Exemple #1
0
void NUMlinprog_run (NUMlinprog me) {
	try {
		glp_smcp parm;
		glp_init_smcp (& parm);
		parm. msg_lev = GLP_MSG_OFF;
		my status = glp_simplex (my linearProgram, & parm);
		switch (my status) {
			case GLP_EBADB: Melder_throw (U"Unable to start the search, because the initial basis is invalid.");
			case GLP_ESING: Melder_throw (U"Unable to start the search, because the basis matrix is singular.");
			case GLP_ECOND: Melder_throw (U"Unable to start the search, because the basis matrix is ill-conditioned.");
			case GLP_EBOUND: Melder_throw (U"Unable to start the search, because some variables have incorrect bounds.");
			case GLP_EFAIL: Melder_throw (U"Search prematurely terminated due to solver failure.");
			case GLP_EOBJLL: Melder_throw (U"Search prematurely terminated: lower limit reached.");
			case GLP_EOBJUL: Melder_throw (U"Search prematurely terminated: upper limit reached.");
			case GLP_EITLIM: Melder_throw (U"Search prematurely terminated: iteration limit exceeded.");
			case GLP_ETMLIM: Melder_throw (U"Search prematurely terminated: time limit exceeded.");
			case GLP_ENOPFS: Melder_throw (U"The problem has no primal feasible solution.");
			case GLP_ENODFS: Melder_throw (U"The problem has no dual feasible solution.");
			default: break;
		}
		my status = glp_get_status (my linearProgram);
		switch (my status) {
			case GLP_INFEAS: Melder_throw (U"Solution is infeasible.");
			case GLP_NOFEAS: Melder_throw (U"Problem has no feasible solution.");
			case GLP_UNBND: Melder_throw (U"Problem has unbounded solution.");
			case GLP_UNDEF: Melder_throw (U"Solution is undefined.");
			default: break;
		}
		if (my status == GLP_FEAS) {
			Melder_warning (U"Linear programming solution is feasible but not optimal.");
		}
	} catch (MelderError) {
		Melder_throw (U"Linear programming: not run.");
	}
}
Exemple #2
0
bool glpk_wrapper::is_solution_unbounded() {
    assert(is_sat());
    if (solver_type == SIMPLEX || solver_type == EXACT) {
        int status = glp_get_status(lp);
        return status == GLP_UNBND;
    } else {
        return false;
    }
}
Exemple #3
0
static int solve_mip(glp_prob *P, const glp_iocp *parm)
{     /* solve MIP directly without using the preprocessor */
      glp_tree *T;
      int ret;
      /* optimal basis to LP relaxation must be provided */
      if (glp_get_status(P) != GLP_OPT)
      {  if (parm->msg_lev >= GLP_MSG_ERR)
            xprintf("glp_intopt: optimal basis to initial LP relaxation"
               " not provided\n");
         ret = GLP_EROOT;
         goto done;
      }
      /* it seems all is ok */
      if (parm->msg_lev >= GLP_MSG_ALL)
         xprintf("Integer optimization begins...\n");
      /* create the branch-and-bound tree */
      T = ios_create_tree(P, parm);
      /* solve the problem instance */
      ret = ios_driver(T);
      /* delete the branch-and-bound tree */
      ios_delete_tree(T);
      /* analyze exit code reported by the mip driver */
      if (ret == 0)
      {  if (P->mip_stat == GLP_FEAS)
         {  if (parm->msg_lev >= GLP_MSG_ALL)
               xprintf("INTEGER OPTIMAL SOLUTION FOUND\n");
            P->mip_stat = GLP_OPT;
         }
         else
         {  if (parm->msg_lev >= GLP_MSG_ALL)
               xprintf("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION\n");
            P->mip_stat = GLP_NOFEAS;
         }
      }
      else if (ret == GLP_EMIPGAP)
      {  if (parm->msg_lev >= GLP_MSG_ALL)
            xprintf("RELATIVE MIP GAP TOLERANCE REACHED; SEARCH TERMINA"
               "TED\n");
      }
      else if (ret == GLP_ETMLIM)
      {  if (parm->msg_lev >= GLP_MSG_ALL)
            xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
      }
      else if (ret == GLP_EFAIL)
      {  if (parm->msg_lev >= GLP_MSG_ERR)
            xprintf("glp_intopt: cannot solve current LP relaxation\n");
      }
      else if (ret == GLP_ESTOP)
      {  if (parm->msg_lev >= GLP_MSG_ALL)
            xprintf("SEARCH TERMINATED BY APPLICATION\n");
      }
      else
         xassert(ret != ret);
done: return ret;
}
Exemple #4
0
int CMyProblem::PrintLPSolution(ostream &out)
{
	glp_create_index(lp);
	out << "LP solution" << endl;
	out << "Dir;" << ((glp_get_obj_dir(lp)==GLP_MIN) ? "min" : "max") << endl;
	out << "f; " << glp_get_obj_val(lp) << ";/*" << RealResult() << "*/" << endl; 
	out << "Status;" << DecodeStatus(glp_get_status(lp)) << endl;
	PrintSolArray(lp,"x",out);
	PrintSolArray(lp,"y",out);
	glp_delete_index(lp);
	return 0;
}
Exemple #5
0
/* call the LP solver; mult is either +1.0 or -1.0 */
static char *invoke_lp(void)
{int glp_res;
    glp_res=glp_simplex(P,&parm);
    switch(glp_res){
  case 0:           glp_res=glp_get_status(P); break;
  case GLP_ENOPFS:  // no primal feasible solution
                    glp_res=GLP_NOFEAS; break;
  default:          return glp_return_msg(glp_res);
    }
    return (glp_res==GLP_OPT ? EXPR_TRUE :
            glp_res==GLP_NOFEAS ? EXPR_FALSE :
            glp_status_msg(glp_res));
}
Exemple #6
0
int lpx_get_status(glp_prob *lp)
{     /* retrieve generic status of basic solution */
      int status;
      switch (glp_get_status(lp))
      {  case GLP_OPT:    status = LPX_OPT;    break;
         case GLP_FEAS:   status = LPX_FEAS;   break;
         case GLP_INFEAS: status = LPX_INFEAS; break;
         case GLP_NOFEAS: status = LPX_NOFEAS; break;
         case GLP_UNBND:  status = LPX_UNBND;  break;
         case GLP_UNDEF:  status = LPX_UNDEF;  break;
         default:         xassert(lp != lp);
      }
      return status;
}
Exemple #7
0
static PyObject* LPX_getstatus(LPXObject *self, void *closure) {
  int status;
  switch (self->last_solver) {
  case -1:
  case 0: status=glp_get_status(LP); break;
  case 1: status=glp_ipt_status(LP); break;
  case 2: status=glp_mip_status(LP); break;
  default: 
    PyErr_SetString(PyExc_RuntimeError,
		    "bad internal state for last solver identifier");
    return NULL;
  }
  return glpstatus2string(status);
}
int glp_print_sol(glp_prob *P, const char *fname)
{   /* write basic solution in printable format */
    glp_file *fp;
    GLPROW *row;
    GLPCOL *col;
    int i, j, t, ae_ind, re_ind, ret;
    double ae_max, re_max;
    xprintf("Writing basic solution to '%s'...\n", fname);
    fp = glp_open(fname, "w");
    if (fp == NULL)
    {   xprintf("Unable to create '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    xfprintf(fp, "%-12s%s\n", "Problem:",
             P->name == NULL ? "" : P->name);
    xfprintf(fp, "%-12s%d\n", "Rows:", P->m);
    xfprintf(fp, "%-12s%d\n", "Columns:", P->n);
    xfprintf(fp, "%-12s%d\n", "Non-zeros:", P->nnz);
    t = glp_get_status(P);
    xfprintf(fp, "%-12s%s\n", "Status:",
             t == GLP_OPT    ? "OPTIMAL" :
             t == GLP_FEAS   ? "FEASIBLE" :
             t == GLP_INFEAS ? "INFEASIBLE (INTERMEDIATE)" :
             t == GLP_NOFEAS ? "INFEASIBLE (FINAL)" :
             t == GLP_UNBND  ? "UNBOUNDED" :
             t == GLP_UNDEF  ? "UNDEFINED" : "???");
    xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
             P->obj == NULL ? "" : P->obj,
             P->obj == NULL ? "" : " = ", P->obj_val,
             P->dir == GLP_MIN ? "MINimum" :
             P->dir == GLP_MAX ? "MAXimum" : "???");
    xfprintf(fp, "\n");
    xfprintf(fp, "   No.   Row name   St   Activity     Lower bound  "
             " Upper bound    Marginal\n");
    xfprintf(fp, "------ ------------ -- ------------- ------------- "
             "------------- -------------\n");
    for (i = 1; i <= P->m; i++)
    {   row = P->row[i];
        xfprintf(fp, "%6d ", i);
        if (row->name == NULL || strlen(row->name) <= 12)
            xfprintf(fp, "%-12s ", row->name == NULL ? "" : row->name);
        else
            xfprintf(fp, "%s\n%20s", row->name, "");
        xfprintf(fp, "%s ",
                 row->stat == GLP_BS ? "B " :
                 row->stat == GLP_NL ? "NL" :
                 row->stat == GLP_NU ? "NU" :
                 row->stat == GLP_NF ? "NF" :
                 row->stat == GLP_NS ? "NS" : "??");
        xfprintf(fp, "%13.6g ",
                 fabs(row->prim) <= 1e-9 ? 0.0 : row->prim);
        if (row->type == GLP_LO || row->type == GLP_DB ||
                row->type == GLP_FX)
            xfprintf(fp, "%13.6g ", row->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (row->type == GLP_UP || row->type == GLP_DB)
            xfprintf(fp, "%13.6g ", row->ub);
        else
            xfprintf(fp, "%13s ", row->type == GLP_FX ? "=" : "");
        if (row->stat != GLP_BS)
        {   if (fabs(row->dual) <= 1e-9)
                xfprintf(fp, "%13s", "< eps");
            else
                xfprintf(fp, "%13.6g ", row->dual);
        }
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "   No. Column name  St   Activity     Lower bound  "
             " Upper bound    Marginal\n");
    xfprintf(fp, "------ ------------ -- ------------- ------------- "
             "------------- -------------\n");
    for (j = 1; j <= P->n; j++)
    {   col = P->col[j];
        xfprintf(fp, "%6d ", j);
        if (col->name == NULL || strlen(col->name) <= 12)
            xfprintf(fp, "%-12s ", col->name == NULL ? "" : col->name);
        else
            xfprintf(fp, "%s\n%20s", col->name, "");
        xfprintf(fp, "%s ",
                 col->stat == GLP_BS ? "B " :
                 col->stat == GLP_NL ? "NL" :
                 col->stat == GLP_NU ? "NU" :
                 col->stat == GLP_NF ? "NF" :
                 col->stat == GLP_NS ? "NS" : "??");
        xfprintf(fp, "%13.6g ",
                 fabs(col->prim) <= 1e-9 ? 0.0 : col->prim);
        if (col->type == GLP_LO || col->type == GLP_DB ||
                col->type == GLP_FX)
            xfprintf(fp, "%13.6g ", col->lb);
        else
            xfprintf(fp, "%13s ", "");
        if (col->type == GLP_UP || col->type == GLP_DB)
            xfprintf(fp, "%13.6g ", col->ub);
        else
            xfprintf(fp, "%13s ", col->type == GLP_FX ? "=" : "");
        if (col->stat != GLP_BS)
        {   if (fabs(col->dual) <= 1e-9)
                xfprintf(fp, "%13s", "< eps");
            else
                xfprintf(fp, "%13.6g ", col->dual);
        }
        xfprintf(fp, "\n");
    }
    xfprintf(fp, "\n");
    xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_SOL, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PE: max.abs.err = %.2e on row %d\n",
             ae_max, ae_ind);
    xfprintf(fp, "        max.rel.err = %.2e on row %d\n",
             re_max, re_ind);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS WRONG");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_SOL, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.PB: max.abs.err = %.2e on %s %d\n",
             ae_max, ae_ind <= P->m ? "row" : "column",
             ae_ind <= P->m ? ae_ind : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on %s %d\n",
             re_max, re_ind <= P->m ? "row" : "column",
             re_ind <= P->m ? re_ind : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "PRIMAL SOLUTION IS INFEASIBL"
             "E");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_SOL, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.DE: max.abs.err = %.2e on column %d\n",
             ae_max, ae_ind == 0 ? 0 : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on column %d\n",
             re_max, re_ind == 0 ? 0 : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS WRONG");
    xfprintf(fp, "\n");
    glp_check_kkt(P, GLP_SOL, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
                  &re_ind);
    xfprintf(fp, "KKT.DB: max.abs.err = %.2e on %s %d\n",
             ae_max, ae_ind <= P->m ? "row" : "column",
             ae_ind <= P->m ? ae_ind : ae_ind - P->m);
    xfprintf(fp, "        max.rel.err = %.2e on %s %d\n",
             re_max, re_ind <= P->m ? "row" : "column",
             re_ind <= P->m ? re_ind : re_ind - P->m);
    xfprintf(fp, "%8s%s\n", "",
             re_max <= 1e-9 ? "High quality" :
             re_max <= 1e-6 ? "Medium quality" :
             re_max <= 1e-3 ? "Low quality" : "DUAL SOLUTION IS INFEASIBLE")
    ;
    xfprintf(fp, "\n");
    xfprintf(fp, "End of output\n");
#if 0 /* FIXME */
    xfflush(fp);
#endif
    if (glp_ioerr(fp))
    {   xprintf("Write error on '%s' - %s\n", fname, get_err_msg());
        ret = 1;
        goto done;
    }
    ret = 0;
done:
    if (fp != NULL) glp_close(fp);
    return ret;
}
Exemple #9
0
static void
maybe_check_results(const int ppl_status, const double ppl_optimum_value) {
  const char* ppl_status_string;
  const char* glpk_status_string;
  int glpk_status;
  int treat_as_lp = 0;
  glp_smcp glpk_smcp;

  if (!check_results)
    return;

  if (no_mip || glpk_lp_num_int == 0)
    treat_as_lp = 1;

  glp_set_obj_dir(glpk_lp, (maximize ? GLP_MAX : GLP_MIN));

  glp_init_smcp(&glpk_smcp);
  /* Disable GLPK output. */
  glpk_smcp.msg_lev = GLP_MSG_OFF;

  if (treat_as_lp) {
    /* Set the problem class to LP: MIP problems are thus treated as
       LP ones. */
    glp_exact(glpk_lp, &glpk_smcp);
    glpk_status = glp_get_status(glpk_lp);
  }
  else {
    /* MIP case. */
    glp_simplex(glpk_lp, &glpk_smcp);
    glpk_status = glp_get_status(glpk_lp);
    if (glpk_status != GLP_NOFEAS && glpk_status != GLP_UNBND) {
      glp_iocp glpk_iocp;
      glp_init_iocp(&glpk_iocp);
      /* Disable GLPK output. */
      glpk_iocp.msg_lev = GLP_MSG_OFF;
      glp_intopt(glpk_lp, &glpk_iocp);
      glpk_status = glp_mip_status(glpk_lp);
    }
  }
  /* If no_optimization is enabled, the second case is not possibile. */
  if (!((ppl_status == PPL_MIP_PROBLEM_STATUS_UNFEASIBLE
         && glpk_status == GLP_NOFEAS)
        || (ppl_status == PPL_MIP_PROBLEM_STATUS_UNBOUNDED
            && glpk_status == GLP_UNBND)
        || (ppl_status == PPL_MIP_PROBLEM_STATUS_OPTIMIZED
            && (glpk_status == GLP_OPT
                /* If no_optimization is enabled, check if the problem is
                   unbounded for GLPK.  */
                || (no_optimization && (glpk_status == GLP_UNBND
                                        || glpk_status == GLP_UNDEF))))))  {

    if (ppl_status == PPL_MIP_PROBLEM_STATUS_UNFEASIBLE)
      ppl_status_string = "unfeasible";
    else if (ppl_status == PPL_MIP_PROBLEM_STATUS_UNBOUNDED)
      ppl_status_string = "unbounded";
    else if (ppl_status == PPL_MIP_PROBLEM_STATUS_OPTIMIZED)
      ppl_status_string = "optimizable";
    else
      ppl_status_string = "<?>";

    switch (glpk_status) {
    case GLP_NOFEAS:
      glpk_status_string = "unfeasible";
      break;
    case GLP_UNBND:
      glpk_status_string = "unbounded";
      break;
    case GLP_OPT:
      glpk_status_string = "optimizable";
      break;
    case GLP_UNDEF:
      glpk_status_string = "undefined";
      break;
    default:
      glpk_status_string = "<?>";
      break;
    }

    error("check failed: for GLPK the problem is %s, not %s",
          glpk_status_string, ppl_status_string);

    check_results_failed = 1;
  }
  else if (!no_optimization
           && ppl_status == PPL_MIP_PROBLEM_STATUS_OPTIMIZED) {

    double glpk_optimum_value
      = (treat_as_lp ? glp_get_obj_val(glpk_lp) : glp_mip_obj_val(glpk_lp));

    if (fabs(ppl_optimum_value - glpk_optimum_value) > check_threshold) {
      error("check failed: for GLPK the problem's optimum is %.20g,"
            " not %.20g", glpk_optimum_value, ppl_optimum_value);
      check_results_failed = 1;
    }
  }
  return;
}
Exemple #10
0
int c_simplex_sparse(int m, int n, DMAT(c), DMAT(b), DVEC(s)) {
    glp_prob *lp;
    lp = glp_create_prob();
    glp_set_obj_dir(lp, GLP_MAX);
    int i,j,k;
    int tot = cr - n;
    glp_add_rows(lp, m);
    glp_add_cols(lp, n);

