { ulong mem_start; phys_size_t mem_size; lmb_init(&images->lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size); arch_lmb_reserve(&images->lmb); board_lmb_reserve(&images->lmb); }
static int bootm_linux_fdt(int machid, bootm_headers_t *images) { ulong rd_len; void (*kernel_entry)(int zero, int dt_machid, void *dtblob); ulong bootmap_base = getenv_bootm_low(); ulong of_size = images->ft_len; char **of_flat_tree = &images->ft_addr; ulong *initrd_start = &images->initrd_start; ulong *initrd_end = &images->initrd_end; struct lmb *lmb = &images->lmb; int ret; kernel_entry = (void (*)(int, int, void *))images->ep; rd_len = images->rd_end - images->rd_start; ret = boot_ramdisk_high(lmb, images->rd_start, rd_len, initrd_start, initrd_end); if (ret) return ret; ret = boot_relocate_fdt(lmb, bootmap_base, of_flat_tree, &of_size); if (ret) return ret; debug("## Transferring control to Linux (at address %08lx) ...\n", (ulong) kernel_entry); fdt_chosen(*of_flat_tree, 1); fixup_memory_node(*of_flat_tree); fdt_fixup_ethernet(*of_flat_tree); #ifdef CONFIG_DMAMEM fdt_fixup_dmamem(*of_flat_tree); #endif #ifdef CONFIG_SWITCH fdt_fixup_switch(*of_flat_tree); #endif fdt_initrd(*of_flat_tree, *initrd_start, *initrd_end, 1); announce_and_cleanup(); kernel_entry(0, machid, *of_flat_tree); /* does not return */ return 1; }
/** * boot_get_kbd - allocate and initialize kernel copy of board info * @lmb: pointer to lmb handle, will be used for memory mgmt * @kbd: double pointer to board info data * * boot_get_kbd() allocates space for kernel copy of board info data below * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized * with the current u-boot board info data. * * returns: * 0 - success * -1 - failure */ int boot_get_kbd(struct lmb *lmb, bd_t **kbd) { *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, getenv_bootm_mapsize() + getenv_bootm_low()); if (*kbd == NULL) return -1; **kbd = *(gd->bd); debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); #if defined(DEBUG) && defined(CONFIG_CMD_BDI) do_bdinfo(NULL, 0, 0, NULL); #endif return 0; }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); FT_FSL_PCI_SETUP; #ifdef CONFIG_FSL_SGMII_RISER fsl_sgmii_riser_fdt_fixup(blob); #endif }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); #if defined(CONFIG_PCI) ft_pci_board_setup(blob); #endif fdt_fixup_memory(blob, (u64)base, (u64)size); fdt_fixup_dr_usb(blob, bd); }
static void bootm_start_lmb(void) { #ifdef CONFIG_LMB ulong mem_start; phys_size_t mem_size; lmb_init(&images.lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&images.lmb, (phys_addr_t)mem_start, mem_size); arch_lmb_reserve(&images.lmb); board_lmb_reserve(&images.lmb); #else # define lmb_reserve(lmb, base, size) #endif }
int ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #ifdef CONFIG_FDT_FIXUP_PARTITIONS fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes)); #endif fsl_fdt_fixup_dr_usb(blob, bd); return 0; }
int ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); /* limit the memory size to bank 1 until Linux can handle 40-bit PA */ base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #ifdef CONFIG_FSL_MC_ENET fdt_fixup_board_enet(blob); fsl_mc_ldpaa_exit(bd); #endif return 0; }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); ft_srio_setup(blob); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #ifdef CONFIG_PCI pci_of_setup(blob, bd); #endif fdt_fixup_liodn(blob); }
int ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); #ifdef CONFIG_HAS_FSL_DR_USB fdt_fixup_dr_usb(blob, bd); #endif fdt_fixup_fman_ethernet(blob); return 0; }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; struct cpu_type *cpu; cpu = gd->arch.cpu; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); #if defined(CONFIG_PCI) FT_FSL_PCI_SETUP; #endif fdt_fixup_memory(blob, (u64)base, (u64)size); if (cpu->soc_ver == SVR_C291) fdt_del_sec(blob, 1); else if (cpu->soc_ver == SVR_C292) fdt_del_sec(blob, 2); }
