Exemple #1
0
/** computes the inverse discrete Radon transform of Rf
 *  on the grid given by gridfcn() with T angles and R offsets
 *  by a NFFT-based CG-type algorithm
 */
int Inverse_Radon_trafo(int (*gridfcn)(), int T, int S, double *Rf, int NN, double *f, int max_i)
{
  int j,k;                              /**< index for nodes and freqencies   */
  nfft_plan my_nfft_plan;               /**< plan for the nfft-2D             */
  solver_plan_complex my_infft_plan;             /**< plan for the inverse nfft        */

  fftw_complex *fft;                    /**< variable for the fftw-1Ds        */
  fftw_plan my_fftw_plan;               /**< plan for the fftw-1Ds            */

  int t,r;                              /**< index for directions and offsets */
  double *x, *w;                        /**< knots and associated weights     */
  int l;                                /**< index for iterations             */

  int N[2],n[2];
  int M=T*S;

  N[0]=NN; n[0]=2*N[0];
  N[1]=NN; n[1]=2*N[1];

  fft = (fftw_complex *)nfft_malloc(S*sizeof(fftw_complex));
  my_fftw_plan = fftw_plan_dft_1d(S,fft,fft,FFTW_FORWARD,FFTW_MEASURE);

  x = (double *)nfft_malloc(2*T*S*(sizeof(double)));
  if (x==NULL)
    return -1;

  w = (double *)nfft_malloc(T*S*(sizeof(double)));
  if (w==NULL)
    return -1;

  /** init two dimensional NFFT plan */
  nfft_init_guru(&my_nfft_plan, 2, N, M, n, 4,
                  PRE_PHI_HUT| PRE_PSI| MALLOC_X | MALLOC_F_HAT| MALLOC_F| FFTW_INIT | FFT_OUT_OF_PLACE,
                  FFTW_MEASURE| FFTW_DESTROY_INPUT);

  /** init two dimensional infft plan */
  solver_init_advanced_complex(&my_infft_plan,(nfft_mv_plan_complex*)(&my_nfft_plan), CGNR | PRECOMPUTE_WEIGHT);

  /** init nodes and weights of grid*/
  gridfcn(T,S,x,w);
  for(j=0;j<my_nfft_plan.M_total;j++)
  {
    my_nfft_plan.x[2*j+0] = x[2*j+0];
    my_nfft_plan.x[2*j+1] = x[2*j+1];
    if (j%S)
      my_infft_plan.w[j]    = w[j];
    else
      my_infft_plan.w[j]    = 0.0;
  }

  /** precompute psi, the entries of the matrix B */
  if(my_nfft_plan.nfft_flags & PRE_LIN_PSI)
    nfft_precompute_lin_psi(&my_nfft_plan);

  if(my_nfft_plan.nfft_flags & PRE_PSI)
    nfft_precompute_psi(&my_nfft_plan);

  if(my_nfft_plan.nfft_flags & PRE_FULL_PSI)
    nfft_precompute_full_psi(&my_nfft_plan);

  /** compute 1D-ffts and init given samples and weights */
  for(t=0; t<T; t++)
  {
/*    for(r=0; r<R/2; r++)
       fft[r] = cexp(I*KPI*r)*Rf[t*R+(r+R/2)];
      for(r=0; r<R/2; r++)
       fft[r+R/2] = cexp(I*KPI*r)*Rf[t*R+r];
 */

    for(r=0; r<S; r++)
      fft[r] = Rf[t*S+r] + _Complex_I*0.0;

    nfft_fftshift_complex(fft, 1, &S);
    fftw_execute(my_fftw_plan);
    nfft_fftshift_complex(fft, 1, &S);

    my_infft_plan.y[t*S] = 0.0;
    for(r=-S/2+1; r<S/2; r++)
      my_infft_plan.y[t*S+(r+S/2)] = fft[r+S/2]/KERNEL(r);
  }

  /** initialise some guess f_hat_0 */
  for(k=0;k<my_nfft_plan.N_total;k++)
    my_infft_plan.f_hat_iter[k] = 0.0 + _Complex_I*0.0;

  /** solve the system */
  solver_before_loop_complex(&my_infft_plan);

  if (max_i<1)
  {
    l=1;
    for(k=0;k<my_nfft_plan.N_total;k++)
      my_infft_plan.f_hat_iter[k] = my_infft_plan.p_hat_iter[k];
  }
  else
  {
    for(l=1;l<=max_i;l++)
    {
      solver_loop_one_step_complex(&my_infft_plan);
      /*if (sqrt(my_infft_plan.dot_r_iter)<=1e-12) break;*/
    }
  }
  /*printf("after %d iteration(s): weighted 2-norm of original residual vector = %g\n",l-1,sqrt(my_infft_plan.dot_r_iter));*/

  /** copy result */
  for(k=0;k<my_nfft_plan.N_total;k++)
    f[k] = creal(my_infft_plan.f_hat_iter[k]);

  /** finalise the plans and free the variables */
  fftw_destroy_plan(my_fftw_plan);
  nfft_free(fft);
  solver_finalize_complex(&my_infft_plan);
  nfft_finalize(&my_nfft_plan);
  nfft_free(x);
  nfft_free(w);
  return 0;
}
/** computes the inverse discrete Radon transform of Rf
 *  on the grid given by gridfcn() with T angles and R offsets
 *  by a NFFT-based CG-type algorithm
 */
static int inverse_radon_trafo(int (*gridfcn)(), int T, int S, NFFT_R *Rf, int NN, NFFT_R *f,
    int max_i)
{
  int j, k; /**< index for nodes and freqencies   */
  NFFT(plan) my_nfft_plan; /**< plan for the nfft-2D             */
  SOLVER(plan_complex) my_infft_plan; /**< plan for the inverse nfft        */