    //printf("%d %d\n",m,n);

    // the first n values
    for (k=1;k<=n;k++) {
        glp_set_obj_coef(lp, k, AT(c, k-1, 2));
        //printf("%d %f\n",k,AT(c, k-1, 2));
    }

    int * ia = malloc((1+tot)*sizeof(int));
    int * ja = malloc((1+tot)*sizeof(int));
    double * ar = malloc((1+tot)*sizeof(double));

    for (k=1; k<= tot; k++) {
        ia[k] = rint(AT(c,k-1+n,0));
        ja[k] = rint(AT(c,k-1+n,1));
        ar[k] =      AT(c,k-1+n,2);
        //printf("%d %d %f\n",ia[k],ja[k],ar[k]);
    }
    glp_load_matrix(lp, tot, ia, ja, ar);

    int t;
    for (i=1;i<=m;i++) {
    switch((int)rint(AT(b,i-1,0))) {
        case 0: { t = GLP_FR; break; }
        case 1: { t = GLP_LO; break; }
        case 2: { t = GLP_UP; break; }
        case 3: { t = GLP_DB; break; }
       default: { t = GLP_FX; break; }
    }
    glp_set_row_bnds(lp, i, t , AT(b,i-1,1), AT(b,i-1,2));
    }
    for (j=1;j<=n;j++) {
    switch((int)rint(AT(b,m+j-1,0))) {
        case 0: { t = GLP_FR; break; }
        case 1: { t = GLP_LO; break; }
        case 2: { t = GLP_UP; break; }
        case 3: { t = GLP_DB; break; }
       default: { t = GLP_FX; break; }
    }
    glp_set_col_bnds(lp, j, t , AT(b,m+j-1,1), AT(b,m+j-1,2));
    }
    glp_term_out(0);
    glp_simplex(lp, NULL);
    sp[0] = glp_get_status(lp);
    sp[1] = glp_get_obj_val(lp);
    for (k=1; k<=n; k++) {
        sp[k+1] = glp_get_col_prim(lp, k);
    }
    glp_delete_prob(lp);
    free(ia);
    free(ja);
    free(ar);

    return 0;
}
Exemple #11
0
double solve_glp_grb(glp_prob *mip, wrapper_params *par){


	GLPK_out = par->glp_out;
	GRB_out = par->grb_out;
	double obj_val;



	/** GLPK: Generate Variable indexing **/
	glp_create_index(mip);

	/** GLPK: Generate LP **/
	glp_write_mps(mip, GLP_MPS_FILE, NULL, "tmp.mps");


	/************/
	/** GUROBI **/
	/************/

	retGRB = GRBloadenv(&env, NULL);
	if (retGRB || env == NULL)
	{
		fprintf(stderr, "Error: could not create environment\n");
		exit(1);
	}

	retGRB = GRBsetintparam(env, "OutputFlag", GRB_out?1:0);
	if (retGRB) freeMem();

	//retGRB = GRBsetintparam(env, "Sensitivity", 1);
	//if (retGRB) freeMem();

	/** GUROBI: Read model **/
	retGRB = GRBreadmodel(env, "tmp.mps", &model);
	if (retGRB) freeMem();

	/** Remove utility files from disk **/
	//remove("tmp.mps");

	/** GUROBI: Get environment **/
	mipenv = GRBgetenv(model);
	if (!mipenv) freeMem();

	/** GUROBI: Set parameters **/

	/** GUROBI: Ask for more precision **/
	retGRB = GRBsetdblparam(mipenv, "FeasibilityTol", 10E-6);
	if (retGRB) freeMem();
	retGRB = GRBsetdblparam(mipenv, "IntFeasTol", 10E-5);
	if (retGRB) freeMem();
	retGRB = GRBsetdblparam(mipenv, "MIPgap", 10E-6);
	if (retGRB) freeMem();

	/* * Playing with gurobi parameters and attr*/

	//gurobi_set_basis();
	retGRB = GRBsetintparam(mipenv, "Cuts", 3);
	if (retGRB) freeMem();

	retGRB = GRBsetintparam(mipenv, "RootMethod", 1);
	if (retGRB) freeMem();

	retGRB = GRBsetintparam(mipenv, "Symmetry", -1);
	if (retGRB) freeMem();

	

	/** GUROBI: get numvars and numrows **/
	retGRB = GRBgetintattr(model, "NumVars", &numvars);
	if (retGRB) freeMem();


	/** Test variable names */
	for(int j=0;j<numvars;j++){	
		retGRB = GRBgetstrattrelement(model, "VarName", j, &nameGRB);
		printf("GRB Var %d Name %s\n",j,nameGRB); 
	}
	/** GUROBI: get model type **/
	retGRB = GRBgetintattr(model, "IsMIP", &GRB_IsMIP);
	if (retGRB) freeMem();

	/** GUROBI: Optimize model **/
	retGRB = GRBoptimize(model);
	if (retGRB) freeMem();

	
	
	/** GUROBI: Retreive the optimization status **/
	GRBgetintattr(model, "Status", &retGRB);
	switch(retGRB){
	case GRB_OPTIMAL:
		break;
	case GRB_INFEASIBLE :
		fprintf(stderr, "Error GRB optimization failed with code GRB_INFEASIBLE\n");
	case GRB_INF_OR_UNBD :
		fprintf(stderr, "Error GRB optimization failed with code GRB_INF_OR_UNBD \n");
	case GRB_UNBOUNDED :
		fprintf(stderr, "Error GRB optimization failed with code GRB_UNBOUNDED \n");
	case GRB_CUTOFF :
		fprintf(stderr, "Error GRB optimization failed with code GRB_CUTOFF \n");
	case GRB_ITERATION_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_ITERATION_LIMIT \n");
	case GRB_NODE_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_NODE_LIMIT \n");
	case GRB_TIME_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_TIME_LIMIT \n");
	case GRB_SOLUTION_LIMIT :
		fprintf(stderr, "Error GRB optimization failed with code GRB_SOLUTION_LIMIT \n");
	case GRB_INTERRUPTED :
		fprintf(stderr, "Error GRB optimization failed with code GRB_INTERRUPTED \n");
	case GRB_SUBOPTIMAL :
		fprintf(stderr, "Error GRB optimization failed with code GRB_SUBOPTIMAL \n");
	case GRB_NUMERIC :
		fprintf(stderr, "Error GRB optimization failed with code GRB_NUMERIC \n");

		/** GUROBI: Quit in any case non optimal **/
		freeMem();
	}

	/** GUROBI: Get obj function value **/
	retGRB = GRBgetdblattr(model, "IntVio", &tmp);
	if (retGRB) freeMem();


	retGRB = GRBgetdblattr(model, "ObjBound", &bound);
	if (retGRB) freeMem();

	retGRB = GRBgetdblattr(model, "ObjVal", &tmp);
	if (retGRB) freeMem();

	/* ********************** */

	obj_val = tmp;


	/* ************ */
	if (verbose) printf ("Objective %lf\n", tmp);
	if (verbose) printf ("Best bound %lf\n", bound);
	if (verbose) printf ("Absolute gap %lf\n", fabs(tmp - bound));

	/** GUROBI: Get variable values **/
	for (j = 0; j < numvars; ++j){

		retGRB = GRBgetdblattrelement(model, "X", j, &tmp);
		if (retGRB) freeMem();

		retGRB = GRBgetstrattrelement(model, "VarName", j, &nameGRB);
		printf("GRB Var %d Name %s\n",j,nameGRB); 
		if (retGRB) freeMem();

		retGRB = GRBgetcharattrelement(model, "VType", j, &type);
		if (retGRB) freeMem();

		/** GLPK search variable index by name **/
		col_index = glp_find_col(mip, nameGRB);

		if (col_index != 0){
			/** GLPK set variable bounds **/
			if ((type == 'B') || (type == 'I')){
				if (verbose) printf ("Variable %s is of type %c value %lf fixed to %lf\n", nameGRB, type, tmp, round(tmp));
				glp_set_col_bnds(mip, col_index, GLP_FX, round(tmp), round(tmp));
			}
			else{
				if (verbose) printf ("Variable %s is of type %c value %lf fixed to %lf\n", nameGRB, type, tmp, tmp);
				glp_set_col_bnds(mip, col_index, GLP_FX, tmp, tmp);
			}
		}
	}

	if (GRB_IsMIP){

		/** GLPK initialize parameters **/
		iparm = (glp_iocp*) malloc(sizeof(glp_iocp));
		glp_init_iocp(iparm);
		iparm->presolve = GLP_ON;
		iparm->mip_gap = glpk_iparm_mip_gap;
		iparm->tol_int = glpk_iparm_tol_int;
		iparm->tol_obj = glpk_iparm_tol_obj;

		/** GLPK get the optimal integer solution **/
		ret = glp_intopt(mip, iparm);
		if (ret){
			fprintf(stderr, "glp_intopt, Error on optimizing the model : %d \n", ret);
			freeMem();
		}

		ret = glp_mip_status(mip);
		switch (ret){
		case GLP_OPT:
			break;
		case GLP_FEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_FEAS, code %d\n", ret);
			freeMem();
		case GLP_NOFEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_NOFEAS, code %d\n", ret);
			freeMem();
		case GLP_UNDEF:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_UNDEF, code %d\n", ret);
			freeMem();
		}
	}
	else{

		/*GLPK initialize parameters */
		parm = (glp_smcp*) malloc(sizeof(glp_smcp));
		glp_init_smcp(parm);
		parm->meth = GLP_DUALP;
		parm->tol_bnd = 10E-4;
		parm->tol_dj = 10E-4;

		/* GLPK get the optimal basis */
		//ret = glp_simplex(mip, parm);
		if (ret){
			fprintf(stderr, "glp_simplex, Error on optimizing the model : %d \n", ret);
			freeMem();
		}
		ret = glp_get_status(mip);
		switch (ret){
		case GLP_OPT:
			break;
		case GLP_FEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_FEAS, code %d\n", ret);
			freeMem();
		case GLP_INFEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_INFEAS, code %d\n", ret);
			freeMem();
		case GLP_NOFEAS:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_NOFEAS, code %d\n", ret);
			freeMem();
		case GLP_UNBND:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_UNBND, code %d\n", ret);
			freeMem();
		case GLP_UNDEF:
			fprintf(stderr, "Error GLPK simplex is not optimal, GLP_UNDEF, code %d\n", ret);
			freeMem();
		}


	}

	//GRBmodel *fmod = fixed_model(model);
	//gurobi_sens_output(fmod, "/tmp/sens.sol");
        GRBwrite(model, "/tmp/model.sol");






	/** GUROBI: free structures **/
	if (model) GRBfreemodel(model);
	if (env) GRBfreeenv(env);

	return obj_val;
}
OptSolutionData* GLPKRunSolver(int ProbType) {
	OptSolutionData* NewSolution = NULL;

	int NumVariables = glp_get_num_cols(GLPKModel);

	int Status = 0;
	if (ProbType == MILP) {
		Status = glp_simplex(GLPKModel, NULL); // Use default settings
		if (Status != 0) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		Status = glp_intopt(GLPKModel, NULL); // Use default settings
		if (Status != 0) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		NewSolution = new OptSolutionData;

		Status = glp_mip_status(GLPKModel);
		if (Status == GLP_UNDEF || Status == GLP_NOFEAS) {
			NewSolution->Status = INFEASIBLE;
			return NewSolution;
		} else if (Status == GLP_FEAS) {
			NewSolution->Status = UNBOUNDED;
			return NewSolution;
		} else if (Status == GLP_OPT) {
			NewSolution->Status = SUCCESS;
		} else {
			delete NewSolution;
			FErrorFile() << "Problem status unrecognized." << endl;
			FlushErrorFile();
			return NULL;
		}

		NewSolution->Objective = glp_mip_obj_val(GLPKModel);
	
		NewSolution->SolutionData.resize(NumVariables);
		for (int i=0; i < NumVariables; i++) {
			NewSolution->SolutionData[i] = glp_mip_col_val(GLPKModel, i+1);
		}
	} else if (ProbType == LP) {
		//First we check the basis matrix to ensure it is not singular
		if (glp_warm_up(GLPKModel) != 0) {
			glp_adv_basis(GLPKModel, 0);
		}
		Status = glp_simplex(GLPKModel, NULL); // Use default settings
		if (Status == GLP_EBADB) {  /* the basis is invalid; build some valid basis */
			glp_adv_basis(GLPKModel, 0);
			Status = glp_simplex(GLPKModel, NULL); // Use default settings
		}
		if (Status != 0) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		NewSolution = new OptSolutionData;

		Status = glp_get_status(GLPKModel);
		if (Status == GLP_INFEAS || Status == GLP_NOFEAS || Status == GLP_UNDEF) {
			cout << "Model is infeasible" << endl;
			FErrorFile() << "Model is infeasible" << endl;
			FlushErrorFile();
			NewSolution->Status = INFEASIBLE;
			return NewSolution;
		} else if (Status == GLP_FEAS || Status == GLP_UNBND) {
			cout << "Model is unbounded" << endl;
			FErrorFile() << "Model is unbounded" << endl;
			FlushErrorFile();
			NewSolution->Status = UNBOUNDED;
			return NewSolution;
		} else if (Status == GLP_OPT) {
			NewSolution->Status = SUCCESS;
		} else {
			delete NewSolution;
			FErrorFile() << "Problem status unrecognized." << endl;
			FlushErrorFile();
			return NULL;
		}

		NewSolution->Objective = glp_get_obj_val(GLPKModel);
	