/** * boot_get_cmdline - allocate and initialize kernel cmdline * @lmb: pointer to lmb handle, will be used for memory mgmt * @cmd_start: pointer to a ulong variable, will hold cmdline start * @cmd_end: pointer to a ulong variable, will hold cmdline end * * boot_get_cmdline() allocates space for kernel command line below * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt * variable is present its contents is copied to allocated kernel * command line. * * returns: * 0 - success * -1 - failure */ int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) { char *cmdline; char *s; cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, getenv_bootm_mapsize() + getenv_bootm_low()); if (cmdline == NULL) return -1; if ((s = getenv("bootargs")) == NULL) s = ""; strcpy(cmdline, s); *cmd_start = (ulong) & cmdline[0]; *cmd_end = *cmd_start + strlen(cmdline); debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); return 0; }
void ft_board_setup(void *blob, bd_t *bd) { phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); fdt_fixup_memory(blob, (u64)base, (u64)size); /* By default NOR is on, and NAND is disabled */ #ifdef CONFIG_NAND_U_BOOT do_fixup_by_path_string(blob, "nor_flash", "status", "disabled"); do_fixup_by_path_string(blob, "nand_flash", "status", "okay"); #endif #ifdef CONFIG_HAS_FSL_DR_USB fdt_fixup_dr_usb(blob, bd); #endif fdt_fixup_fman_ethernet(blob); }
int do_bootm_subcommand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { int ret = 0; int state; cmd_tbl_t *c; boot_os_fn *boot_fn; c = find_cmd_tbl(argv[1], &cmd_bootm_sub[0], ARRAY_SIZE(cmd_bootm_sub)); if (c) { state = (int)c->cmd; /* treat start special since it resets the state machine */ if (state == BOOTM_STATE_START) { argc--; argv++; return bootm_start(cmdtp, flag, argc, argv); } } /* Unrecognized command */ else { cmd_usage(cmdtp); return 1; } if (images.state >= state) { printf ("Trying to execute a command out of order\n"); cmd_usage(cmdtp); return 1; } images.state |= state; boot_fn = boot_os[images.os.os]; switch (state) { ulong load_end; case BOOTM_STATE_START: /* should never occur */ break; case BOOTM_STATE_LOADOS: ret = bootm_load_os(images.os, &load_end, 0); if (ret) return ret; lmb_reserve(&images.lmb, images.os.load, (load_end - images.os.load)); break; #if defined(CONFIG_PPC) || defined(CONFIG_M68K) || defined(CONFIG_SPARC) case BOOTM_STATE_RAMDISK: { ulong rd_len = images.rd_end - images.rd_start; char str[17]; ret = boot_ramdisk_high(&images.lmb, images.rd_start, rd_len, &images.initrd_start, &images.initrd_end); if (ret) return ret; sprintf(str, "%lx", images.initrd_start); setenv("initrd_start", str); sprintf(str, "%lx", images.initrd_end); setenv("initrd_end", str); } break; #endif #ifdef CONFIG_OF_LIBFDT case BOOTM_STATE_FDT: { ulong bootmap_base = getenv_bootm_low(); ret = boot_relocate_fdt(&images.lmb, bootmap_base, &images.ft_addr, &images.ft_len); break; } #endif case BOOTM_STATE_OS_CMDLINE: ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, &images); if (ret) printf ("cmdline subcommand not supported\n"); break; case BOOTM_STATE_OS_BD_T: ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, &images); if (ret) printf ("bdt subcommand not supported\n"); break; case BOOTM_STATE_OS_PREP: ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, &images); if (ret) printf ("prep subcommand not supported\n"); break; case BOOTM_STATE_OS_GO: disable_interrupts(); boot_fn(BOOTM_STATE_OS_GO, argc, argv, &images); break; } return ret; }
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) { ulong mem_start; phys_size_t mem_size; void *os_hdr; int ret; memset ((void *)&images, 0, sizeof (images)); images.verify = getenv_yesno ("verify"); lmb_init(&images.lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&images.lmb, (phys_addr_t)mem_start, mem_size); arch_lmb_reserve(&images.lmb); board_lmb_reserve(&images.lmb); /* get kernel image header, start address and length */ os_hdr = boot_get_kernel (cmdtp, flag, argc, argv, &images, &images.os.image_start, &images.os.image_len); if (images.os.image_len == 0) { puts ("ERROR: can't get kernel image!