  NFFT_C *fft; /**< variable for the fftw-1Ds        */
  FFTW(plan) my_fftw_plan; /**< plan for the fftw-1Ds            */

  int t, r; /**< index for directions and offsets */
  NFFT_R *x, *w; /**< knots and associated weights     */
  int l; /**< index for iterations             */

  int N[2], n[2];
  int M = T * S;

  N[0] = NN;
  n[0] = 2 * N[0];
  N[1] = NN;
  n[1] = 2 * N[1];

  fft = (NFFT_C *) NFFT(malloc)((size_t)(S) * sizeof(NFFT_C));
  my_fftw_plan = FFTW(plan_dft_1d)(S, fft, fft, FFTW_FORWARD, FFTW_MEASURE);

  x = (NFFT_R *) NFFT(malloc)((size_t)(2 * T * S) * (sizeof(NFFT_R)));
  if (x == NULL)
    return EXIT_FAILURE;

  w = (NFFT_R *) NFFT(malloc)((size_t)(T * S) * (sizeof(NFFT_R)));
  if (w == NULL)
    return EXIT_FAILURE;

  /** init two dimensional NFFT plan */
  NFFT(init_guru)(&my_nfft_plan, 2, N, M, n, 4,
      PRE_PHI_HUT | PRE_PSI | MALLOC_X | MALLOC_F_HAT | MALLOC_F | FFTW_INIT
          | FFT_OUT_OF_PLACE,
      FFTW_MEASURE | FFTW_DESTROY_INPUT);

  /** init two dimensional infft plan */
  SOLVER(init_advanced_complex)(&my_infft_plan,
      (NFFT(mv_plan_complex)*) (&my_nfft_plan), CGNR | PRECOMPUTE_WEIGHT);

  /** init nodes and weights of grid*/
  gridfcn(T, S, x, w);
  for (j = 0; j < my_nfft_plan.M_total; j++)
  {
    my_nfft_plan.x[2 * j + 0] = x[2 * j + 0];
    my_nfft_plan.x[2 * j + 1] = x[2 * j + 1];
    if (j % S)
      my_infft_plan.w[j] = w[j];
    else
      my_infft_plan.w[j] = NFFT_K(0.0);
  }

  /** precompute psi, the entries of the matrix B */
  if (my_nfft_plan.flags & PRE_LIN_PSI)
    NFFT(precompute_lin_psi)(&my_nfft_plan);

  if (my_nfft_plan.flags & PRE_PSI)
    NFFT(precompute_psi)(&my_nfft_plan);

  if (my_nfft_plan.flags & PRE_FULL_PSI)
    NFFT(precompute_full_psi)(&my_nfft_plan);

  /** compute 1D-ffts and init given samples and weights */
  for (t = 0; t < T; t++)
  {
    /*    for(r=0; r<R/2; r++)
     fft[r] = cexp(I*NFFT_KPI*r)*Rf[t*R+(r+R/2)];
     for(r=0; r<R/2; r++)
     fft[r+R/2] = cexp(I*NFFT_KPI*r)*Rf[t*R+r];
     */

    for (r = 0; r < S; r++)
      fft[r] = Rf[t * S + r] + _Complex_I * NFFT_K(0.0);

    NFFT(fftshift_complex_int)(fft, 1, &S);
    FFTW(execute)(my_fftw_plan);
    NFFT(fftshift_complex_int)(fft, 1, &S);

    my_infft_plan.y[t * S] = NFFT_K(0.0);
    for (r = -S / 2 + 1; r < S / 2; r++)
      my_infft_plan.y[t * S + (r + S / 2)] = fft[r + S / 2] / KERNEL(r);
  }

  /** initialise some guess f_hat_0 */
  for (k = 0; k < my_nfft_plan.N_total; k++)
    my_infft_plan.f_hat_iter[k] = NFFT_K(0.0) + _Complex_I * NFFT_K(0.0);

  /** solve the system */
  SOLVER(before_loop_complex)(&my_infft_plan);

  if (max_i < 1)
  {
    l = 1;
    for (k = 0; k < my_nfft_plan.N_total; k++)
      my_infft_plan.f_hat_iter[k] = my_infft_plan.p_hat_iter[k];
  }
  else
  {
    for (l = 1; l <= max_i; l++)
    {
      SOLVER(loop_one_step_complex)(&my_infft_plan);
      /*if (sqrt(my_infft_plan.dot_r_iter)<=1e-12) break;*/
    }
  }
  /*printf("after %d iteration(s): weighted 2-norm of original residual vector = %g\n",l-1,sqrt(my_infft_plan.dot_r_iter));*/

  /** copy result */
  for (k = 0; k < my_nfft_plan.N_total; k++)
    f[k] = NFFT_M(creal)(my_infft_plan.f_hat_iter[k]);

  /** finalise the plans and free the variables */
  FFTW(destroy_plan)(my_fftw_plan);
  NFFT(free)(fft);
  SOLVER(finalize_complex)(&my_infft_plan);
  NFFT(finalize)(&my_nfft_plan);
  NFFT(free)(x);
  NFFT(free)(w);
  return 0;
}