		NewSolution->SolutionData.resize(NumVariables);
		for (int i=0; i < NumVariables; i++) {
			NewSolution->SolutionData[i] = glp_get_col_prim(GLPKModel, i+1);
		}
	} else {
		FErrorFile() << "Optimization problem type cannot be handled by GLPK solver." << endl;
		FlushErrorFile();
		return NULL;
	}

	return NewSolution;
}
Exemple #13
0
static PyObject* LPX_write(LPXObject *self, PyObject *args, PyObject *keywds)
{
	static char* kwlist[] = {"mps", "freemps", "prob", "sol", "sens_bnds",
		"ips", "mip", NULL};
	char* fnames[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL};
	char* fname;
	const char* err_msg = "writer for '%s' failed to write to '%s'";
	int rv;

	rv = PyArg_ParseTupleAndKeywords(args, keywds, "|sssssss", kwlist,
	fnames,fnames+1,fnames+2,fnames+3, fnames+4,fnames+5,fnames+6);

	if (!rv)
		return NULL;

	fname = fnames[0];
	if (fname != NULL) {
		rv = glp_write_mps(LP, GLP_MPS_DECK, NULL, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[0], fname);
			return NULL;
		}
	}

	fname = fnames[1];
	if (fname != NULL) {
		rv = glp_write_mps(LP, GLP_MPS_FILE, NULL, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[1], fname);
			return NULL;
		}
	}

	fname = fnames[2];
	if (fname != NULL) {
		rv = glp_write_lp(LP, NULL, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[2], fname);
			return NULL;
		}
	}

	fname = fnames[3];
	if (fname != NULL) {
		rv = glp_print_sol(LP, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[3], fname);
			return NULL;
		}
	}

	fname = fnames[4];
	if (fname != NULL) {
		if (glp_get_status(LP) == GLP_OPT && !glp_bf_exists(LP))
			glp_factorize(LP);
		rv = glp_print_ranges(LP, 0, NULL, 0, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[4], fname);
			return NULL;
		}
	}

	fname = fnames[5];
	if (fname != NULL) {
		rv = glp_print_ipt(LP, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[5], fname);
			return NULL;
		}
	}

	fname = fnames[6];
	if (fname != NULL) {
		glp_print_mip(LP, fname);
		if (rv != 0) {
			PyErr_Format(PyExc_RuntimeError, err_msg, kwlist[6], fname);
			return NULL;
		}
	}
	Py_RETURN_NONE;
}
Exemple #14
0
void ios_feas_pump(glp_tree *T)
{     glp_prob *P = T->mip;
      int n = P->n;
      glp_prob *lp = NULL;
      struct VAR *var = NULL;
      RNG *rand = NULL;
      GLPCOL *col;
      glp_smcp parm;
      int j, k, new_x, nfail, npass, nv, ret, stalling;
      double dist, tol;
      xassert(glp_get_status(P) == GLP_OPT);
      /* this heuristic is applied only once on the root level */
      if (!(T->curr->level == 0 && T->curr->solved == 1)) goto done;
      /* determine number of binary variables */
      nv = 0;
      for (j = 1; j <= n; j++)
      {  col = P->col[j];
         /* if x[j] is continuous, skip it */
         if (col->kind == GLP_CV) continue;
         /* if x[j] is fixed, skip it */
         if (col->type == GLP_FX) continue;
         /* x[j] is non-fixed integer */
         xassert(col->kind == GLP_IV);
         if (col->type == GLP_DB && col->lb == 0.0 && col->ub == 1.0)
         {  /* x[j] is binary */
            nv++;
         }
         else
         {  /* x[j] is general integer */
            if (T->parm->msg_lev >= GLP_MSG_ALL)
               xprintf("FPUMP heuristic cannot be applied due to genera"
                  "l integer variables\n");
            goto done;
         }
      }
      /* there must be at least one binary variable */
      if (nv == 0) goto done;
      if (T->parm->msg_lev >= GLP_MSG_ALL)
         xprintf("Applying FPUMP heuristic...\n");
      /* build the list of binary variables */
      var = xcalloc(1+nv, sizeof(struct VAR));
      k = 0;
      for (j = 1; j <= n; j++)
      {  col = P->col[j];
         if (col->kind == GLP_IV && col->type == GLP_DB)
            var[++k].j = j;
      }
      xassert(k == nv);
      /* create working problem object */
      lp = glp_create_prob();
more: /* copy the original problem object to keep it intact */
      glp_copy_prob(lp, P, GLP_OFF);
      /* we are interested to find an integer feasible solution, which
         is better than the best known one */
      if (P->mip_stat == GLP_FEAS)
      {  int *ind;
         double *val, bnd;
         /* add a row and make it identical to the objective row */
         glp_add_rows(lp, 1);
         ind = xcalloc(1+n, sizeof(int));
         val = xcalloc(1+n, sizeof(double));
         for (j = 1; j <= n; j++)
         {  ind[j] = j;
            val[j] = P->col[j]->coef;
         }
         glp_set_mat_row(lp, lp->m, n, ind, val);
         xfree(ind);
         xfree(val);
         /* introduce upper (minimization) or lower (maximization)
            bound to the original objective function; note that this
            additional constraint is not violated at the optimal point
            to LP relaxation */
#if 0 /* modified by xypron <*****@*****.**> */
         if (P->dir == GLP_MIN)
         {  bnd = P->mip_obj - 0.10 * (1.0 + fabs(P->mip_obj));
            if (bnd < P->obj_val) bnd = P->obj_val;
            glp_set_row_bnds(lp, lp->m, GLP_UP, 0.0, bnd - P->c0);
         }
         else if (P->dir == GLP_MAX)
         {  bnd = P->mip_obj + 0.10 * (1.0 + fabs(P->mip_obj));
            if (bnd > P->obj_val) bnd = P->obj_val;
            glp_set_row_bnds(lp, lp->m, GLP_LO, bnd - P->c0, 0.0);
         }
         else
            xassert(P != P);
#else
         bnd = 0.1 * P->obj_val + 0.9 * P->mip_obj;
         /* xprintf("bnd = %f\n", bnd); */
         if (P->dir == GLP_MIN)
            glp_set_row_bnds(lp, lp->m, GLP_UP, 0.0, bnd - P->c0);
         else if (P->dir == GLP_MAX)
            glp_set_row_bnds(lp, lp->m, GLP_LO, bnd - P->c0, 0.0);
         else
            xassert(P != P);
#endif
      }
      /* reset pass count */
      npass = 0;
      /* invalidate the rounded point */
      for (k = 1; k <= nv; k++)
         var[k].x = -1;
pass: /* next pass starts here */
      npass++;
      if (T->parm->msg_lev >= GLP_MSG_ALL)
         xprintf("Pass %d\n", npass);
      /* initialize minimal distance between the basic point and the
         rounded one obtained during this pass */
      dist = DBL_MAX;
      /* reset failure count (the number of succeeded iterations failed
         to improve the distance) */
      nfail = 0;
      /* if it is not the first pass, perturb the last rounded point
         rather than construct it from the basic solution */
      if (npass > 1)
      {  double rho, temp;
         if (rand == NULL)
            rand = rng_create_rand();
         for (k = 1; k <= nv; k++)
         {  j = var[k].j;
            col = lp->col[j];
            rho = rng_uniform(rand, -0.3, 0.7);
            if (rho < 0.0) rho = 0.0;
            temp = fabs((double)var[k].x - col->prim);
            if (temp + rho > 0.5) var[k].x = 1 - var[k].x;
         }
         goto skip;
      }
loop: /* innermost loop begins here */
      /* round basic solution (which is assumed primal feasible) */
      stalling = 1;
      for (k = 1; k <= nv; k++)
      {  col = lp->col[var[k].j];
         if (col->prim < 0.5)
         {  /* rounded value is 0 */
            new_x = 0;
         }
         else
         {  /* rounded value is 1 */
            new_x = 1;
         }
         if (var[k].x != new_x)
         {  stalling = 0;
            var[k].x = new_x;
         }
      }
      /* if the rounded point has not changed (stalling), choose and
         flip some its entries heuristically */
      if (stalling)
      {  /* compute d[j] = |x[j] - round(x[j])| */
         for (k = 1; k <= nv; k++)
         {  col = lp->col[var[k].j];
            var[k].d = fabs(col->prim - (double)var[k].x);
         }
         /* sort the list of binary variables by descending d[j] */
         qsort(&var[1], nv, sizeof(struct VAR), fcmp);
         /* choose and flip some rounded components */
         for (k = 1; k <= nv; k++)
         {  if (k >= 5 && var[k].d < 0.35 || k >= 10) break;
            var[k].x = 1 - var[k].x;
         }
      }
skip: /* check if the time limit has been exhausted */
      if (T->parm->tm_lim < INT_MAX &&
         (double)(T->parm->tm_lim - 1) <=
         1000.0 * xdifftime(xtime(), T->tm_beg)) goto done;
      /* build the objective, which is the distance between the current
         (basic) point and the rounded one */
      lp->dir = GLP_MIN;
      lp->c0 = 0.0;
      for (j = 1; j <= n; j++)
         lp->col[j]->coef = 0.0;
      for (k = 1; k <= nv; k++)
      {  j = var[k].j;
         if (var[k].x == 0)
            lp->col[j]->coef = +1.0;
         else
         {  lp->col[j]->coef = -1.0;
            lp->c0 += 1.0;
         }
      }
      /* minimize the distance with the simplex method */
      glp_init_smcp(&parm);
      if (T->parm->msg_lev <= GLP_MSG_ERR)
         parm.msg_lev = T->parm->msg_lev;
      else if (T->parm->msg_lev <= GLP_MSG_ALL)
      {  parm.msg_lev = GLP_MSG_ON;
         parm.out_dly = 10000;
      }
      ret = glp_simplex(lp, &parm);
      if (ret != 0)
      {  if (T->parm->msg_lev >= GLP_MSG_ERR)
            xprintf("Warning: glp_simplex returned %d\n", ret);
         goto done;
      }
      ret = glp_get_status(lp);
      if (ret != GLP_OPT)
      {  if (T->parm->msg_lev >= GLP_MSG_ERR)
            xprintf("Warning: glp_get_status returned %d\n", ret);
         goto done;
      }
      if (T->parm->msg_lev >= GLP_MSG_DBG)
         xprintf("delta = %g\n", lp->obj_val);
      /* check if the basic solution is integer feasible; note that it
         may be so even if the minimial distance is positive */
      tol = 0.3 * T->parm->tol_int;
      for (k = 1; k <= nv; k++)
      {  col = lp->col[var[k].j];
         if (tol < col->prim && col->prim < 1.0 - tol) break;
      }
      if (k > nv)
      {  /* okay; the basic solution seems to be integer feasible */
         double *x = xcalloc(1+n, sizeof(double));
         for (j = 1; j <= n; j++)
         {  x[j] = lp->col[j]->prim;
            if (P->col[j]->kind == GLP_IV) x[j] = floor(x[j] + 0.5);
         }
#if 1 /* modified by xypron <*****@*****.**> */
         /* reset direction and right-hand side of objective */
         lp->c0  = P->c0;
         lp->dir = P->dir;
         /* fix integer variables */
         for (k = 1; k <= nv; k++)
#if 0 /* 18/VI-2013; fixed by mao
       * this bug causes numerical instability, because column statuses
       * are not changed appropriately */
         {  lp->col[var[k].j]->lb   = x[var[k].j];
            lp->col[var[k].j]->ub   = x[var[k].j];
            lp->col[var[k].j]->type = GLP_FX;
         }
#else
            glp_set_col_bnds(lp, var[k].j, GLP_FX, x[var[k].j], 0.);
#endif
         /* copy original objective function */
         for (j = 1; j <= n; j++)
            lp->col[j]->coef = P->col[j]->coef;
         /* solve original LP and copy result */
         ret = glp_simplex(lp, &parm);
         if (ret != 0)
         {  if (T->parm->msg_lev >= GLP_MSG_ERR)
               xprintf("Warning: glp_simplex returned %d\n", ret);
            goto done;
         }
         ret = glp_get_status(lp);
         if (ret != GLP_OPT)
         {  if (T->parm->msg_lev >= GLP_MSG_ERR)
               xprintf("Warning: glp_get_status returned %d\n", ret);
            goto done;
         }
         for (j = 1; j <= n; j++)
            if (P->col[j]->kind != GLP_IV) x[j] = lp->col[j]->prim;
#endif
         ret = glp_ios_heur_sol(T, x);
         xfree(x);
         if (ret == 0)
         {  /* the integer solution is accepted */
            if (ios_is_hopeful(T, T->curr->bound))
            {  /* it is reasonable to apply the heuristic once again */
               goto more;
            }
            else
            {  /* the best known integer feasible solution just found
                  is close to optimal solution to LP relaxation */
               goto done;
            }
         }
      }
Exemple #15
0
int DBWorker::_RememberRun(CMyProblem &P, int idobjectives, const char* modelfile, double time, bool mip, int idruns)
{
    int idrun = -1;
    try {
        sql::PreparedStatement *PrepStmt;
        sql::ResultSet *res;

        PrepStmt = con->prepareStatement(
                       "INSERT INTO runs(idobjectives,modelfile,runtype,res_status,res_value,time_in_seconds,idruns) VALUES(?,?,?,?,?,?,?)"
                   );
        PrepStmt->setInt(1, idobjectives);
        PrepStmt->setString(2, modelfile);
        PrepStmt->setString(3, mip ? "mip" : "lp");
        if(!mip)
        {
            PrepStmt->setInt(4, glp_get_status(P.GetProblem()));
            PrepStmt->setDouble(5, glp_get_obj_val(P.GetProblem()));
            PrepStmt->setNull(7,0);
        }
        else
        {
            PrepStmt->setInt(4, glp_mip_status(P.GetProblem()));
            PrepStmt->setDouble(5, glp_mip_obj_val(P.GetProblem()));
            PrepStmt->setInt(7,idruns);
        }
        PrepStmt->setDouble(6, time);

        PrepStmt->execute();
        delete PrepStmt;

        if(!mip)
        {
            PrepStmt = con->prepareStatement(
                           "SELECT LAST_INSERT_ID()"
                       );
            res = PrepStmt->executeQuery();
            delete PrepStmt;
            res->next();
            idrun = res->getInt(1);
            delete res;
        }
        else
        {
            idrun = idruns;
        }

        cout << "Run ID " << idrun << endl;

        PrepStmt = con->prepareStatement(
                       "INSERT INTO results(idrun,var_name,i,j,value,runtype) VALUES(?,?,?,?,?,?)"
                   );
        PrepStmt->setInt(1, idrun);
        PrepStmt->setString(6, mip ? "mip" : "lp");

        vector<vector<double>> arr;
        for (int vvv=1; vvv>=0; vvv--)
        {
            char* var_name = (vvv ? "x" : "y");
            GetSolArray(P.GetProblem(),var_name,arr,mip);
            PrepStmt->setString(2, var_name);
            int i=1;
            for (std::vector<vector<double>>::iterator it = arr.begin() ; it != arr.end(); ++it)
            {
                int j=1;
                for (std::vector<double>::iterator it2 = (*it).begin() ; it2 != (*it).end(); ++it2)
                {
                    PrepStmt->setInt(3, i);
                    PrepStmt->setInt(4, j);
                    PrepStmt->setDouble(5, *it2);
                    PrepStmt->execute();
                    j++;
                }
                i++;
            }
        }

        delete PrepStmt;