\n"); return 1; } /* get image parameters */ switch (genimg_get_format (os_hdr)) { case IMAGE_FORMAT_LEGACY: images.os.type = image_get_type (os_hdr); images.os.comp = image_get_comp (os_hdr); images.os.os = image_get_os (os_hdr); images.os.end = image_get_image_end (os_hdr); images.os.load = image_get_load (os_hdr); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: if (fit_image_get_type (images.fit_hdr_os, images.fit_noffset_os, &images.os.type)) { puts ("Can't get image type!\n"); show_boot_progress (-109); return 1; } if (fit_image_get_comp (images.fit_hdr_os, images.fit_noffset_os, &images.os.comp)) { puts ("Can't get image compression!\n"); show_boot_progress (-110); return 1; } if (fit_image_get_os (images.fit_hdr_os, images.fit_noffset_os, &images.os.os)) { puts ("Can't get image OS!\n"); show_boot_progress (-111); return 1; } images.os.end = fit_get_end (images.fit_hdr_os); if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os, &images.os.load)) { puts ("Can't get image load address!\n"); show_boot_progress (-112); return 1; } break; #endif default: puts ("ERROR: unknown image format type!\n"); return 1; } /* find kernel entry point */ if (images.legacy_hdr_valid) { images.ep = image_get_ep (&images.legacy_hdr_os_copy); #if defined(CONFIG_FIT) } else if (images.fit_uname_os) { ret = fit_image_get_entry (images.fit_hdr_os, images.fit_noffset_os, &images.ep); if (ret) { puts ("Can't get entry point property!\n"); return 1; } #endif } else { puts ("Could not find kernel entry point!\n"); return 1; } if (images.os.os == IH_OS_LINUX) { /* find ramdisk */ ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH, &images.rd_start, &images.rd_end); if (ret) { puts ("Ramdisk image is corrupt or invalid\n"); return 1; } #if defined(CONFIG_OF_LIBFDT) #if defined(CONFIG_PPC) || defined(CONFIG_M68K) || defined(CONFIG_SPARC) /* find flattened device tree */ ret = boot_get_fdt (flag, argc, argv, &images, &images.ft_addr, &images.ft_len); if (ret) { puts ("Could not find a valid device tree\n"); return 1; } set_working_fdt_addr(images.ft_addr); #endif #endif } images.os.start = (ulong)os_hdr; images.state = BOOTM_STATE_START; return 0; }
int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { image_header_t *hdr; ulong addr; ulong iflag; const char *type_name; uint unc_len = CONFIG_SYS_BOOTM_LEN; uint8_t comp, type, os; void *os_hdr; ulong os_data, os_len; ulong image_start, image_end; ulong load_start, load_end; ulong mem_start; phys_size_t mem_size; struct lmb lmb; #if defined(CONFIG_SECURE_BOOT) int rv; #endif #if defined(CONFIG_SECURE_BOOT) rv = Check_Signature( (SecureBoot_CTX *)SECURE_BOOT_CONTEXT_ADDR, (unsigned char*)CONFIG_SECURE_KERNEL_BASE, CONFIG_SECURE_KERNEL_SIZE-128, (unsigned char*)(CONFIG_SECURE_KERNEL_BASE+CONFIG_SECURE_KERNEL_SIZE-128), 128 ); if(rv != SB_OK) { printf("Kernel Integrity check fail\nSystem Halt...."); while(1); } printf("Kernel Integirty check success.\n"); rv = Check_Signature( (SecureBoot_CTX *)SECURE_BOOT_CONTEXT_ADDR, (unsigned char*)CONFIG_SECURE_ROOTFS_BASE, CONFIG_SECURE_ROOTFS_SIZE-128, (unsigned char*)(CONFIG_SECURE_ROOTFS_BASE+CONFIG_SECURE_ROOTFS_SIZE-128), 128 ); if(rv != SB_OK) { printf("rootfs Integrity check fail\nSystem Halt...."); while(1); } printf("rootfs Integirty check success.\n"); #endif memset ((void *)&images, 0, sizeof (images)); images.verify = getenv_yesno ("verify"); // images.lmb = &lmb; memcpy (&images.lmb, &lmb, sizeof(struct lmb)); lmb_init(&lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&lmb, (phys_addr_t)mem_start, mem_size); board_lmb_reserve(&lmb); #ifdef CONFIG_ZIMAGE_BOOT #define LINUX_ZIMAGE_MAGIC 0x016f2818 /* find out kernel image address */ if (argc < 2) { addr = load_addr; debug ("* kernel: default image load address = 0x%08lx\n", load_addr); } else { addr = simple_strtoul(argv[1], NULL, 16); //debug ("* kernel: cmdline image address = 0x%08lx\n", img_addr); } if (*(ulong *)(addr + 9*4) == LINUX_ZIMAGE_MAGIC) { printf("Boot with zImage\n"); addr = virt_to_phys(addr); hdr = (image_header_t *)addr; hdr->ih_os = IH_OS_LINUX; hdr->ih_ep = ntohl(addr); memmove (&images.legacy_hdr_os_copy, hdr, sizeof(image_header_t)); /* save pointer to image header */ images.legacy_hdr_os = hdr; images.legacy_hdr_valid = 1; goto after_header_check; } #endif /* get kernel image header, start address and length */ os_hdr = boot_get_kernel (cmdtp, flag, argc, argv, &images, &os_data, &os_len); if (os_len == 0) { puts ("ERROR: can't get kernel image!