Exemple #1
0
void setall(long iseed1,long iseed2)
/*
**********************************************************************
     void setall(long iseed1,long iseed2)
               SET ALL random number generators
     Sets the initial seed of generator 1 to ISEED1 and ISEED2. The
     initial seeds of the other generators are set accordingly, and
     all generators states are set to these seeds.
     This is a transcription from Pascal to Fortran of routine
     Set_Initial_Seed from the paper
     L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
     with Splitting Facilities." ACM Transactions on Mathematical
     Software, 17:98-111 (1991)
                              Arguments
     iseed1 -> First of two integer seeds
     iseed2 -> Second of two integer seeds
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gssst(long getset,long *qset);
extern void gscgn(long getset,long *g);
extern long Xm1,Xm2,Xa1vw,Xa2vw,Xig1[],Xig2[];
long T1;
long g,ocgn;
long qrgnin;
    T1 = 1;
/*
     TELL IGNLGI, THE ACTUAL NUMBER GENERATOR, THAT THIS ROUTINE
      HAS BEEN CALLED.
*/
    gssst(1,&T1);
    gscgn(0L,&ocgn);
/*
     Initialize Common Block if Necessary
*/
    gsrgs(0L,&qrgnin);
    if(!qrgnin) inrgcm();
    *Xig1 = iseed1;
    *Xig2 = iseed2;
    initgn(-1L);
    for(g=2; g<=numg; g++) {
        *(Xig1+g-1) = mltmod(Xa1vw,*(Xig1+g-2),Xm1);
        *(Xig2+g-1) = mltmod(Xa2vw,*(Xig2+g-2),Xm2);
        gscgn(1L,&g);
        initgn(-1L);
    }
    gscgn(1L,&ocgn);
#undef numg
}
Exemple #2
0
void initgn(long isdtyp)
/*
**********************************************************************
     void initgn(long isdtyp)
          INIT-ialize current G-e-N-erator
     Reinitializes the state of the current generator
     This is a transcription from Pascal to Fortran of routine
     Init_Generator from the paper
     L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
     with Splitting Facilities." ACM Transactions on Mathematical
     Software, 17:98-111 (1991)
                              Arguments
     isdtyp -> The state to which the generator is to be set
          isdtyp = -1  => sets the seeds to their initial value
          isdtyp =  0  => sets the seeds to the first value of
                          the current block
          isdtyp =  1  => sets the seeds to the first value of
                          the next block
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xm1,Xm2,Xa1w,Xa2w,Xig1[],Xig2[],Xlg1[],Xlg2[],Xcg1[],Xcg2[];
long g;
long qrgnin;
/*
     Abort unless random number generator initialized
*/
    gsrgs(0L,&qrgnin);
    if(qrgnin) goto S10;
    fprintf(stderr,"%s\n",
      " INITGN called before random number generator  initialized -- abort!");
    exit(1);
S10:
    gscgn(0L,&g);
    if(-1 != isdtyp) goto S20;
    *(Xlg1+g-1) = *(Xig1+g-1);
    *(Xlg2+g-1) = *(Xig2+g-1);
    goto S50;
S20:
    if(0 != isdtyp) goto S30;
    goto S50;
S30:
/*
     do nothing
*/
    if(1 != isdtyp) goto S40;
    *(Xlg1+g-1) = mltmod(Xa1w,*(Xlg1+g-1),Xm1);
    *(Xlg2+g-1) = mltmod(Xa2w,*(Xlg2+g-1),Xm2);
    goto S50;
S40:
    fprintf(stderr,"%s\n","isdtyp not in range in INITGN");
    exit(1);
S50:
    *(Xcg1+g-1) = *(Xlg1+g-1);
    *(Xcg2+g-1) = *(Xlg2+g-1);
#undef numg
}
Exemple #3
0
long ignlgi(void)
/*
**********************************************************************
     long ignlgi(void)
               GeNerate LarGe Integer
     Returns a random integer following a uniform distribution over
     (1, 2147483562) using the current generator.
     This is a transcription from Pascal to Fortran of routine
     Random from the paper
     L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
     with Splitting Facilities." ACM Transactions on Mathematical
     Software, 17:98-111 (1991)
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gssst(long getset,long *qset);
extern void gscgn(long getset,long *g);
extern void inrgcm(void);
extern long Xm1,Xm2,Xa1,Xa2,Xcg1[],Xcg2[];
extern long Xqanti[];
long ignlgi,curntg,k,s1,s2,z;
long qqssd,qrgnin;
/*
     IF THE RANDOM NUMBER PACKAGE HAS NOT BEEN INITIALIZED YET, DO SO.
     IT CAN BE INITIALIZED IN ONE OF TWO WAYS : 1) THE FIRST CALL TO
     THIS ROUTINE  2) A CALL TO SETALL.
*/
    gsrgs(0L,&qrgnin);
    if(!qrgnin) inrgcm();
    gssst(0,&qqssd);
    if(!qqssd) setall(1234567890L,123456789L);
/*
     Get Current Generator
*/
    gscgn(0L,&curntg);
    s1 = *(Xcg1+curntg-1);
    s2 = *(Xcg2+curntg-1);
    k = s1/53668L;
    s1 = Xa1*(s1-k*53668L)-k*12211;
    if(s1 < 0) s1 += Xm1;
    k = s2/52774L;
    s2 = Xa2*(s2-k*52774L)-k*3791;
    if(s2 < 0) s2 += Xm2;
    *(Xcg1+curntg-1) = s1;
    *(Xcg2+curntg-1) = s2;
    z = s1-s2;
    if(z < 1) z += (Xm1-1);
    if(*(Xqanti+curntg-1)) z = Xm1-z;
    ignlgi = z;
    return ignlgi;
#undef numg
}
Exemple #4
0
void advnst(long k)
/*
**********************************************************************
     void advnst(long k)
               ADV-a-N-ce ST-ate
     Advances the state  of  the current  generator  by 2^K values  and
     resets the initial seed to that value.
     This is  a  transcription from   Pascal to  Fortran    of  routine
     Advance_State from the paper
     L'Ecuyer, P. and  Cote, S. "Implementing  a  Random Number Package
     with  Splitting   Facilities."  ACM  Transactions  on Mathematical
     Software, 17:98-111 (1991)
                              Arguments
     k -> The generator is advanced by2^K values