    }
    catch (sql::SQLException &e) {
        SQLError(e);
    }
    return idrun;
}
Exemple #16
0
int glp_main(int argc, const char *argv[])
{     /* stand-alone LP/MIP solver */
      struct csa _csa, *csa = &_csa;
      int ret;
      xlong_t start;
      /* perform initialization */
      csa->prob = glp_create_prob();
      glp_get_bfcp(csa->prob, &csa->bfcp);
      glp_init_smcp(&csa->smcp);
      csa->smcp.presolve = GLP_ON;
      glp_init_iocp(&csa->iocp);
      csa->iocp.presolve = GLP_ON;
      csa->tran = NULL;
      csa->graph = NULL;
      csa->format = FMT_MPS_FILE;
      csa->in_file = NULL;
      csa->ndf = 0;
      csa->out_dpy = NULL;
      csa->solution = SOL_BASIC;
      csa->in_res = NULL;
      csa->dir = 0;
      csa->scale = 1;
      csa->out_sol = NULL;
      csa->out_res = NULL;
      csa->out_bnds = NULL;
      csa->check = 0;
      csa->new_name = NULL;
      csa->out_mps = NULL;
      csa->out_freemps = NULL;
      csa->out_cpxlp = NULL;
      csa->out_pb = NULL;
      csa->out_npb = NULL;
      csa->log_file = NULL;
      csa->crash = USE_ADV_BASIS;
      csa->exact = 0;
      csa->xcheck = 0;
      csa->nomip = 0;
      /* parse command-line parameters */
      ret = parse_cmdline(csa, argc, argv);
      if (ret < 0)
      {  ret = EXIT_SUCCESS;
         goto done;
      }
      if (ret > 0)
      {  ret = EXIT_FAILURE;
         goto done;
      }
      /*--------------------------------------------------------------*/
      /* remove all output files specified in the command line */
      if (csa->out_dpy != NULL) remove(csa->out_dpy);
      if (csa->out_sol != NULL) remove(csa->out_sol);
      if (csa->out_res != NULL) remove(csa->out_res);
      if (csa->out_bnds != NULL) remove(csa->out_bnds);
      if (csa->out_mps != NULL) remove(csa->out_mps);
      if (csa->out_freemps != NULL) remove(csa->out_freemps);
      if (csa->out_cpxlp != NULL) remove(csa->out_cpxlp);
      if (csa->out_pb != NULL) remove(csa->out_pb);
      if (csa->out_npb != NULL) remove(csa->out_npb);
      if (csa->log_file != NULL) remove(csa->log_file);
      /*--------------------------------------------------------------*/
      /* open log file, if required */
      if (csa->log_file != NULL)
      {  if (lib_open_log(csa->log_file))
         {  xprintf("Unable to create log file\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /*--------------------------------------------------------------*/
      /* read problem data from the input file */
      if (csa->in_file == NULL)
      {  xprintf("No input problem file specified; try %s --help\n",
            argv[0]);
         ret = EXIT_FAILURE;
         goto done;
      }
      if (csa->format == FMT_MPS_DECK)
      {  ret = glp_read_mps(csa->prob, GLP_MPS_DECK, NULL,
            csa->in_file);
         if (ret != 0)
err1:    {  xprintf("MPS file processing error\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      else if (csa->format == FMT_MPS_FILE)
      {  ret = glp_read_mps(csa->prob, GLP_MPS_FILE, NULL,
            csa->in_file);
         if (ret != 0) goto err1;
      }
      else if (csa->format == FMT_CPLEX_LP)
      {  ret = glp_read_lp(csa->prob, NULL, csa->in_file);
         if (ret != 0)
         {  xprintf("CPLEX LP file processing error\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      else if (csa->format == FMT_MATHPROG)
      {  int k;
         /* allocate the translator workspace */
         csa->tran = glp_mpl_alloc_wksp();
         /* read model section and optional data section */
         if (glp_mpl_read_model(csa->tran, csa->in_file, csa->ndf > 0))
err2:    {  xprintf("MathProg model processing error\n");
            ret = EXIT_FAILURE;
            goto done;
         }
         /* read optional data section(s), if necessary */
         for (k = 1; k <= csa->ndf; k++)
         {  if (glp_mpl_read_data(csa->tran, csa->in_data[k]))
               goto err2;
         }
         /* generate the model */
         if (glp_mpl_generate(csa->tran, csa->out_dpy)) goto err2;
         /* build the problem instance from the model */
         glp_mpl_build_prob(csa->tran, csa->prob);
      }
      else if (csa->format == FMT_MIN_COST)
      {  csa->graph = glp_create_graph(sizeof(v_data), sizeof(a_data));
         ret = glp_read_mincost(csa->graph, offsetof(v_data, rhs),
            offsetof(a_data, low), offsetof(a_data, cap),
            offsetof(a_data, cost), csa->in_file);
         if (ret != 0)
         {  xprintf("DIMACS file processing error\n");
            ret = EXIT_FAILURE;
            goto done;
         }
         glp_mincost_lp(csa->prob, csa->graph, GLP_ON,
            offsetof(v_data, rhs), offsetof(a_data, low),
            offsetof(a_data, cap), offsetof(a_data, cost));
         glp_set_prob_name(csa->prob, csa->in_file);
      }
      else if (csa->format == FMT_MAX_FLOW)
      {  int s, t;
         csa->graph = glp_create_graph(sizeof(v_data), sizeof(a_data));
         ret = glp_read_maxflow(csa->graph, &s, &t,
            offsetof(a_data, cap), csa->in_file);
         if (ret != 0)
         {  xprintf("DIMACS file processing error\n");
            ret = EXIT_FAILURE;
            goto done;
         }
         glp_maxflow_lp(csa->prob, csa->graph, GLP_ON, s, t,
            offsetof(a_data, cap));
         glp_set_prob_name(csa->prob, csa->in_file);
      }
      else
         xassert(csa != csa);
      /*--------------------------------------------------------------*/
      /* change problem name, if required */
      if (csa->new_name != NULL)
         glp_set_prob_name(csa->prob, csa->new_name);
      /* change optimization direction, if required */
      if (csa->dir != 0)
         glp_set_obj_dir(csa->prob, csa->dir);
      /* order rows and columns of the constraint matrix */
      lpx_order_matrix(csa->prob);
      /*--------------------------------------------------------------*/
      /* write problem data in fixed MPS format, if required */
      if (csa->out_mps != NULL)
      {  ret = glp_write_mps(csa->prob, GLP_MPS_DECK, NULL,
            csa->out_mps);
         if (ret != 0)
         {  xprintf("Unable to write problem in fixed MPS format\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /* write problem data in free MPS format, if required */
      if (csa->out_freemps != NULL)
      {  ret = glp_write_mps(csa->prob, GLP_MPS_FILE, NULL,
            csa->out_freemps);
         if (ret != 0)
         {  xprintf("Unable to write problem in free MPS format\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /* write problem data in CPLEX LP format, if required */
      if (csa->out_cpxlp != NULL)
      {  ret = glp_write_lp(csa->prob, NULL, csa->out_cpxlp);
         if (ret != 0)
         {  xprintf("Unable to write problem in CPLEX LP format\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /* write problem data in OPB format, if required */
      if (csa->out_pb != NULL)
      {  ret = lpx_write_pb(csa->prob, csa->out_pb, 0, 0);
         if (ret != 0)
         {  xprintf("Unable to write problem in OPB format\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /* write problem data in normalized OPB format, if required */
      if (csa->out_npb != NULL)
      {  ret = lpx_write_pb(csa->prob, csa->out_npb, 1, 1);
         if (ret != 0)
         {  xprintf(
               "Unable to write problem in normalized OPB format\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /*--------------------------------------------------------------*/
      /* if only problem data check is required, skip computations */
      if (csa->check)
      {  ret = EXIT_SUCCESS;
         goto done;
      }
      /*--------------------------------------------------------------*/
      /* determine the solution type */
      if (!csa->nomip &&
          glp_get_num_int(csa->prob) + glp_get_num_bin(csa->prob) > 0)
      {  if (csa->solution == SOL_INTERIOR)
         {  xprintf("Interior-point method is not able to solve MIP pro"
               "blem; use --simplex\n");
            ret = EXIT_FAILURE;
            goto done;
         }
         csa->solution = SOL_INTEGER;
      }
      /*--------------------------------------------------------------*/
      /* if solution is provided, read it and skip computations */
      if (csa->in_res != NULL)
      {  if (csa->solution == SOL_BASIC)
            ret = glp_read_sol(csa->prob, csa->in_res);
         else if (csa->solution == SOL_INTERIOR)
            ret = glp_read_ipt(csa->prob, csa->in_res);
         else if (csa->solution == SOL_INTEGER)
            ret = glp_read_mip(csa->prob, csa->in_res);
         else
            xassert(csa != csa);
         if (ret != 0)
         {  xprintf("Unable to read problem solution\n");
            ret = EXIT_FAILURE;
            goto done;
         }
         goto skip;
      }
      /*--------------------------------------------------------------*/
      /* scale the problem data, if required */
      if (csa->scale)
      {  if (csa->solution == SOL_BASIC && !csa->smcp.presolve ||
             csa->solution == SOL_INTERIOR ||
             csa->solution == SOL_INTEGER && !csa->iocp.presolve)
            glp_scale_prob(csa->prob, GLP_SF_AUTO);
      }
      /* construct starting LP basis */
      if (csa->solution == SOL_BASIC && !csa->smcp.presolve ||
          csa->solution == SOL_INTEGER && !csa->iocp.presolve)
      {  if (csa->crash == USE_STD_BASIS)
            glp_std_basis(csa->prob);
         else if (csa->crash == USE_ADV_BASIS)
            glp_adv_basis(csa->prob, 0);
         else if (csa->crash == USE_CPX_BASIS)
            glp_cpx_basis(csa->prob);
         else
            xassert(csa != csa);
      }
      /*--------------------------------------------------------------*/
      /* solve the problem */
      start = xtime();
      if (csa->solution == SOL_BASIC)
      {  if (!csa->exact)
         {  glp_set_bfcp(csa->prob, &csa->bfcp);
            glp_simplex(csa->prob, &csa->smcp);
            if (csa->xcheck)
            {  if (csa->smcp.presolve &&
                   glp_get_status(csa->prob) != GLP_OPT)
                  xprintf("If you need to check final basis for non-opt"
                     "imal solution, use --nopresol\n");
               else
                  glp_exact(csa->prob, &csa->smcp);
            }
            if (csa->out_sol != NULL || csa->out_res != NULL)
            {  if (csa->smcp.presolve &&
                   glp_get_status(csa->prob) != GLP_OPT)
               xprintf("If you need actual output for non-optimal solut"
                  "ion, use --nopresol\n");
            }
         }
         else
            glp_exact(csa->prob, &csa->smcp);
      }
      else if (csa->solution == SOL_INTERIOR)
         glp_interior(csa->prob, NULL);
      else if (csa->solution == SOL_INTEGER)
      {  if (!csa->iocp.presolve)
         {  glp_set_bfcp(csa->prob, &csa->bfcp);
            glp_simplex(csa->prob, &csa->smcp);
         }
         glp_intopt(csa->prob, &csa->iocp);
      }
      else
         xassert(csa != csa);
      /*--------------------------------------------------------------*/
      /* display statistics */
      xprintf("Time used:   %.1f secs\n", xdifftime(xtime(), start));
      {  xlong_t tpeak;
         char buf[50];
         lib_mem_usage(NULL, NULL, NULL, &tpeak);
         xprintf("Memory used: %.1f Mb (%s bytes)\n",
            xltod(tpeak) / 1048576.0, xltoa(tpeak, buf));
      }
      /*--------------------------------------------------------------*/
skip: /* postsolve the model, if necessary */
      if (csa->tran != NULL)
      {  if (csa->solution == SOL_BASIC)
            ret = glp_mpl_postsolve(csa->tran, csa->prob, GLP_SOL);
         else if (csa->solution == SOL_INTERIOR)
            ret = glp_mpl_postsolve(csa->tran, csa->prob, GLP_IPT);
         else if (csa->solution == SOL_INTEGER)
            ret = glp_mpl_postsolve(csa->tran, csa->prob, GLP_MIP);
         else
            xassert(csa != csa);
         if (ret != 0)
         {  xprintf("Model postsolving error\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /*--------------------------------------------------------------*/
      /* write problem solution in printable format, if required */
      if (csa->out_sol != NULL)
      {  if (csa->solution == SOL_BASIC)
            ret = lpx_print_sol(csa->prob, csa->out_sol);
         else if (csa->solution == SOL_INTERIOR)
            ret = lpx_print_ips(csa->prob, csa->out_sol);
         else if (csa->solution == SOL_INTEGER)
            ret = lpx_print_mip(csa->prob, csa->out_sol);
         else
            xassert(csa != csa);
         if (ret != 0)
         {  xprintf("Unable to write problem solution\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /* write problem solution in printable format, if required */
      if (csa->out_res != NULL)
      {  if (csa->solution == SOL_BASIC)
            ret = glp_write_sol(csa->prob, csa->out_res);
         else if (csa->solution == SOL_INTERIOR)
            ret = glp_write_ipt(csa->prob, csa->out_res);
         else if (csa->solution == SOL_INTEGER)
            ret = glp_write_mip(csa->prob, csa->out_res);
         else
            xassert(csa != csa);
         if (ret != 0)
         {  xprintf("Unable to write problem solution\n");
            ret = EXIT_FAILURE;
            goto done;
         }
      }
      /* write sensitivity bounds information, if required */
      if (csa->out_bnds != NULL)
      {  if (csa->solution == SOL_BASIC)
         {  ret = lpx_print_sens_bnds(csa->prob, csa->out_bnds);
            if (ret != 0)
            {  xprintf("Unable to write sensitivity bounds information "
                  "\n");
               ret = EXIT_FAILURE;
               goto done;
            }
         }
         else
            xprintf("Cannot write sensitivity bounds information for in"
               "terior-point or MIP solution\n");
      }
      /*--------------------------------------------------------------*/
      /* all seems to be ok */
      ret = EXIT_SUCCESS;
      /*--------------------------------------------------------------*/
done: /* delete the LP/MIP problem object */
      if (csa->prob != NULL)
         glp_delete_prob(csa->prob);
      /* free the translator workspace, if necessary */
      if (csa->tran != NULL)
         glp_mpl_free_wksp(csa->tran);
      /* delete the network problem object, if necessary */
      if (csa->graph != NULL)
         glp_delete_graph(csa->graph);
      xassert(gmp_pool_count() == 0);
      gmp_free_mem();
      /* close log file, if necessary */
      if (csa->log_file != NULL) lib_close_log();
      /* check that no memory blocks are still allocated */
      {  int count;
         xlong_t total;
         lib_mem_usage(&count, NULL, &total, NULL);
         if (count != 0)
            xerror("Error: %d memory block(s) were lost\n", count);
         xassert(count == 0);
         xassert(total.lo == 0 && total.hi == 0);
      }
      /* free the library environment */
      lib_free_env();
      /* return to the control program */
      return ret;
}
Exemple #17
0
int lpx_print_sens_bnds(LPX *lp, const char *fname)
{     /* write bounds sensitivity information */
      if (glp_get_status(lp) == GLP_OPT && !glp_bf_exists(lp))
         glp_factorize(lp);
      return glp_print_ranges(lp, 0, NULL, 0, fname);
}
Exemple #18
0
static double eval_degrad(glp_prob *P, int j, double bnd)
{     /* compute degradation of the objective on fixing x[j] at given
         value with a limited number of dual simplex iterations */
      /* this routine fixes column x[j] at specified value bnd,
         solves resulting LP, and returns a lower bound to degradation
         of the objective, degrad >= 0 */
      glp_prob *lp;
      glp_smcp parm;
      int ret;
      double degrad;
      /* the current basis must be optimal */
      xassert(glp_get_status(P) == GLP_OPT);
      /* create a copy of P */
      lp = glp_create_prob();
      glp_copy_prob(lp, P, 0);
      /* fix column x[j] at specified value */
      glp_set_col_bnds(lp, j, GLP_FX, bnd, bnd);
      /* try to solve resulting LP */
      glp_init_smcp(&parm);
      parm.msg_lev = GLP_MSG_OFF;
      parm.meth = GLP_DUAL;
      parm.it_lim = 30;
      parm.out_dly = 1000;
      parm.meth = GLP_DUAL;
      ret = glp_simplex(lp, &parm);
      if (ret == 0 || ret == GLP_EITLIM)
      {  if (glp_get_prim_stat(lp) == GLP_NOFEAS)
         {  /* resulting LP has no primal feasible solution */
            degrad = DBL_MAX;
         }
         else if (glp_get_dual_stat(lp) == GLP_FEAS)
         {  /* resulting basis is optimal or at least dual feasible,
               so we have the correct lower bound to degradation */
            if (P->dir == GLP_MIN)
               degrad = lp->obj_val - P->obj_val;
            else if (P->dir == GLP_MAX)
               degrad = P->obj_val - lp->obj_val;
            else
               xassert(P != P);
            /* degradation cannot be negative by definition */
            /* note that the lower bound to degradation may be close
               to zero even if its exact value is zero due to round-off
               errors on computing the objective value */
            if (degrad < 1e-6 * (1.0 + 0.001 * fabs(P->obj_val)))
               degrad = 0.0;
         }
         else
         {  /* the final basis reported by the simplex solver is dual
               infeasible, so we cannot determine a non-trivial lower
               bound to degradation */
            degrad = 0.0;
         }
      }
      else
      {  /* the simplex solver failed */
         degrad = 0.0;
      }
      /* delete the copy of P */
      glp_delete_prob(lp);
      return degrad;
}
Exemple #19
0
static int branch_drtom(glp_tree *T, int *_next)
{     glp_prob *mip = T->mip;
      int m = mip->m;
      int n = mip->n;
      char *non_int = T->non_int;
      int j, jj, k, t, next, kase, len, stat, *ind;
      double x, dk, alfa, delta_j, delta_k, delta_z, dz_dn, dz_up,
         dd_dn, dd_up, degrad, *val;
      /* basic solution of LP relaxation must be optimal */
      xassert(glp_get_status(mip) == GLP_OPT);
      /* allocate working arrays */
      ind = xcalloc(1+n, sizeof(int));
      val = xcalloc(1+n, sizeof(double));
      /* nothing has been chosen so far */
      jj = 0, degrad = -1.0;
      /* walk through the list of columns (structural variables) */
      for (j = 1; j <= n; j++)
      {  /* if j-th column is not marked as fractional, skip it */
         if (!non_int[j]) continue;
         /* obtain (fractional) value of j-th column in basic solution
            of LP relaxation */
         x = glp_get_col_prim(mip, j);
         /* since the value of j-th column is fractional, the column is
            basic; compute corresponding row of the simplex table */
         len = glp_eval_tab_row(mip, m+j, ind, val);
         /* the following fragment computes a change in the objective
            function: delta Z = new Z - old Z, where old Z is the
            objective value in the current optimal basis, and new Z is
            the objective value in the adjacent basis, for two cases:
            1) if new upper bound ub' = floor(x[j]) is introduced for
               j-th column (down branch);
            2) if new lower bound lb' = ceil(x[j]) is introduced for
               j-th column (up branch);
            since in both cases the solution remaining dual feasible
            becomes primal infeasible, one implicit simplex iteration
            is performed to determine the change delta Z;
            it is obvious that new Z, which is never better than old Z,
            is a lower (minimization) or upper (maximization) bound of
            the objective function for down- and up-branches. */
         for (kase = -1; kase <= +1; kase += 2)
         {  /* if kase < 0, the new upper bound of x[j] is introduced;
               in this case x[j] should decrease in order to leave the
               basis and go to its new upper bound */
            /* if kase > 0, the new lower bound of x[j] is introduced;
               in this case x[j] should increase in order to leave the
               basis and go to its new lower bound */
            /* apply the dual ratio test in order to determine which
               auxiliary or structural variable should enter the basis
               to keep dual feasibility */
            k = glp_dual_rtest(mip, len, ind, val, kase, 1e-9);
            if (k != 0) k = ind[k];
            /* if no non-basic variable has been chosen, LP relaxation
               of corresponding branch being primal infeasible and dual
               unbounded has no primal feasible solution; in this case
               the change delta Z is formally set to infinity */
            if (k == 0)
            {  delta_z =
                  (T->mip->dir == GLP_MIN ? +DBL_MAX : -DBL_MAX);
               goto skip;
            }
            /* row of the simplex table that corresponds to non-basic
               variable x[k] choosen by the dual ratio test is:
                  x[j] = ... + alfa * x[k] + ...
               where alfa is the influence coefficient (an element of
               the simplex table row) */
            /* determine the coefficient alfa */
            for (t = 1; t <= len; t++) if (ind[t] == k) break;
            xassert(1 <= t && t <= len);
            alfa = val[t];
            /* since in the adjacent basis the variable x[j] becomes
               non-basic, knowing its value in the current basis we can
               determine its change delta x[j] = new x[j] - old x[j] */
            delta_j = (kase < 0 ? floor(x) : ceil(x)) - x;
            /* and knowing the coefficient alfa we can determine the
               corresponding change delta x[k] = new x[k] - old x[k],
               where old x[k] is a value of x[k] in the current basis,
               and new x[k] is a value of x[k] in the adjacent basis */
            delta_k = delta_j / alfa;
            /* Tomlin noticed that if the variable x[k] is of integer
               kind, its change cannot be less (eventually) than one in
               the magnitude */
            if (k > m && glp_get_col_kind(mip, k-m) != GLP_CV)
            {  /* x[k] is structural integer variable */
               if (fabs(delta_k - floor(delta_k + 0.5)) > 1e-3)
               {  if (delta_k > 0.0)
                     delta_k = ceil(delta_k);  /* +3.14 -> +4 */
                  else
                     delta_k = floor(delta_k); /* -3.14 -> -4 */
               }
            }
            /* now determine the status and reduced cost of x[k] in the
               current basis */
            if (k <= m)
            {  stat = glp_get_row_stat(mip, k);
               dk = glp_get_row_dual(mip, k);
            }
            else
            {  stat = glp_get_col_stat(mip, k-m);
               dk = glp_get_col_dual(mip, k-m);
            }
            /* if the current basis is dual degenerate, some reduced
               costs which are close to zero may have wrong sign due to
               round-off errors, so correct the sign of d[k] */
            switch (T->mip->dir)
            {  case GLP_MIN:
                  if (stat == GLP_NL && dk < 0.0 ||
                      stat == GLP_NU && dk > 0.0 ||
                      stat == GLP_NF) dk = 0.0;
                  break;
               case GLP_MAX:
                  if (stat == GLP_NL && dk > 0.0 ||
                      stat == GLP_NU && dk < 0.0 ||
                      stat == GLP_NF) dk = 0.0;
                  break;
               default:
                  xassert(T != T);
            }
            /* now knowing the change of x[k] and its reduced cost d[k]
               we can compute the corresponding change in the objective
               function delta Z = new Z - old Z = d[k] * delta x[k];
               note that due to Tomlin's modification new Z can be even
               worse than in the adjacent basis */
            delta_z = dk * delta_k;
skip:       /* new Z is never better than old Z, therefore the change
               delta Z is always non-negative (in case of minimization)
               or non-positive (in case of maximization) */
            switch (T->mip->dir)
            {  case GLP_MIN: xassert(delta_z >= 0.0); break;
               case GLP_MAX: xassert(delta_z <= 0.0); break;
               default: xassert(T != T);
            }
            /* save the change in the objective fnction for down- and
               up-branches, respectively */
            if (kase < 0) dz_dn = delta_z; else dz_up = delta_z;
         }
         /* thus, in down-branch no integer feasible solution can be
            better than Z + dz_dn, and in up-branch no integer feasible
            solution can be better than Z + dz_up, where Z is value of
            the objective function in the current basis */
         /* following the heuristic by Driebeck and Tomlin we choose a
            column (i.e. structural variable) which provides largest
            degradation of the objective function in some of branches;
            besides, we select the branch with smaller degradation to
            be solved next and keep other branch with larger degradation
            in the active list hoping to minimize the number of further
            backtrackings */
         if (degrad < fabs(dz_dn) || degrad < fabs(dz_up))
         {  jj = j;
            if (fabs(dz_dn) < fabs(dz_up))
            {  /* select down branch to be solved next */
               next = GLP_DN_BRNCH;
               degrad = fabs(dz_up);
            }
            else
            {  /* select up branch to be solved next */
               next = GLP_UP_BRNCH;
               degrad = fabs(dz_dn);
            }
            /* save the objective changes for printing */
            dd_dn = dz_dn, dd_up = dz_up;
            /* if down- or up-branch has no feasible solution, we does
               not need to consider other candidates (in principle, the
               corresponding branch could be pruned right now) */
            if (degrad == DBL_MAX) break;
         }
      }
      /* free working arrays */
      xfree(ind);
      xfree(val);
      /* something must be chosen */
      xassert(1 <= jj && jj <= n);
#if 1 /* 02/XI-2009 */
      if (degrad < 1e-6 * (1.0 + 0.001 * fabs(mip->obj_val)))
      {  jj = branch_mostf(T, &next);
         goto done;
      }
#endif
      if (T->parm->msg_lev >= GLP_MSG_DBG)
      {  xprintf("branch_drtom: column %d chosen to branch on\n", jj);
         if (fabs(dd_dn) == DBL_MAX)
            xprintf("branch_drtom: down-branch is infeasible\n");
         else
            xprintf("branch_drtom: down-branch bound is %.9e\n",
               lpx_get_obj_val(mip) + dd_dn);
         if (fabs(dd_up) == DBL_MAX)
            xprintf("branch_drtom: up-branch   is infeasible\n");
         else
            xprintf("branch_drtom: up-branch   bound is %.9e\n",
               lpx_get_obj_val(mip) + dd_up);
      }
done: *_next = next;
      return jj;
}
Exemple #20
0
int main(int argc, char * argv[]) {
	int i,j;