\n"); return 1; } /* get image parameters */ switch (genimg_get_format (os_hdr)) { case IMAGE_FORMAT_LEGACY: type = image_get_type (os_hdr); comp = image_get_comp (os_hdr); os = image_get_os (os_hdr); image_end = image_get_image_end (os_hdr); load_start = image_get_load (os_hdr); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: if (fit_image_get_type (images.fit_hdr_os, images.fit_noffset_os, &type)) { puts ("Can't get image type!\n"); show_boot_progress (-109); return 1; } if (fit_image_get_comp (images.fit_hdr_os, images.fit_noffset_os, &comp)) { puts ("Can't get image compression!\n"); show_boot_progress (-110); return 1; } if (fit_image_get_os (images.fit_hdr_os, images.fit_noffset_os, &os)) { puts ("Can't get image OS!\n"); show_boot_progress (-111); return 1; } image_end = fit_get_end (images.fit_hdr_os); if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os, &load_start)) { puts ("Can't get image load address!\n"); show_boot_progress (-112); return 1; } break; #endif default: puts ("ERROR: unknown image format type!\n"); return 1; } image_start = (ulong)os_hdr; load_end = 0; type_name = genimg_get_type_name (type); /* * We have reached the point of no return: we are going to * overwrite all exception vector code, so we cannot easily * recover from any failures any more... */ iflag = disable_interrupts(); #if defined(CONFIG_CMD_USB) /* * turn off USB to prevent the host controller from writing to the * SDRAM while Linux is booting. This could happen (at least for OHCI * controller), because the HCCA (Host Controller Communication Area) * lies within the SDRAM and the host controller writes continously to * this area (as busmaster!). The HccaFrameNumber is for example * updated every 1 ms within the HCCA structure in SDRAM! For more * details see the OpenHCI specification. */ usb_stop(); #endif #ifdef CONFIG_AMIGAONEG3SE /* * We've possible left the caches enabled during * bios emulation, so turn them off again */ icache_disable(); invalidate_l1_instruction_cache(); flush_data_cache(); dcache_disable(); #endif switch (comp) { case IH_COMP_NONE: if (load_start == (ulong)os_hdr) { printf (" XIP %s ... ", type_name); } else { printf (" Loading %s ... ", type_name); memmove_wd ((void *)load_start, (void *)os_data, os_len, CHUNKSZ); } load_end = load_start + os_len; puts("OK\n"); break; case IH_COMP_GZIP: printf (" Uncompressing %s ... ", type_name); if (gunzip ((void *)load_start, unc_len, (uchar *)os_data, &os_len) != 0) { puts ("GUNZIP: uncompress or overwrite error " "- must RESET board to recover\n"); show_boot_progress (-6); do_reset (cmdtp, flag, argc, argv); } load_end = load_start + os_len; break; #ifdef CONFIG_BZIP2 case IH_COMP_BZIP2: printf (" Uncompressing %s ... ", type_name); /* * If we've got less than 4 MB of malloc() space, * use slower decompression algorithm which requires * at most 2300 KB of memory. */ int i = BZ2_bzBuffToBuffDecompress ((char*)load_start, &unc_len, (char *)os_data, os_len, CFG_MALLOC_LEN < (4096 * 1024), 0); if (i != BZ_OK) { printf ("BUNZIP2: uncompress or overwrite error %d " "- must RESET board to recover\n", i); show_boot_progress (-6); do_reset (cmdtp, flag, argc, argv); } load_end = load_start + unc_len; break; #endif /* CONFIG_BZIP2 */ default: if (iflag) enable_interrupts(); printf ("Unimplemented compression type %d\n", comp); show_boot_progress (-7); return 1; } puts ("OK\n"); debug (" kernel loaded at 0x%08lx, end = 0x%08lx\n", load_start, load_end); show_boot_progress (7); if ((load_start < image_end) && (load_end > image_start)) { debug ("image_start = 0x%lX, image_end = 0x%lx\n", image_start, image_end); debug ("load_start = 0x%lx, load_end = 0x%lx\n", load_start, load_end); if (images.legacy_hdr_valid) { if (image_get_type (&images.legacy_hdr_os_copy) == IH_TYPE_MULTI) puts ("WARNING: legacy format multi component " "image overwritten\n"); } else { puts ("ERROR: new format image overwritten - " "must RESET the board to recover\n"); show_boot_progress (-113); do_reset (cmdtp, flag, argc, argv); } } show_boot_progress (8); lmb_reserve(&lmb, load_start, (load_end - load_start)); #if defined(CONFIG_ZIMAGE_BOOT) after_header_check: os = hdr->ih_os; #endif switch (os) { default: /* handled by (original) Linux case */ case IH_OS_LINUX: #ifdef CONFIG_SILENT_CONSOLE fixup_silent_linux(); #endif do_bootm_linux (flag, argc, argv, &images); break; #ifdef CONFIG_BOOTM_NETBSD case IH_OS_NETBSD: do_bootm_netbsd (flag, argc, argv, &images); break; #endif #ifdef CONFIG_LYNXKDI case IH_OS_LYNXOS: do_bootm_lynxkdi (flag, argc, argv, &images); break; #endif #ifdef CONFIG_BOOTM_RTEMS case IH_OS_RTEMS: do_bootm_rtems (flag, argc, argv, &images); break; #endif /* #if defined(CONFIG_CMD_ELF) case IH_OS_VXWORKS: do_bootm_vxworks (cmdtp, flag, argc, argv, &images); break; case IH_OS_QNX: do_bootm_qnxelf (cmdtp, flag, argc, argv, &images); break; #endif */ #ifdef CONFIG_ARTOS case IH_OS_ARTOS: do_bootm_artos (cmdtp, flag, argc, argv, &images); break; #endif } show_boot_progress (-9); #ifdef DEBUG puts ("\n## Control returned to monitor - resetting...\n"); do_reset (cmdtp, flag, argc, argv); #endif if (iflag) enable_interrupts(); return 1; }
/** * boot_ramdisk_high - relocate init ramdisk * @lmb: pointer to lmb handle, will be used for memory mgmt * @rd_data: ramdisk data start address * @rd_len: ramdisk data length * @initrd_start: pointer to a ulong variable, will hold final init ramdisk * start address (after possible relocation) * @initrd_end: pointer to a ulong variable, will hold final init ramdisk * end address (after possible relocation) * * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment * variable and if requested ramdisk data is moved to a specified location. * * Initrd_start and initrd_end are set to final (after relocation) ramdisk * start/end addresses if ramdisk image start and len were provided, * otherwise set initrd_start and initrd_end set to zeros. * * returns: * 0 - success * -1 - failure */ int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, ulong *initrd_start, ulong *initrd_end) { char *s; ulong initrd_high; int initrd_copy_to_ram = 1; if ((s = getenv("initrd_high")) != NULL) { /* a value of "no" or a similar string will act like 0, * turning the "load high" feature off. This is intentional. */ initrd_high = simple_strtoul(s, NULL, 16); if (initrd_high == ~0) initrd_copy_to_ram = 0; } else { initrd_high = getenv_bootm_mapsize() + getenv_bootm_low(); } #ifdef CONFIG_LOGBUFFER /* Prevent initrd from overwriting logbuffer */ lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); #endif debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", initrd_high, initrd_copy_to_ram); if (rd_data) { if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ debug(" in-place initrd\n"); *initrd_start = rd_data; *initrd_end = rd_data + rd_len; lmb_reserve(lmb, rd_data, rd_len); } else { if (initrd_high) *initrd_start = (ulong)lmb_alloc_base(lmb, rd_len, 0x1000, initrd_high); else *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 0x1000); if (*initrd_start == 0) { puts("ramdisk - allocation error\n"); goto error; } bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); *initrd_end = *initrd_start + rd_len; printf(" Loading Ramdisk to %08lx, end %08lx ... ", *initrd_start, *initrd_end); memmove_wd((void *)*initrd_start, (void *)rd_data, rd_len, CHUNKSZ); #ifdef CONFIG_MP /* * Ensure the image is flushed to memory to handle * AMP boot scenarios in which we might not be * HW cache coherent */ flush_cache((unsigned long)*initrd_start, rd_len); #endif puts("OK\n"); } } else { *initrd_start = 0; *initrd_end = 0; } debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", *initrd_start, *initrd_end); return 0; error: return -1; }