**********************************************************************
** Buttrey note: replaced all exit() calls with return()s -- Jan 2015.
** Also replaced all fprintf's with Rprintf
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xm1,Xm2,Xa1,Xa2,Xcg1[],Xcg2[];
static long g,i,ib1,ib2;
static long qrgnin;
/*
     Abort unless random number generator initialized
*/
    gsrgs(0L,&qrgnin);
    if(qrgnin) goto S10;
    Rprintf(" ADVNST called before random generator initialized - ABORT");
    return;
S10:
    gscgn(0L,&g);
    ib1 = Xa1;
    ib2 = Xa2;
    for(i=1; i<=k; i++) {
        ib1 = mltmod(ib1,ib1,Xm1);
        ib2 = mltmod(ib2,ib2,Xm2);
    }
    setsd(mltmod(ib1,*(Xcg1+g-1),Xm1),mltmod(ib2,*(Xcg2+g-1),Xm2));
/*
     NOW, IB1 = A1**K AND IB2 = A2**K
*/
#undef numg
}
Exemple #5
0
void setant(long qvalue)
/*
**********************************************************************
     void setant(long qvalue)
               SET ANTithetic
     Sets whether the current generator produces antithetic values.  If
     X   is  the value  normally returned  from  a uniform [0,1] random
     number generator then 1  - X is the antithetic  value. If X is the
     value  normally  returned  from a   uniform  [0,N]  random  number
     generator then N - 1 - X is the antithetic value.
     All generators are initialized to NOT generate antithetic values.
     This is a transcription from Pascal to Fortran of routine
     Set_Antithetic from the paper
     L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
     with Splitting Facilities." ACM Transactions on Mathematical
     Software, 17:98-111 (1991)
                              Arguments
     qvalue -> nonzero if generator G is to generating antithetic
                    values, otherwise zero
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xqanti[];
long g;
long qrgnin;
/*
     Abort unless random number generator initialized
*/
    gsrgs(0L,&qrgnin);
    if(qrgnin) goto S10;
    fprintf(stderr,"%s\n",
      " SETANT called before random number generator  initialized -- abort!");
    exit(1);
S10:
    gscgn(0L,&g);
    Xqanti[g-1] = qvalue;
#undef numg
}
Exemple #6
0
void setsd(long iseed1,long iseed2)
/*
**********************************************************************
     void setsd(long iseed1,long iseed2)
               SET S-ee-D of current generator
     Resets the initial  seed of  the current  generator to  ISEED1 and
     ISEED2. The seeds of the other generators remain unchanged.
     This is a transcription from Pascal to Fortran of routine
     Set_Seed from the paper
     L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
     with Splitting Facilities." ACM Transactions on Mathematical
     Software, 17:98-111 (1991)
                              Arguments
     iseed1 -> First integer seed
     iseed2 -> Second integer seed
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xig1[],Xig2[];
long g;
long qrgnin;
/*
     Abort unless random number generator initialized
*/
    gsrgs(0L,&qrgnin);
    if(qrgnin) goto S10;
    fprintf(stderr,"%s\n",
      " SETSD called before random number generator  initialized -- abort!");
    exit(1);
S10:
    gscgn(0L,&g);
    *(Xig1+g-1) = iseed1;
    *(Xig2+g-1) = iseed2;
    initgn(-1L);
#undef numg
}
Exemple #7
0
void getsd(long *iseed1,long *iseed2)
/*
**********************************************************************
     void getsd(long *iseed1,long *iseed2)
               GET SeeD
     Returns the value of two integer seeds of the current generator
     This  is   a  transcription from  Pascal   to  Fortran  of routine
     Get_State from the paper
     L'Ecuyer, P. and  Cote,  S. "Implementing a Random Number  Package
     with   Splitting Facilities."  ACM  Transactions   on Mathematical
     Software, 17:98-111 (1991)
                              Arguments
     iseed1 <- First integer seed of generator G
     iseed2 <- Second integer seed of generator G
**********************************************************************
*/
{
#define numg 32L
extern void gsrgs(long getset,long *qvalue);
extern void gscgn(long getset,long *g);
extern long Xcg1[],Xcg2[];
long g;
long qrgnin;
/*
     Abort unless random number generator initialized
*/
    gsrgs(0L,&qrgnin);
    if(qrgnin) goto S10;
    fprintf(stderr,"%s\n",
      " GETSD called before random number generator  initialized -- abort!");
    exit(0);
S10:
    gscgn(0L,&g);
    *iseed1 = *(Xcg1+g-1);
    *iseed2 = *(Xcg2+g-1);
#undef numg
}
void apprcirc(long *n, double *Hurst, double *L, int *cum, long *seed1, 
              long *seed2, double *output) {
  /* function that generates a fractional Brownian motion or fractional  */
  /* Gaussian noise sample using the approximate circulant method.       */
  /* Input:  *n      determines the sample size N by N=2^(*n)            */
  /*         *Hurst  the Hurst parameter of the trace                    */
  /*         *L      the sample is generated on [0,L]                    */
  /*         *cum    = 0: fractional Gaussian noise is produced          */
  /*                 = 1: fractional Brownian motion is produced         */
  /*         *seed1  seed1 for the random generator                      */
  /*         *seed2  seed2 for the random generator                      */
  /* Output: *seed1  new seed1 of the random generator                   */
  /*         *seed2  new seed2 of the random generator                   */
  /*         *output the resulting sample is stored in this array        */
  long i, N, halfN, generator;
  double scaling, H;
  double *pow_spec;
  double aux;
  complex *a;
  