	time(&initial);
	
	srand(SEED);
	
	/* Default values */
    outFile = stdout;
	maxAlpha = 2;
	maxIter = 100;
	maxTime = 30;
	randomSeed = SEED;
	simpleOutput = 0;
	/* Read arguments */
	if( argc > 7 )
		argc = 7;
	switch(argc) {
	case 7:
		simpleOutput = atoi(argv[6]);
	case 6:
		if( !(randomSeed = atoi(argv[5])) )
			leave(argv[0]);
	case 5:
		if( !(maxTime = atoi(argv[4])) )
			leave(argv[0]);
	case 4:
		if( !(maxIter = atoi(argv[3])) )
			leave(argv[0]);
	case 3:
		if( !(maxAlpha = atoi(argv[2])) )
			leave(argv[0]);
	case 2:
		if( simpleOutput ) {
            if( !(outFile = fopen(argv[1],"a")) )
				leave(argv[0]);
			break;
		}
		if( !(outFile = fopen(argv[1],"w")) )
			leave(argv[0]);
	}
	
	readInput(stdin);
	
	/* Initiate positions */
	for( i = 0 ; i < n ; ++i ) {
   		pOrd[i].ideal = planes[i].ideal;
  		pOrd[i].pos = i;
	}
	qsort (pOrd, n, sizeof(struct planeOrder), compIdealT);
	for( i = 0 ; i < n ; ++i ) {
  		planes[pOrd[i].pos].pos = i;
	}

	/* Create lp instance */
	glp_prob * Prob;
	Prob = glp_create_prob();
	glp_set_prob_name(Prob, "Airplane Landing Problem");
	glp_set_obj_name(Prob, "Cost");
	
	/* Create basic constraints */
	for( i = 0 ; i < n ; ++i ) {
        addBasicRestriction(Prob,i);
	}
	
	glp_create_index(Prob);
	
	/* Create separation constraints and order variables (&ij) if necessary */
	for( i = 0 ; i < n ; ++i ) {
		for( j = i+1 ; j < n ; ++j ) {
			if( planes[i].latest >= planes[j].earliest &&
			    planes[j].latest >= planes[i].earliest ) {
                addOrderConstraint(Prob,i,j);
			} else if ( planes[i].latest < planes[j].earliest &&
						planes[i].latest + planes[i].sep[j] >= planes[j].earliest ) {
                addSeparationConstraint(Prob, i, j);
			} else if ( planes[j].latest < planes[i].earliest &&
						planes[j].latest + planes[j].sep[i] >= planes[i].earliest ) {
                addSeparationConstraint(Prob, j, i);
			}
		}
	}

	/* Write problem in MPS format so glpsol can (try to) solve it */
	glp_write_mps(Prob, GLP_MPS_FILE, NULL,"mpsProblem.txt");
	
	glp_delete_index(Prob);
	glp_create_index(Prob);
	
	/* GRASP */
	
	/* Data to handle glp solving, time checking and solution generating */
	glp_smcp * param = malloc(sizeof(glp_smcp));
	glp_init_smcp(param);
	param->msg_lev = GLP_MSG_ERR;
	int solution[MAXSIZE], timeAux[MAXSIZE], t;
	double currResult = DBL_MAX, bestResult = DBL_MAX;
	alpha = 0;
	time_t start, curr;
	time(&start);
	
	for( t = 0 ; t < maxIter ; ++t ) {
		/* Greedy solution generation */
		while(createSolution(solution,timeAux,0))
			alpha = n;
		
		/* Building the right constraints */
		mapSolution(Prob,solution);
		
		/* Solving with glpsol */
		param->presolve = GLP_ON;
		glp_simplex(Prob,param);
		param->presolve = GLP_OFF;
		currResult = glp_get_obj_val(Prob);
		
		/* Local search using the first increase */
		for( i = 0 ; i < n-1 ; ++i ) {

			/* Swap two adjacent planes */
			swapConstraint(Prob,i,solution,0);
			glp_simplex(Prob,param);
			
			/* Check for improvements */
			if( GLP_OPT == glp_get_status(Prob) && glp_get_obj_val(Prob) < currResult ) {
				
				currResult = glp_get_obj_val(Prob);
				
				/* Changing the solution */
				int swp;
				swp = solution[i];
				solution[i] = solution[i+1];
				solution[i+1] = swp;
				
				/* Restarting */
				i = -1;
			} else
				swapConstraint(Prob,i,solution,1);
		}
		
		/* Checking improvements */
		if( bestResult > currResult ) {
		    bestResult = currResult;
		    for( i = 0 ; i < n ; ++i )
				planes[solution[i]].pos = i;
		}
		
		/* Choosing alpha */
		alpha = rand()%(maxAlpha+1);
		
		/* Is our time up? */
		time(&curr);
		if( difftime(curr,start) > maxTime )
		    break;
	}
	
	/* Print Answer */
	printResult(Prob, stdout);
	if( outFile ) {
		printResult(Prob, outFile);
		fclose(outFile);
	}

	return 0;
}
Exemple #21
0
int glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn,
      	 double *a, double *b, char *ctype, int *freeLB, double *lb,
      	 int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver,
      	 int save_pb, char *save_filename, char *filetype, 
         double *xmin, double *fmin, double *status,
      	 double *lambda, double *redcosts, double *time, double *mem)
{
  int typx = 0;
  int method;

  clock_t t_start = clock();

  // Obsolete
  //lib_set_fault_hook (NULL, glpk_fault_hook);

  //Redirect standard output
  if (glpIntParam[0] > 1) glp_term_hook (glpk_print_hook, NULL);
  else glp_term_hook (NULL, NULL);

  //-- Create an empty LP/MILP object
  glp_prob *lp = glp_create_prob ();

  //-- Set the sense of optimization
  if (sense == 1)
    glp_set_obj_dir (lp, GLP_MIN);
  else
    glp_set_obj_dir (lp, GLP_MAX);

  //-- Define the number of unknowns and their domains.
  glp_add_cols (lp, n);
  for (int i = 0; i < n; i++)
  {
    //-- Define type of the structural variables
    if (! freeLB[i] && ! freeUB[i])
      glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]);
    else
	  {
      if (! freeLB[i] && freeUB[i])
        glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]);
      else
      {
        if (freeLB[i] && ! freeUB[i])
		      glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]);
	      else
		      glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]);
	    }
	  }
  
  // -- Set the objective coefficient of the corresponding
  // -- structural variable. No constant term is assumed.
  glp_set_obj_coef(lp,i+1,c[i]);

  if (isMIP)
    glp_set_col_kind (lp, i+1, vartype[i]);
  }

  glp_add_rows (lp, m);

  for (int i = 0; i < m; i++)
  {
    /*  If the i-th row has no lower bound (types F,U), the
        corrispondent parameter will be ignored.
        If the i-th row has no upper bound (types F,L), the corrispondent
        parameter will be ignored.
        If the i-th row is of S type, the i-th LB is used, but
        the i-th UB is ignored.
    */

    switch (ctype[i])
    {
      case 'F': typx = GLP_FR; break;
      // upper bound
	    case 'U': typx = GLP_UP; break;
      // lower bound
	    case 'L': typx = GLP_LO; break;
      // fixed constraint
	    case 'S': typx = GLP_FX; break;
      // double-bounded variable
      case 'D': typx = GLP_DB; break;
	  }
      
    glp_set_row_bnds (lp, i+1, typx, b[i], b[i]);

  }
  // Load constraint matrix A
  glp_load_matrix (lp, nz, rn, cn, a);

  // Save problem
  if (save_pb) {
    if (!strcmp(filetype,"cplex")){
      if (lpx_write_cpxlp (lp, save_filename) != 0) {
	        mexErrMsgTxt("glpkcc: unable to write the problem");
	        longjmp (mark, -1);
      }
    }else{
      if (!strcmp(filetype,"fixedmps")){
        if (lpx_write_mps (lp, save_filename) != 0) {
          mexErrMsgTxt("glpkcc: unable to write the problem");
	        longjmp (mark, -1);  
        }
      }else{
        if (!strcmp(filetype,"freemps")){
          if (lpx_write_freemps (lp, save_filename) != 0) {
            mexErrMsgTxt("glpkcc: unable to write the problem");
	          longjmp (mark, -1);
          }
        }else{// plain text
          if (lpx_print_prob (lp, save_filename) != 0) {
            mexErrMsgTxt("glpkcc: unable to write the problem");
	          longjmp (mark, -1);
          } 
        } 
      }    
    } 
  }
  //-- scale the problem data (if required)
  if (glpIntParam[1] && (! glpIntParam[16] || lpsolver != 1))
    lpx_scale_prob (lp);

  //-- build advanced initial basis (if required)
  if (lpsolver == 1 && ! glpIntParam[16])
    lpx_adv_basis (lp);

  glp_smcp sParam;
  glp_init_smcp(&sParam);
  
  //-- set control parameters
  if (lpsolver==1){
    //remap of control parameters for simplex method
    sParam.msg_lev=glpIntParam[0];	// message level
    // simplex method: primal/dual
    if (glpIntParam[2]==0) sParam.meth=GLP_PRIMAL;		
    else sParam.meth=GLP_DUALP;
    // pricing technique
    if (glpIntParam[3]==0) sParam.pricing=GLP_PT_STD;
    else sParam.pricing=GLP_PT_PSE;
    //sParam.r_test not available
    sParam.tol_bnd=glpRealParam[1];	// primal feasible tollerance
    sParam.tol_dj=glpRealParam[2];	// dual feasible tollerance
    sParam.tol_piv=glpRealParam[3];	// pivot tollerance
    sParam.obj_ll=glpRealParam[4];	// lower limit
    sParam.obj_ul=glpRealParam[5];	// upper limit
    // iteration limit
    if (glpIntParam[5]==-1) sParam.it_lim=INT_MAX;
    else sParam.it_lim=glpIntParam[5];   
    // time limit
    if (glpRealParam[6]==-1) sParam.tm_lim=INT_MAX;
    else sParam.tm_lim=(int) glpRealParam[6];	
    sParam.out_frq=glpIntParam[7];	// output frequency
    sParam.out_dly=(int) glpRealParam[7];	// output delay
    // presolver
    if (glpIntParam[16]) sParam.presolve=GLP_ON;
    else sParam.presolve=GLP_OFF;
  }else{
	for(int i = 0; i < NIntP; i++)
		lpx_set_int_parm (lp, IParam[i], glpIntParam[i]);
		
	for (int i = 0; i < NRealP; i++)
		lpx_set_real_parm (lp, RParam[i], glpRealParam[i]);
  }
  