void ft_board_setup(void *blob, bd_t *bd) { const char *soc_usb_compat = "fsl-usb2-dr"; int err, usb1_off, usb2_off; phys_addr_t base; phys_size_t size; ft_cpu_setup(blob, bd); base = getenv_bootm_low(); size = getenv_bootm_size(); #if defined(CONFIG_PCI) ft_pci_board_setup(blob); #endif /* #if defined(CONFIG_PCI) */ fdt_fixup_memory(blob, (u64)base, (u64)size); #if defined(CONFIG_HAS_FSL_DR_USB) fdt_fixup_dr_usb(blob, bd); #endif #if defined(CONFIG_SDCARD) || defined(CONFIG_SPIFLASH) /* Delete eLBC node as it is muxed with USB2 controller */ if (hwconfig("usb2")) { const char *soc_elbc_compat = "fsl,p1020-elbc"; int off = fdt_node_offset_by_compatible(blob, -1, soc_elbc_compat); if (off < 0) { printf("WARNING: could not find compatible node" " %s: %s.\n", soc_elbc_compat, fdt_strerror(off)); return; } err = fdt_del_node(blob, off); if (err < 0) { printf("WARNING: could not remove %s: %s.\n", soc_elbc_compat, fdt_strerror(err)); } return; } #endif /* Delete USB2 node as it is muxed with eLBC */ usb1_off = fdt_node_offset_by_compatible(blob, -1, soc_usb_compat); if (usb1_off < 0) { printf("WARNING: could not find compatible node" " %s: %s.\n", soc_usb_compat, fdt_strerror(usb1_off)); return; } usb2_off = fdt_node_offset_by_compatible(blob, usb1_off, soc_usb_compat); if (usb2_off < 0) { printf("WARNING: could not find compatible node" " %s: %s.\n", soc_usb_compat, fdt_strerror(usb2_off)); return; } err = fdt_del_node(blob, usb2_off); if (err < 0) printf("WARNING: could not remove %s: %s.\n", soc_usb_compat, fdt_strerror(err)); }
/** * boot_relocate_fdt - relocate flat device tree * @lmb: pointer to lmb handle, will be used for memory mgmt * @of_flat_tree: pointer to a char* variable, will hold fdt start address * @of_size: pointer to a ulong variable, will hold fdt length * * boot_relocate_fdt() allocates a region of memory within the bootmap and * relocates the of_flat_tree into that region, even if the fdt is already in * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD * bytes. * * of_flat_tree and of_size are set to final (after relocation) values * * returns: * 0 - success * 1 - failure */ int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) { void *fdt_blob = *of_flat_tree; void *of_start = NULL; char *fdt_high; ulong of_len = 0; int err; int disable_relocation = 0; /* nothing to do */ if (*of_size == 0) return 0; if (fdt_check_header(fdt_blob) != 0) { fdt_error("image is not a fdt"); goto error; } /* position on a 4K boundary before the alloc_current */ /* Pad the FDT by a specified amount */ of_len = *of_size + CONFIG_SYS_FDT_PAD; /* If fdt_high is set use it to select the relocation address */ fdt_high = getenv("fdt_high"); if (fdt_high) { void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); if (((ulong) desired_addr) == ~0UL) { /* All ones means use fdt in place */ of_start = fdt_blob; lmb_reserve(lmb, (ulong)of_start, of_len); disable_relocation = 1; } else if (desired_addr) { of_start = (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, (ulong)desired_addr); if (of_start == NULL) { puts("Failed using fdt_high value for Device Tree"); goto error; } } else { of_start = (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); } } else { of_start = (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, getenv_bootm_mapsize() + getenv_bootm_low()); } if (of_start == NULL) { puts("device tree - allocation error\n"); goto error; } if (disable_relocation) { /* * We assume there is space after the existing fdt to use * for padding */ fdt_set_totalsize(of_start, of_len); printf(" Using Device Tree in place at %p, end %p\n", of_start, of_start + of_len - 1); } else { debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); printf(" Loading Device Tree to %p, end %p ... ", of_start, of_start + of_len - 1); err = fdt_open_into(fdt_blob, of_start, of_len); if (err != 0) { fdt_error("fdt move failed"); goto error; } puts("OK\n"); } *of_flat_tree = of_start; *of_size = of_len; set_working_fdt_addr((ulong)*of_flat_tree); return 0; error: return 1; }