  halfN = pow(2,*n);
  H = *Hurst;
  N = 2*halfN;
  
  /* set random generator and seeds */
  snorm(); 
  generator = 1;
  gscgn(1, &generator);
  setall(*seed1,*seed2);
  
  /* allocate memory */
  pow_spec = (double*) malloc((halfN+1)*sizeof(double));
  
  /* approximate spectral density */
  FGN_spectrum(pow_spec,halfN,H);
 
  a = malloc(N*sizeof(complex)); 
  a[0].re = sqrt(2*(pow(N,2*H)-pow(N-1,2*H)))*snorm();
  a[0].im = 0.;
  a[halfN].re = sqrt(2*pow_spec[halfN])*snorm();
  a[halfN].im = 0.;
  for(i=1; i<halfN; i++) {
    aux = sqrt(pow_spec[i]);
    a[i].re = aux*snorm();
    a[i].im = aux*snorm();
  }
  for(i=halfN+1; i<N; i++) {
    a[i].re = a[N-i].re;
    a[i].im = -a[N-i].im;
  }
  
  /* real part of Fourier transform of a_re + i a_im gives sample path */
  fft(N,a,1,1.0);
  
  /* rescale to obtain a sample of size 2^(*n) on [0,L] */
  scaling = pow(*L/halfN,H)/sqrt(2*N);
  for(i=0;i<halfN;i++) {
    output[i] = scaling*(a[i].re);
    if (*cum && i>0) {
      output[i] += output[i-1];
    }
  }
  
  /* store the new random seeds and free memory */
  getsd(seed1,seed2);
  
  free(pow_spec);
  free(a);
}