  // Choose simplex method ('S') or interior point method ('T') to solve the problem
  if (lpsolver == 1)
    method = 'S';
  else
    method = 'T';
	
  int errnum;

  switch (method){
    case 'S': {
      if (isMIP){
	    method = 'I';
	    errnum = lpx_intopt (lp);
      }
      else{
		errnum = glp_simplex(lp, &sParam);
		errnum += 100; //this is to avoid ambiguity in the return codes.
	  }
    }
    break;

    case 'T': errnum = lpx_interior(lp); break;

    default:  xassert (method != method);
  }

  /*  errnum assumes the following results:
      errnum = 0 <=> No errors
      errnum = 1 <=> Iteration limit exceeded.
      errnum = 2 <=> Numerical problems with basis matrix.
  */
  if (errnum == LPX_E_OK || errnum==100){
    // Get status and object value
    if (isMIP)
    {
      *status = glp_mip_status (lp);
      *fmin = glp_mip_obj_val (lp);
    }
    else
    {
      if (lpsolver == 1)
      {
        *status = glp_get_status (lp);
        *fmin = glp_get_obj_val (lp);
	    }
      else
      {
        *status = glp_ipt_status (lp);
        *fmin = glp_ipt_obj_val (lp);
	    }
    }
    // Get optimal solution (if exists)
    if (isMIP)
    {
      for (int i = 0; i < n; i++)
        xmin[i] = glp_mip_col_val (lp, i+1);
    }
    else
    {
      /* Primal values */
      for (int i = 0; i < n; i++)
      {
        if (lpsolver == 1)
          xmin[i] = glp_get_col_prim (lp, i+1);
        else
		      xmin[i] = glp_ipt_col_prim (lp, i+1);
      }
      /* Dual values */
      for (int i = 0; i < m; i++)
      {
        if (lpsolver == 1) lambda[i] = glp_get_row_dual (lp, i+1);
	     else lambda[i] = glp_ipt_row_dual (lp, i+1);
      }
      /* Reduced costs */
      for (int i = 0; i < glp_get_num_cols (lp); i++)
      {
        if (lpsolver == 1) redcosts[i] = glp_get_col_dual (lp, i+1);
        else redcosts[i] = glp_ipt_col_dual (lp, i+1);
      }
    }

    *time = (clock () - t_start) / CLOCKS_PER_SEC;
    
   	glp_ulong tpeak;
    lib_mem_usage(NULL, NULL, NULL, &tpeak);
    *mem=(double)(4294967296.0 * tpeak.hi + tpeak.lo) / (1024);
       
	  glp_delete_prob (lp);
    return 0;
  }

  glp_delete_prob (lp);

  *status = errnum;

  return errnum;
}
int glp_print_ranges(glp_prob *P, int len, const int list[],
                     int flags, const char *fname)
{   /* print sensitivity analysis report */
    glp_file *fp = NULL;
    GLPROW *row;
    GLPCOL *col;
    int m, n, pass, k, t, numb, type, stat, var1, var2, count, page,
        ret;
    double lb, ub, slack, coef, prim, dual, value1, value2, coef1,
           coef2, obj1, obj2;
    const char *name, *limit;
    char buf[13+1];
    /* sanity checks */
    if (P == NULL || P->magic != GLP_PROB_MAGIC)
        xerror("glp_print_ranges: P = %p; invalid problem object\n",
               P);
    m = P->m, n = P->n;
    if (len < 0)
        xerror("glp_print_ranges: len = %d; invalid list length\n",
               len);
    if (len > 0)
    {   if (list == NULL)
            xerror("glp_print_ranges: list = %p: invalid parameter\n",
                   list);
        for (t = 1; t <= len; t++)
        {   k = list[t];
            if (!(1 <= k && k <= m+n))
                xerror("glp_print_ranges: list[%d] = %d; row/column numb"
                       "er out of range\n", t, k);
        }
    }
    if (flags != 0)
        xerror("glp_print_ranges: flags = %d; invalid parameter\n",
               flags);
    if (fname == NULL)
        xerror("glp_print_ranges: fname = %p; invalid parameter\n",
               fname);
    if (glp_get_status(P) != GLP_OPT)
    {   xprintf("glp_print_ranges: optimal basic solution required\n");
        ret = 1;
        goto done;
    }
    if (!glp_bf_exists(P))
    {   xprintf("glp_print_ranges: basis factorization required\n");
        ret = 2;
        goto done;
    }
    /* start reporting */
    xprintf("Write sensitivity analysis report to '%s'...\n", fname);
    fp = glp_open(fname, "w");
    if (fp == NULL)
    {   xprintf("Unable to create '%s' - %s\n", fname, get_err_msg());
        ret = 3;
        goto done;
    }
    page = count = 0;
    for (pass = 1; pass <= 2; pass++)
        for (t = 1; t <= (len == 0 ? m+n : len); t++)
        {   if (t == 1) count = 0;
            k = (len == 0 ? t : list[t]);
            if (pass == 1 && k > m || pass == 2 && k <= m)
                continue;
            if (count == 0)
            {   xfprintf(fp, "GLPK %-4s - SENSITIVITY ANALYSIS REPORT%73sPa"
                         "ge%4d\n", glp_version(), "", ++page);
                xfprintf(fp, "\n");
                xfprintf(fp, "%-12s%s\n", "Problem:",
                         P->name == NULL ? "" : P->name);
                xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:",
                         P->obj == NULL ? "" : P->obj,
                         P->obj == NULL ? "" : " = ", P->obj_val,
                         P->dir == GLP_MIN ? "MINimum" :
                         P->dir == GLP_MAX ? "MAXimum" : "???");
                xfprintf(fp, "\n");
                xfprintf(fp, "%6s %-12s %2s %13s %13s %13s  %13s %13s %13s "
                         "%s\n", "No.", pass == 1 ? "Row name" : "Column name",
                         "St", "Activity", pass == 1 ? "Slack" : "Obj coef",
                         "Lower bound", "Activity", "Obj coef", "Obj value at",
                         "Limiting");
                xfprintf(fp, "%6s %-12s %2s %13s %13s %13s  %13s %13s %13s "
                         "%s\n", "", "", "", "", "Marginal", "Upper bound",
                         "range", "range", "break point", "variable");
                xfprintf(fp, "------ ------------ -- ------------- --------"
                         "----- -------------  ------------- ------------- ------"
                         "------- ------------\n");
            }
            if (pass == 1)
            {   numb = k;
                xassert(1 <= numb && numb <= m);
                row = P->row[numb];
                name = row->name;
                type = row->type;
                lb = glp_get_row_lb(P, numb);
                ub = glp_get_row_ub(P, numb);
                coef = 0.0;
                stat = row->stat;
                prim = row->prim;
                if (type == GLP_FR)
                    slack = - prim;
                else if (type == GLP_LO)
                    slack = lb - prim;
                else if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
                    slack = ub - prim;
                dual = row->dual;
            }
            else
            {   numb = k - m;
                xassert(1 <= numb && numb <= n);
                col = P->col[numb];
                name = col->name;
                lb = glp_get_col_lb(P, numb);
                ub = glp_get_col_ub(P, numb);
                coef = col->coef;
                stat = col->stat;
                prim = col->prim;
                slack = 0.0;
                dual = col->dual;
            }
            if (stat != GLP_BS)
            {   glp_analyze_bound(P, k, &value1, &var1, &value2, &var2);
                if (stat == GLP_NF)
                    coef1 = coef2 = coef;
                else if (stat == GLP_NS)
                    coef1 = -DBL_MAX, coef2 = +DBL_MAX;
                else if (stat == GLP_NL && P->dir == GLP_MIN ||
                         stat == GLP_NU && P->dir == GLP_MAX)
                    coef1 = coef - dual, coef2 = +DBL_MAX;
                else
                    coef1 = -DBL_MAX, coef2 = coef - dual;
                if (value1 == -DBL_MAX)
                {   if (dual < -1e-9)
                        obj1 = +DBL_MAX;
                    else if (dual > +1e-9)
                        obj1 = -DBL_MAX;
                    else
                        obj1 = P->obj_val;
                }
                else
                    obj1 = P->obj_val + dual * (value1 - prim);
                if (value2 == +DBL_MAX)
                {   if (dual < -1e-9)
                        obj2 = -DBL_MAX;
                    else if (dual > +1e-9)
                        obj2 = +DBL_MAX;
                    else
                        obj2 = P->obj_val;
                }
                else
                    obj2 = P->obj_val + dual * (value2 - prim);
            }
            else
            {   glp_analyze_coef(P, k, &coef1, &var1, &value1, &coef2,
                                 &var2, &value2);
                if (coef1 == -DBL_MAX)
                {   if (prim < -1e-9)
                        obj1 = +DBL_MAX;
                    else if (prim > +1e-9)
                        obj1 = -DBL_MAX;
                    else
                        obj1 = P->obj_val;
                }
                else
                    obj1 = P->obj_val + (coef1 - coef) * prim;
                if (coef2 == +DBL_MAX)
                {   if (prim < -1e-9)
                        obj2 = -DBL_MAX;
                    else if (prim > +1e-9)
                        obj2 = +DBL_MAX;
                    else
                        obj2 = P->obj_val;
                }
                else
                    obj2 = P->obj_val + (coef2 - coef) * prim;
            }
            /*** first line ***/
            /* row/column number */
            xfprintf(fp, "%6d", numb);
            /* row/column name */
            xfprintf(fp, " %-12.12s", name == NULL ? "" : name);
            if (name != NULL && strlen(name) > 12)
                xfprintf(fp, "%s\n%6s %12s", name+12, "", "");
            /* row/column status */
            xfprintf(fp, " %2s",
                     stat == GLP_BS ? "BS" : stat == GLP_NL ? "NL" :
                     stat == GLP_NU ? "NU" : stat == GLP_NF ? "NF" :
                     stat == GLP_NS ? "NS" : "??");
            /* row/column activity */
            xfprintf(fp, " %s", format(buf, prim));
            /* row slack, column objective coefficient */
            xfprintf(fp, " %s", format(buf, k <= m ? slack : coef));
            /* row/column lower bound */
            xfprintf(fp, " %s", format(buf, lb));
            /* row/column activity range */
            xfprintf(fp, "  %s", format(buf, value1));
            /* row/column objective coefficient range */
            xfprintf(fp, " %s", format(buf, coef1));
            /* objective value at break point */
            xfprintf(fp, " %s", format(buf, obj1));
            /* limiting variable name */
            if (var1 != 0)
            {   if (var1 <= m)
                    limit = glp_get_row_name(P, var1);
                else
                    limit = glp_get_col_name(P, var1 - m);
                if (limit != NULL)
                    xfprintf(fp, " %s", limit);
            }
            xfprintf(fp, "\n");
            /*** second line ***/
            xfprintf(fp, "%6s %-12s %2s %13s", "", "", "", "");
            /* row/column reduced cost */
            xfprintf(fp, " %s", format(buf, dual));
            /* row/column upper bound */
            xfprintf(fp, " %s", format(buf, ub));
            /* row/column activity range */
            xfprintf(fp, "  %s", format(buf, value2));
            /* row/column objective coefficient range */
            xfprintf(fp, " %s", format(buf, coef2));
            /* objective value at break point */
            xfprintf(fp, " %s", format(buf, obj2));
            /* limiting variable name */
            if (var2 != 0)
            {   if (var2 <= m)
                    limit = glp_get_row_name(P, var2);
                else
                    limit = glp_get_col_name(P, var2 - m);
                if (limit != NULL)
                    xfprintf(fp, " %s", limit);
            }
            xfprintf(fp, "\n");
            xfprintf(fp, "\n");
            /* print 10 items per page */
            count = (count + 1) % 10;
        }
    xfprintf(fp, "End of report\n");
#if 0 /* FIXME */
    xfflush(fp);
#endif
    if (glp_ioerr(fp))
    {   xprintf("Write error on '%s' - %s\n", fname, get_err_msg());
        ret = 4;
        goto done;
    }
    ret = 0;
done:
    if (fp != NULL) glp_close(fp);
    return ret;
}
/**
 * Solves the LP problem
 *
 * @param mlp the MLP Handle
 * @param s_ctx context to return results
 * @return GNUNET_OK if could be solved, GNUNET_SYSERR on failure
 */
static int
mlp_solve_lp_problem (struct GAS_MLP_Handle *mlp, struct GAS_MLP_SolutionContext *s_ctx)
{
  int res;
  struct GNUNET_TIME_Relative duration;
  struct GNUNET_TIME_Absolute end;
  struct GNUNET_TIME_Absolute start = GNUNET_TIME_absolute_get();

  /* LP presolver?
   * Presolver is required if the problem was modified and an existing
   * valid basis is now invalid */
  if (mlp->presolver_required == GNUNET_YES)
    mlp->control_param_lp.presolve = GLP_ON;
  else
    mlp->control_param_lp.presolve = GLP_OFF;

  /* Solve LP problem to have initial valid solution */
lp_solv:
  res = glp_simplex(mlp->prob, &mlp->control_param_lp);
  if (res == 0)
  {
    /* The LP problem instance has been successfully solved. */
  }
  else if (res == GLP_EITLIM)
  {
    /* simplex iteration limit has been exceeded. */
    // TODO Increase iteration limit?
  }
  else if (res == GLP_ETMLIM)
  {
    /* Time limit has been exceeded.  */
    // TODO Increase time limit?
  }
  else
  {
    /* Problem was ill-defined, retry with presolver */
    if (mlp->presolver_required == GNUNET_NO)
    {
      mlp->presolver_required = GNUNET_YES;
      goto lp_solv;
    }
    else
    {
      /* Problem was ill-defined, no way to handle that */
      GNUNET_log_from (GNUNET_ERROR_TYPE_DEBUG,
          "ats-mlp",
          "Solving LP problem failed: %i %s\n", res, mlp_solve_to_string(res));
      return GNUNET_SYSERR;
    }
  }

  end = GNUNET_TIME_absolute_get ();
  duration = GNUNET_TIME_absolute_get_difference (start, end);
  mlp->lp_solved++;
  mlp->lp_total_duration =+ duration.rel_value;
  s_ctx->lp_duration = duration;

  GNUNET_STATISTICS_update (mlp->stats,"# LP problem solved", 1, GNUNET_NO);
  GNUNET_STATISTICS_set (mlp->stats,"# LP execution time (ms)", duration.rel_value, GNUNET_NO);
  GNUNET_STATISTICS_set (mlp->stats,"# LP execution time average (ms)",
                         mlp->lp_total_duration / mlp->lp_solved,  GNUNET_NO);

  /* Analyze problem status  */
  res = glp_get_status (mlp->prob);
  switch (res) {
    /* solution is optimal */
    case GLP_OPT:
    /* solution is feasible */
    case GLP_FEAS:
      break;

    /* Problem was ill-defined, no way to handle that */
    default:
      GNUNET_log_from (GNUNET_ERROR_TYPE_DEBUG,
          "ats-mlp",
          "Solving LP problem failed, no solution: %s\n", mlp_status_to_string(res));
      return GNUNET_SYSERR;
      break;
  }

  /* solved sucessfully, no presolver required next time */
  mlp->presolver_required = GNUNET_NO;

  return GNUNET_OK;
}
Exemple #24
0
static PyObject* LPX_solver_integer(LPXObject *self, PyObject *args,
				    PyObject *keywds) {
#if GLPK_VERSION(4, 20)
  PyObject *callback=NULL;
  struct mip_callback_object*info=NULL;
  glp_iocp cp;
  glp_init_iocp(&cp);
  cp.msg_lev = GLP_MSG_OFF;
  // Map the keyword arguments to the appropriate entries.
  static char *kwlist[] = 
    {"msg_lev", "br_tech", "bt_tech",
#if GLPK_VERSION(4, 21)
     "pp_tech",
#endif // GLPK_VERSION(4, 21)
#if GLPK_VERSION(4, 24)
     "gmi_cuts",
#endif // GLPK_VERSION(4, 24)
#if GLPK_VERSION(4, 23)
     "mir_cuts",
     "mip_gap",
#endif // GLPK_VERSION(4, 23)
#if GLPK_VERSION(4, 32)
     "cov_cuts", "clq_cuts", "presolve", "binarize",
#endif // GLPK_VERSION(4, 32)
#if GLPK_VERSION(4, 37)
     "fp_heur",
#endif // GLPK_VERSION(4, 37)
     "tol_int", "tol_obj", "tm_lim", "out_frq", "out_dly", 
     "callback", //"cb_info", "cb_size",
     NULL};
  if (!PyArg_ParseTupleAndKeywords
      (args, keywds, "|iii"
#if GLPK_VERSION(4, 21)
       "i"
#endif // GLPK_VERSION(4, 21)
#if GLPK_VERSION(4, 24)
       "i"
#endif // GLPK_VERSION(4, 24)
#if GLPK_VERSION(4, 23)
       "ii"
#endif // GLPK_VERSION(4, 23)
#if GLPK_VERSION(4, 32)
       "iiii"
#endif // GLPK_VERSION(4, 32)
#if GLPK_VERSION(4, 37)
       "i"
#endif // GLPK_VERSION(4, 37)
       "ddiiiO", kwlist, &cp.msg_lev, &cp.br_tech, &cp.bt_tech,
#if GLPK_VERSION(4, 21)
       &cp.pp_tech,
#endif // GLPK_VERSION(4, 21)
#if GLPK_VERSION(4, 24)
       &cp.gmi_cuts,
#endif // GLPK_VERSION(4, 24)
#if GLPK_VERSION(4, 23)
       &cp.mir_cuts,
       &cp.mip_gap,
#endif // GLPK_VERSION(4, 23)
#if GLPK_VERSION(4, 32)
       &cp.cov_cuts, &cp.clq_cuts, &cp.presolve, &cp.binarize,
#endif // GLPK_VERSION(4, 32)
#if GLPK_VERSION(4, 37)
       &cp.fp_heur,
#endif // GLPK_VERSION(4, 37)
       &cp.tol_int, &cp.tol_obj, &cp.tm_lim, &cp.out_frq, &cp.out_dly,
       &callback)) {
    return NULL;
  }
#if GLPK_VERSION(4, 24)
  cp.gmi_cuts = cp.gmi_cuts ? GLP_ON : GLP_OFF;
#endif // GLPK_VERSION(4, 24)
#if GLPK_VERSION(4, 23)
  cp.mir_cuts = cp.mir_cuts ? GLP_ON : GLP_OFF;
#endif // GLPK_VERSION(4, 23)
#if GLPK_VERSION(4, 32)
  cp.cov_cuts = cp.cov_cuts ? GLP_ON : GLP_OFF;
  cp.clq_cuts = cp.clq_cuts ? GLP_ON : GLP_OFF;
  cp.presolve = cp.presolve ? GLP_ON : GLP_OFF;
  cp.binarize = cp.binarize ? GLP_ON : GLP_OFF;
#endif // GLPK_VERSION(4, 32)
#if GLPK_VERSION(4, 37)
  cp.fp_heur = cp.fp_heur ? GLP_ON : GLP_OFF;
#endif // GLPK_VERSION(4, 32)

  // Do checking on the various entries.
#if GLPK_VERSION(4, 32)
  if (!cp.presolve && glp_get_status(LP) != GLP_OPT) {
    PyErr_SetString(PyExc_RuntimeError, "integer solver requires "
                    "use of presolver or existing optimal basic solution");
    return NULL;
  }
#else
  if (glp_get_status(LP) != GLP_OPT) {
    PyErr_SetString(PyExc_RuntimeError, "integer solver requires "
		    "existing optimal basic solution");
    return NULL;
  }
#endif
  switch (cp.msg_lev) {
  case GLP_MSG_OFF: case GLP_MSG_ERR: case GLP_MSG_ON: case GLP_MSG_ALL: break;
  default:
    PyErr_SetString
      (PyExc_ValueError,
       "invalid value for msg_lev (LPX.MSG_* are valid values)");
    return NULL;
  }
  switch (cp.br_tech) {
  case GLP_BR_FFV: case GLP_BR_LFV: case GLP_BR_MFV: case GLP_BR_DTH: break;
  default:
    PyErr_SetString
      (PyExc_ValueError,
       "invalid value for br_tech (LPX.BR_* are valid values)");
    return NULL;
  }
  switch (cp.bt_tech) {
  case GLP_BT_DFS: case GLP_BT_BFS: case GLP_BT_BLB: case GLP_BT_BPH: break;
  default:
    PyErr_SetString
      (PyExc_ValueError,
       "invalid value for bt_tech (LPX.BT_* are valid values)");
    return NULL;
  }
#if GLPK_VERSION(4, 21)
  switch (cp.pp_tech) {
  case GLP_PP_NONE: case GLP_PP_ROOT: case GLP_PP_ALL: break;
  default:
    PyErr_SetString
      (PyExc_ValueError,
       "invalid value for pp_tech (LPX.PP_* are valid values)");
    return NULL;
  }
#endif // GLPK_VERSION(4, 21)
  if (cp.tol_int<=0 || cp.tol_int>=1) {
    PyErr_SetString(PyExc_ValueError, "tol_int must obey 0<tol_int<1");
    return NULL;
  }
  if (cp.tol_obj<=0 || cp.tol_obj>=1) {
    PyErr_SetString(PyExc_ValueError, "tol_obj must obey 0<tol_obj<1");
    return NULL;
  }
  if (cp.tm_lim<0) {
    PyErr_SetString(PyExc_ValueError, "tm_lim must be non-negative");
    return NULL;
  }
  if (cp.out_frq<=0) {
    PyErr_SetString(PyExc_ValueError, "out_frq must be positive");
    return NULL;
  }
  if (cp.out_dly<0) {
    PyErr_SetString(PyExc_ValueError, "out_dly must be non-negative");
    return NULL;
  }
#if GLPK_VERSION(4, 23)
  if (cp.mip_gap<0) {
    PyErr_SetString(PyExc_ValueError, "mip_gap must be non-negative");
    return NULL;
  }
#endif
  int retval;
  if (callback != NULL && callback != Py_None) {
    info = (struct mip_callback_object*)
      malloc(sizeof(struct mip_callback_object));
    info->callback = callback;
    info->py_lp = self;
    cp.cb_info = info;
    cp.cb_func = mip_callback;
  }
  retval = glp_intopt(LP, &cp);
  if (info) free(info);
  if (PyErr_Occurred()) {
    // This should happen only if there was a problem within the
    // callback function, or if the callback was not appropriate.
    return NULL;
  }
  if (retval!=GLP_EBADB && retval!=GLP_ESING && retval!=GLP_ECOND
      && retval!=GLP_EBOUND && retval!=GLP_EFAIL)
    self->last_solver = 2;
  return glpsolver_retval_to_message(retval);
#else
  int retval = lpx_integer(LP);
  if (retval!=LPX_E_FAULT) self->last_solver = 2;
  return solver_retval_to_message(retval);
#endif // GLPK_VERSION(4, 20)
}
Exemple #25
0
int max_flow_lp(int nn, int ne, const int beg[/*1+ne*/],
      const int end[/*1+ne*/], const int cap[/*1+ne*/], int s, int t,
      int x[/*1+ne*/])
{     glp_prob *lp;
      glp_smcp smcp;
      int i, k, nz, flow, *rn, *cn;
      double temp, *aa;
      /* create LP problem instance */
      lp = glp_create_prob();
      /* create LP rows; i-th row is the conservation condition of the
       * flow at i-th node, i = 1, ..., nn */
      glp_add_rows(lp, nn);
      for (i = 1; i <= nn; i++)
         glp_set_row_bnds(lp, i, GLP_FX, 0.0, 0.0);
      /* create LP columns; k-th column is the elementary flow thru
       * k-th edge, k = 1, ..., ne; the last column with the number
       * ne+1 is the total flow through the network, which goes along
       * a dummy feedback edge from the sink to the source */
      glp_add_cols(lp, ne+1);
      for (k = 1; k <= ne; k++)
      {  xassert(cap[k] > 0);
         glp_set_col_bnds(lp, k, GLP_DB, -cap[k], +cap[k]);
      }
      glp_set_col_bnds(lp, ne+1, GLP_FR, 0.0, 0.0);
      /* build the constraint matrix; structurally this matrix is the
       * incidence matrix of the network, so each its column (including
       * the last column for the dummy edge) has exactly two non-zero
       * entries */
      rn = xalloc(1+2*(ne+1), sizeof(int));
      cn = xalloc(1+2*(ne+1), sizeof(int));
      aa = xalloc(1+2*(ne+1), sizeof(double));
      nz = 0;
      for (k = 1; k <= ne; k++)
      {  /* x[k] > 0 means the elementary flow thru k-th edge goes from
          * node beg[k] to node end[k] */
         nz++, rn[nz] = beg[k], cn[nz] = k, aa[nz] = -1.0;
         nz++, rn[nz] = end[k], cn[nz] = k, aa[nz] = +1.0;
      }
      /* total flow thru the network goes from the sink to the source
       * along the dummy feedback edge */
      nz++, rn[nz] = t, cn[nz] = ne+1, aa[nz] = -1.0;
      nz++, rn[nz] = s, cn[nz] = ne+1, aa[nz] = +1.0;
      /* check the number of non-zero entries */
      xassert(nz == 2*(ne+1));
      /* load the constraint matrix into the LP problem object */
      glp_load_matrix(lp, nz, rn, cn, aa);
      xfree(rn);
      xfree(cn);
      xfree(aa);
      /* objective function is the total flow through the network to
       * be maximized */
      glp_set_obj_dir(lp, GLP_MAX);
      glp_set_obj_coef(lp, ne + 1, 1.0);
      /* solve LP instance with the (primal) simplex method */
      glp_term_out(0);
      glp_adv_basis(lp, 0);
      glp_term_out(1);
      glp_init_smcp(&smcp);
      smcp.msg_lev = GLP_MSG_ON;
      smcp.out_dly = 5000;
      xassert(glp_simplex(lp, &smcp) == 0);
      xassert(glp_get_status(lp) == GLP_OPT);
      /* obtain optimal elementary flows thru edges of the network */
      /* (note that the constraint matrix is unimodular and the data
       * are integral, so all elementary flows in basic solution should
       * also be integral) */
      for (k = 1; k <= ne; k++)
      {  temp = glp_get_col_prim(lp, k);
         x[k] = (int)floor(temp + .5);
         xassert(fabs(x[k] - temp) <= 1e-6);
      }
      /* obtain the maximum flow thru the original network which is the
       * flow thru the dummy feedback edge */
      temp = glp_get_col_prim(lp, ne+1);
      flow = (int)floor(temp + .5);
      xassert(fabs(flow - temp) <= 1e-6);
      /* delete LP problem instance */
      glp_delete_prob(lp);
      /* return to the calling program */
      return flow;
}
Exemple #26
0
int glpk (int sense, int n, int m, double *c, int nz, int *rn, int *cn,
      	 double *a, double *b, char *ctype, int *freeLB, double *lb,
      	 int *freeUB, double *ub, int *vartype, int isMIP, int lpsolver,
      	 int save_pb, char *save_filename, char *filetype,
         double *xmin, double *fmin, double *status,
      	 double *lambda, double *redcosts, double *time, double *mem)
{
  int typx = 0;
  int method;

  clock_t t_start = clock();

  //Redirect standard output
  if (glpIntParam[0] > 1) glp_term_hook (glpk_print_hook, NULL);
  else glp_term_hook (NULL, NULL);

  //-- Create an empty LP/MILP object
  LPX *lp = lpx_create_prob ();

  //-- Set the sense of optimization
  if (sense == 1)
    glp_set_obj_dir (lp, GLP_MIN);
  else
    glp_set_obj_dir (lp, GLP_MAX);

  //-- Define the number of unknowns and their domains.
  glp_add_cols (lp, n);
  for (int i = 0; i < n; i++)
  {
    //-- Define type of the structural variables
    if (! freeLB[i] && ! freeUB[i]) {
      if ( lb[i] == ub[i] )
        glp_set_col_bnds (lp, i+1, GLP_FX, lb[i], ub[i]);
      else
        glp_set_col_bnds (lp, i+1, GLP_DB, lb[i], ub[i]);
    }
    else
	  {
      if (! freeLB[i] && freeUB[i])
        glp_set_col_bnds (lp, i+1, GLP_LO, lb[i], ub[i]);
      else
      {
        if (freeLB[i] && ! freeUB[i])
		      glp_set_col_bnds (lp, i+1, GLP_UP, lb[i], ub[i]);
	      else
		      glp_set_col_bnds (lp, i+1, GLP_FR, lb[i], ub[i]);
	    }
	  }

  // -- Set the objective coefficient of the corresponding
  // -- structural variable. No constant term is assumed.
  glp_set_obj_coef(lp,i+1,c[i]);

  if (isMIP)
    glp_set_col_kind (lp, i+1, vartype[i]);
  }

  glp_add_rows (lp, m);

  for (int i = 0; i < m; i++)
  {
    /*  If the i-th row has no lower bound (types F,U), the
        corrispondent parameter will be ignored.
        If the i-th row has no upper bound (types F,L), the corrispondent
        parameter will be ignored.
        If the i-th row is of S type, the i-th LB is used, but
        the i-th UB is ignored.
    */

    switch (ctype[i])
    {
      case 'F': typx = GLP_FR; break;
      // upper bound
	  case 'U': typx = GLP_UP; break;
      // lower bound
	  case 'L': typx = GLP_LO; break;
      // fixed constraint
	  case 'S': typx = GLP_FX; break;
      // double-bounded variable
      case 'D': typx = GLP_DB; break;
	}

    if ( typx == GLP_DB && -b[i] < b[i]) {
        glp_set_row_bnds (lp, i+1, typx, -b[i], b[i]);
    }
    else if(typx == GLP_DB && -b[i] == b[i]) {
        glp_set_row_bnds (lp, i+1, GLP_FX, b[i], b[i]);
    }
    else {
    // this should be glp_set_row_bnds (lp, i+1, typx, -b[i], b[i]);
        glp_set_row_bnds (lp, i+1, typx, b[i], b[i]);
    }

  }
  // Load constraint matrix A
  glp_load_matrix (lp, nz, rn, cn, a);

  // Save problem
  if (save_pb) {
    if (!strcmp(filetype,"cplex")){
      if (glp_write_lp (lp, NULL, save_filename) != 0) {
	        mexErrMsgTxt("glpk: unable to write the problem");
	        longjmp (mark, -1);
      }
    }else{
      if (!strcmp(filetype,"fixedmps")){
        if (glp_write_mps (lp, GLP_MPS_DECK, NULL, save_filename) != 0) {
            mexErrMsgTxt("glpk: unable to write the problem");
	        longjmp (mark, -1);
        }
      }else{
        if (!strcmp(filetype,"freemps")){
          if (glp_write_mps (lp, GLP_MPS_FILE, NULL, save_filename) != 0) {
              mexErrMsgTxt("glpk: unable to write the problem");
	          longjmp (mark, -1);
          }
        }else{// plain text
          if (lpx_print_prob (lp, save_filename) != 0) {
              mexErrMsgTxt("glpk: unable to write the problem");
	          longjmp (mark, -1);
          }
        }
      }
    }
  }
  //-- scale the problem data (if required)
  if (! glpIntParam[16] || lpsolver != 1) {
    switch ( glpIntParam[1] ) {
        case ( 0 ): glp_scale_prob( lp, GLP_SF_SKIP ); break;
        case ( 1 ): glp_scale_prob( lp, GLP_SF_GM ); break;
        case ( 2 ): glp_scale_prob( lp, GLP_SF_EQ ); break;
        case ( 3 ): glp_scale_prob( lp, GLP_SF_AUTO  ); break;
        case ( 4 ): glp_scale_prob( lp, GLP_SF_2N ); break;
        default :
            mexErrMsgTxt("glpk: unrecognized scaling option");
            longjmp (mark, -1);
    }
  }
  else {
    /* do nothing? or unscale?
        glp_unscale_prob( lp );
    */
  }

  //-- build advanced initial basis (if required)
  if (lpsolver == 1 && ! glpIntParam[16])
    glp_adv_basis (lp, 0);

  glp_smcp sParam;
  glp_init_smcp(&sParam);

  //-- set control parameters for simplex/exact method
  if (lpsolver == 1 || lpsolver == 3){
    //remap of control parameters for simplex method
    sParam.msg_lev=glpIntParam[0];	// message level

    // simplex method: primal/dual
    switch ( glpIntParam[2] ) {
        case 0: sParam.meth=GLP_PRIMAL; break;
        case 1: sParam.meth=GLP_DUAL;   break;
        case 2: sParam.meth=GLP_DUALP;  break;
        default:
            mexErrMsgTxt("glpk: unrecognized primal/dual method");
            longjmp (mark, -1);
    }

    // pricing technique
    if (glpIntParam[3]==0) sParam.pricing=GLP_PT_STD;
    else sParam.pricing=GLP_PT_PSE;

    // ratio test
    if (glpIntParam[20]==0) sParam.r_test = GLP_RT_STD;
    else sParam.r_test=GLP_RT_HAR;

    //tollerances
    sParam.tol_bnd=glpRealParam[1];	// primal feasible tollerance
    sParam.tol_dj=glpRealParam[2];	// dual feasible tollerance
    sParam.tol_piv=glpRealParam[3];	// pivot tollerance
    sParam.obj_ll=glpRealParam[4];	// lower limit
    sParam.obj_ul=glpRealParam[5];	// upper limit

    // iteration limit
    if (glpIntParam[5]==-1) sParam.it_lim=INT_MAX;
    else sParam.it_lim=glpIntParam[5];

    // time limit
    if (glpRealParam[6]==-1) sParam.tm_lim=INT_MAX;
    else sParam.tm_lim=(int) glpRealParam[6];
    sParam.out_frq=glpIntParam[7];	// output frequency
    sParam.out_dly=(int) glpRealParam[7];	// output delay
    // presolver
    if (glpIntParam[16]) sParam.presolve=GLP_ON;
    else sParam.presolve=GLP_OFF;
  }else{
	for(int i = 0; i < NIntP; i++) {
        // skip assinging ratio test or
        if ( i == 18 || i == 20) continue;
		lpx_set_int_parm (lp, IParam[i], glpIntParam[i]);
    }

	for (int i = 0; i < NRealP; i++) {
		lpx_set_real_parm (lp, RParam[i], glpRealParam[i]);
    }
  }

  //set MIP params if MIP....
  glp_iocp iParam;
  glp_init_iocp(&iParam);

  if ( isMIP ){
    method = 'I';

    switch (glpIntParam[0]) { //message level
         case 0:  iParam.msg_lev = GLP_MSG_OFF;   break;
         case 1:  iParam.msg_lev = GLP_MSG_ERR;   break;
         case 2:  iParam.msg_lev = GLP_MSG_ON;    break;
         case 3:  iParam.msg_lev = GLP_MSG_ALL;   break;
         default:  mexErrMsgTxt("glpk: msg_lev bad param");
    }
    switch (glpIntParam[14]) { //branching param
         case 0:  iParam.br_tech = GLP_BR_FFV;    break;
         case 1:  iParam.br_tech = GLP_BR_LFV;    break;
         case 2:  iParam.br_tech = GLP_BR_MFV;    break;
         case 3:  iParam.br_tech = GLP_BR_DTH;    break;
         default: mexErrMsgTxt("glpk: branch bad param");
    }
    switch (glpIntParam[15]) { //backtracking heuristic
        case 0:  iParam.bt_tech = GLP_BT_DFS;    break;
        case 1:  iParam.bt_tech = GLP_BT_BFS;    break;
        case 2:  iParam.bt_tech = GLP_BT_BLB;    break;
        case 3:  iParam.bt_tech = GLP_BT_BPH;    break;
        default: mexErrMsgTxt("glpk: backtrack bad param");
    }

    if (  glpRealParam[8] > 0.0 && glpRealParam[8] < 1.0 )
        iParam.tol_int = glpRealParam[8];  // absolute tolorence
    else
        mexErrMsgTxt("glpk: tolint must be between 0 and 1");

    iParam.tol_obj = glpRealParam[9];  // relative tolarence
    iParam.mip_gap = glpRealParam[10]; // realative gap tolerance

    // set time limit for mip
    if ( glpRealParam[6] < 0.0 || glpRealParam[6] > 1e6 )
       iParam.tm_lim = INT_MAX;
    else
       iParam.tm_lim = (int)(1000.0 * glpRealParam[6] );

    // Choose Cutsets for mip
    // shut all cuts off, then start over....
    iParam.gmi_cuts = GLP_OFF;
    iParam.mir_cuts = GLP_OFF;
    iParam.cov_cuts = GLP_OFF;
    iParam.clq_cuts = GLP_OFF;

    switch( glpIntParam[17] ) {
        case 0: break;
        case 1: iParam.gmi_cuts = GLP_ON; break;
        case 2: iParam.mir_cuts = GLP_ON; break;
        case 3: iParam.cov_cuts = GLP_ON; break;
        case 4: iParam.clq_cuts = GLP_ON; break;
        case 5: iParam.clq_cuts = GLP_ON;
                iParam.gmi_cuts = GLP_ON;
                iParam.mir_cuts = GLP_ON;
                iParam.cov_cuts = GLP_ON;
                iParam.clq_cuts = GLP_ON; break;
        default: mexErrMsgTxt("glpk: cutset bad param");
    }

    switch( glpIntParam[18] ) { // pre-processing for mip
        case 0: iParam.pp_tech = GLP_PP_NONE; break;
        case 1: iParam.pp_tech = GLP_PP_ROOT; break;
        case 2: iParam.pp_tech = GLP_PP_ALL;  break;
        default:  mexErrMsgTxt("glpk: pprocess bad param");
    }

    if (glpIntParam[16])  iParam.presolve=GLP_ON;
    else                  iParam.presolve=GLP_OFF;

    if (glpIntParam[19])  iParam.binarize = GLP_ON;
    else                  iParam.binarize = GLP_OFF;

  }
  else {
     /* Choose simplex method ('S')
     or interior point method ('T')
     or Exact method          ('E')
     to solve the problem  */
    switch (lpsolver) {
      case 1: method = 'S'; break;
      case 2: method = 'T'; break;
      case 3: method = 'E'; break;
      default:
            mexErrMsgTxt("glpk:  lpsolver != lpsolver");
            longjmp (mark, -1);
    }
  }

	// now run the problem...
	int errnum = 0;

	switch (method) {
	case 'I':
		errnum = glp_intopt( lp, &iParam );
		errnum += 200; //this is to avoid ambiguity in the return codes.
		break;

	case 'S':
		errnum = glp_simplex(lp, &sParam);
		errnum += 100; //this is to avoid ambiguity in the return codes.
		break;

	case 'T':
		errnum = glp_interior(lp, NULL );
		errnum += 300; //this is to avoid ambiguity in the return codes.
		break;

	case 'E':
		errnum = glp_exact(lp, &sParam);
		errnum += 100; //this is to avoid ambiguity in the return codes.
		break;

	default:  /*xassert (method != method); */
		mexErrMsgTxt("glpk: method != method");
		longjmp (mark, -1);
	}

    if (errnum==100 || errnum==200 || errnum==300 || errnum==106 || errnum==107 || errnum==108 || errnum==109 || errnum==209 || errnum==214 || errnum==308) {

    // Get status and object value
    if (isMIP) {
      *status = glp_mip_status (lp);
      *fmin = glp_mip_obj_val (lp);
    }
    else {

      if (lpsolver == 1 || lpsolver == 3) {
        *status = glp_get_status (lp);
        *fmin = glp_get_obj_val (lp);
	  }
      else {
        *status = glp_ipt_status (lp);
        *fmin = glp_ipt_obj_val (lp);
	  }
    }

    // Get optimal solution (if exists)
    if (isMIP) {

      for (int i = 0; i < n; i++)
        xmin[i] = glp_mip_col_val (lp, i+1);
    }
    else {

      /* Primal values */
      for (int i = 0; i < n; i++) {

        if (lpsolver == 1 || lpsolver == 3)
              xmin[i] = glp_get_col_prim (lp, i+1);
        else
		      xmin[i] = glp_ipt_col_prim (lp, i+1);
      }

      /* Dual values */
      for (int i = 0; i < m; i++) {

        if (lpsolver == 1 || lpsolver == 3)
            lambda[i] = glp_get_row_dual (lp, i+1);
	    else
            lambda[i] = glp_ipt_row_dual (lp, i+1);
      }

      /* Reduced costs */
      for (int i = 0; i < glp_get_num_cols (lp); i++) {

        if (lpsolver == 1 || lpsolver == 3)
            redcosts[i] = glp_get_col_dual (lp, i+1);
        else
            redcosts[i] = glp_ipt_col_dual (lp, i+1);
      }

    }

    *time = (clock () - t_start) / CLOCKS_PER_SEC;

    size_t tpeak;
    glp_mem_usage(NULL, NULL, NULL, &tpeak);
    *mem=((double) tpeak) / (1024);

	lpx_delete_prob(lp);

    return 0;
  }
  else {
   // printf("errnum is %d\n", errnum);
  }

  lpx_delete_prob(lp);

  /* this shouldn't be nessiary with glp_deleted_prob, but try it
  if we have weird behavior again... */
  glp_free_env();


  *status = errnum;

  return errnum;
}
Exemple #27
0
static int preprocess_and_solve_mip(glp_prob *P, const glp_iocp *parm)
{     /* solve MIP using the preprocessor */
      ENV *env = get_env_ptr();
      int term_out = env->term_out;
      NPP *npp;
      glp_prob *mip = NULL;
      glp_bfcp bfcp;
      glp_smcp smcp;
      int ret;
      if (parm->msg_lev >= GLP_MSG_ALL)
         xprintf("Preprocessing...\n");
      /* create preprocessor workspace */
      npp = npp_create_wksp();
      /* load original problem into the preprocessor workspace */
      npp_load_prob(npp, P, GLP_OFF, GLP_MIP, GLP_OFF);
      /* process MIP prior to applying the branch-and-bound method */
      if (!term_out || parm->msg_lev < GLP_MSG_ALL)
         env->term_out = GLP_OFF;
      else
         env->term_out = GLP_ON;
      ret = npp_integer(npp, parm);
      env->term_out = term_out;
      if (ret == 0)
         ;
      else if (ret == GLP_ENOPFS)
      {  if (parm->msg_lev >= GLP_MSG_ALL)
            xprintf("PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION\n");
      }
      else if (ret == GLP_ENODFS)
      {  if (parm->msg_lev >= GLP_MSG_ALL)
            xprintf("LP RELAXATION HAS NO DUAL FEASIBLE SOLUTION\n");
      }
      else
         xassert(ret != ret);
      if (ret != 0) goto done;
      /* build transformed MIP */
      mip = glp_create_prob();
      npp_build_prob(npp, mip);
      /* if the transformed MIP is empty, it has empty solution, which
         is optimal */
      if (mip->m == 0 && mip->n == 0)
      {  mip->mip_stat = GLP_OPT;
         mip->mip_obj = mip->c0;
         if (parm->msg_lev >= GLP_MSG_ALL)
         {  xprintf("Objective value = %17.9e\n", mip->mip_obj);
            xprintf("INTEGER OPTIMAL SOLUTION FOUND BY MIP PREPROCESSOR"
               "\n");
         }
         goto post;
      }
      /* display some statistics */
      if (parm->msg_lev >= GLP_MSG_ALL)
      {  int ni = glp_get_num_int(mip);
         int nb = glp_get_num_bin(mip);
         char s[50];
         xprintf("%d row%s, %d column%s, %d non-zero%s\n",
            mip->m, mip->m == 1 ? "" : "s", mip->n, mip->n == 1 ? "" :
            "s", mip->nnz, mip->nnz == 1 ? "" : "s");
         if (nb == 0)
            strcpy(s, "none of");
         else if (ni == 1 && nb == 1)
            strcpy(s, "");
         else if (nb == 1)
            strcpy(s, "one of");
         else if (nb == ni)
            strcpy(s, "all of");
         else
            sprintf(s, "%d of", nb);
         xprintf("%d integer variable%s, %s which %s binary\n",
            ni, ni == 1 ? "" : "s", s, nb == 1 ? "is" : "are");
      }
      /* inherit basis factorization control parameters */
      glp_get_bfcp(P, &bfcp);
      glp_set_bfcp(mip, &bfcp);
      /* scale the transformed problem */
      if (!term_out || parm->msg_lev < GLP_MSG_ALL)
         env->term_out = GLP_OFF;
      else
         env->term_out = GLP_ON;
      glp_scale_prob(mip,
         GLP_SF_GM | GLP_SF_EQ | GLP_SF_2N | GLP_SF_SKIP);
      env->term_out = term_out;
      /* build advanced initial basis */
      if (!term_out || parm->msg_lev < GLP_MSG_ALL)
         env->term_out = GLP_OFF;
      else
         env->term_out = GLP_ON;
      glp_adv_basis(mip, 0);
      env->term_out = term_out;
      /* solve initial LP relaxation */
      if (parm->msg_lev >= GLP_MSG_ALL)
         xprintf("Solving LP relaxation...\n");
      glp_init_smcp(&smcp);
      smcp.msg_lev = parm->msg_lev;
      mip->it_cnt = P->it_cnt;
      ret = glp_simplex(mip, &smcp);
      P->it_cnt = mip->it_cnt;
      if (ret != 0)
      {  if (parm->msg_lev >= GLP_MSG_ERR)
            xprintf("glp_intopt: cannot solve LP relaxation\n");
         ret = GLP_EFAIL;
         goto done;
      }
      /* check status of the basic solution */
      ret = glp_get_status(mip);
      if (ret == GLP_OPT)
         ret = 0;
      else if (ret == GLP_NOFEAS)
         ret = GLP_ENOPFS;
      else if (ret == GLP_UNBND)
         ret = GLP_ENODFS;
      else
         xassert(ret != ret);
      if (ret != 0) goto done;
      /* solve the transformed MIP */
      mip->it_cnt = P->it_cnt;
#if 0 /* 11/VII-2013 */
      ret = solve_mip(mip, parm);
#else
      if (parm->use_sol)
      {  mip->mip_stat = P->mip_stat;
         mip->mip_obj = P->mip_obj;
      }
      ret = solve_mip(mip, parm, P, npp);
#endif
      P->it_cnt = mip->it_cnt;
      /* only integer feasible solution can be postprocessed */
      if (!(mip->mip_stat == GLP_OPT || mip->mip_stat == GLP_FEAS))
      {  P->mip_stat = mip->mip_stat;
         goto done;
      }
      /* postprocess solution from the transformed MIP */
post: npp_postprocess(npp, mip);
      /* the transformed MIP is no longer needed */
      glp_delete_prob(mip), mip = NULL;
      /* store solution to the original problem */
      npp_unload_sol(npp, P);
done: /* delete the transformed MIP, if it exists */
      if (mip != NULL) glp_delete_prob(mip);
      /* delete preprocessor workspace */
      npp_delete_wksp(npp);
      return ret;
}
Exemple #28
0
bool glpk_wrapper::is_sat() {
    if (solver_type == SIMPLEX || solver_type == EXACT) {
        int status = glp_get_status(lp);
        if (status == GLP_UNDEF || changed) {
            glp_smcp parm;
            glp_init_smcp(&parm);
            parm.msg_lev = GLP_MSG_OFF;
            // always try first the normal simple (get close to an optimal solution in double precision)
            int solved = glp_simplex(lp, &parm);
            // TODO(dzufferey) should we always fall back on exact when the normal simplex failed ?
            if (solver_type == EXACT || solved != 0) {
                solved = glp_exact(lp, &parm);
            }
            if (solved != 0) {
                switch (solved) {
                    case GLP_EBADB:
                        throw std::runtime_error("GLPK simplex failed: GLP_EBADB");
                    case GLP_ESING:
                        throw std::runtime_error("GLPK simplex failed: GLP_ESING");
                    case GLP_ECOND:
                        throw std::runtime_error("GLPK simplex failed: GLP_ECOND");
                    case GLP_EBOUND:
                        throw std::runtime_error("GLPK simplex failed: GLP_EBOUND");
                    case GLP_EFAIL:
                        throw std::runtime_error("GLPK simplex failed: GLP_EFAIL");
                    case GLP_EOBJLL:
                        throw std::runtime_error("GLPK simplex failed: GLP_EOBJLL");
                    case GLP_EOBJUL:
                        throw std::runtime_error("GLPK simplex failed: GLP_EOBJUL");
                    case GLP_EITLIM:
                        throw std::runtime_error("GLPK simplex failed: GLP_EITLIM");
                    case GLP_ETMLIM:
                        throw std::runtime_error("GLPK simplex failed: GLP_ETMLIM");
                    case GLP_ENOPFS:
                        throw std::runtime_error("GLPK simplex failed: GLP_ENOPFS");
                    case GLP_ENODFS:
                        throw std::runtime_error("GLPK simplex failed: GLP_ENODFS");
                    default:
                        throw std::runtime_error("GLPK simplex failed");
                }
            }
            status = glp_get_status(lp);
            changed = false;
        }
        return (status == GLP_OPT || status == GLP_FEAS || status == GLP_UNBND);
    } else {
        assert(solver_type == INTERIOR);
        int status = glp_ipt_status(lp);
        if (status == GLP_UNDEF || changed) {
            glp_iptcp parm;
            glp_init_iptcp(&parm);
            parm.msg_lev = GLP_MSG_OFF;
            int solved = glp_interior(lp, &parm);
            if (solved != 0) {
                switch (solved) {
                    case GLP_EFAIL:
                        throw std::runtime_error("GLPK interior-point failed: GLP_EFAIL");
                    case GLP_ENOCVG:
                        throw std::runtime_error("GLPK interior-point failed: GLP_ENOCVG");
                    case GLP_EOBJUL:
                        throw std::runtime_error("GLPK interior-point failed: GLP_EOBJUL");
                    case GLP_EITLIM:
                        throw std::runtime_error("GLPK interior-point failed: GLP_EITLIM");
                    case GLP_EINSTAB:
                        throw std::runtime_error("GLPK interior-point failed: GLP_EINSTAB");
                    default:
                        throw std::runtime_error("GLPK interior-point failed");
                }
            }
            status = glp_ipt_status(lp);
            changed = false;
        }
        return status == GLP_OPT;
    }
}