void print_time_evolution_of_parameters(FILE *out, ffloat norm, ffloat *host_a, ffloat *host_b, int MSIZE,
                                        ffloat host_mu, ffloat host_alpha, ffloat host_E_dc, ffloat host_E_omega,
                                        ffloat host_omega, ffloat *host_av_data, ffloat t)
{
  printf("\n# t=%0.20f norm=%0.20f\n", t, norm);
  ffloat v_dr_inst = 0 ;
  ffloat v_y_inst = 0;
  ffloat m_over_m_x_inst = 0;
  for( int m = 1; m < 2*host_M+2; m++ ) {
    v_dr_inst += nm(host_b,1,m)*host_dPhi;
    v_y_inst  += nm(host_a,0,m)*phi_y(m)*host_dPhi;
    m_over_m_x_inst += nm(host_a,1,m)*host_dPhi;
  }

  ffloat v_dr_multiplier = 2*gsl_sf_bessel_I0(host_mu)*PI*sqrt(host_alpha)/gsl_sf_bessel_In(1, host_mu);
  ffloat v_y_multiplier  = 4*PI*gsl_sf_bessel_I0(host_mu)/gsl_sf_bessel_In(1, host_mu);
  ffloat m_over_multiplier = PI*host_alpha*sqrt(host_alpha);
  v_dr_inst       *= v_dr_multiplier;
  v_y_inst        *= v_y_multiplier;
  m_over_m_x_inst *= m_over_multiplier;

  host_av_data[1] *= v_dr_multiplier;
  host_av_data[2] *= v_y_multiplier;
  host_av_data[3] *= m_over_multiplier;
  host_av_data[4] *= v_dr_multiplier;
  host_av_data[4] /= t;
  host_av_data[5] *= v_dr_multiplier;
  host_av_data[5] /= t;

  fprintf(out, "#E_{dc}                \\tilde{E}_{\\omega}     \\tilde{\\omega}         mu                     v_{dr}/v_{p}         A(\\omega)              NORM     v_{y}/v_{p}    m/m_{x,k}   <v_{dr}/v_{p}>   <v_{y}/v_{p}>    <m/m_{x,k}>  A_{inst}  t    Asin\n");
  fprintf(out, "%0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f\n",
          host_E_dc, host_E_omega, host_omega, host_mu, v_dr_inst, host_av_data[4], norm, v_y_inst,
          m_over_m_x_inst, host_av_data[1], host_av_data[2], host_av_data[3], cos(host_omega*t)*v_dr_inst, t, host_av_data[4]);
} // end of print_time_evolution_of_parameters(...)
Exemple #2
0
int main(int argc, char *argv[]) {

  int display         = atoi(argv[1]);

  ffloat host_E_dc    = strtod(argv[2], NULL);
  ffloat host_E_omega = strtod(argv[3], NULL);
  ffloat host_omega   = strtod(argv[4], NULL);

  T                   = strtod(argv[5], NULL);
  N                   = atoi(argv[6]);
  PhiYmax             = strtod(argv[7], NULL);
  ffloat B            = strtod(argv[8], NULL);
  t_max               = strtod(argv[9], NULL);

  dPhi = PhiYmax/M;

  printf("# B=%0.20f\n", B);
  printf("# dt=%0.20f dPhiY=%0.20f\n", dt, dPhi);


  ffloat mu = Delta_nu/(2*Kb*T);
  ffloat gamma2 = hbar*hbar/(2*Me*Kb*T*d*d);

  // create a0 and populate it with f0
  ffloat a0[N+1][2*M+3];
  ffloat A = d/(PI*hbar*sqrt(2*PI*Me*Kb*T)*gsl_sf_bessel_I0(mu));
  for( int n=0; n<N+1; n++ ) {
    ffloat a = A*gsl_sf_bessel_In(n, mu)*(n==0?0.5:1);
    for( int m = 0; m < 2*M+3; m++ ) {
      a0[n][m] = a*exp(-gamma2*pow(phi_y(m),2));
    }
  }

  if( display == 0 ) {
    for( int n=0; n<N; n++ ) {
      printf("%d %0.20f\n", n, a0[n][M]);
    }
    return 0;
  }

  if( display == 1 ) {
    for( ffloat phi_x = -PI; phi_x < PI; phi_x += 0.025 ) {
      ffloat value = 0;
      for( int n=0; n<N; n++ ) {
        value += a0[n][M+1]*cos(n*phi_x);
      }
      printf("%0.20f %0.20f %0.20f\n", phi_x, value, (d/(2*PI*hbar*gsl_sf_bessel_I0(mu)*sqrt(2*PI*Me*Kb*T)))*exp(mu*cos(phi_x)));
    }
    ffloat norm = 0;
    for( int m = 1; m < 2*M+2; m++ ) {
      norm += a0[0][m]*dPhi;
    }
    printf("# norm=%0.20f\n", norm*hbar/d*20*PI);
    return 0;
  }

  ffloat a[2][N+1][2*M+3];
  ffloat b[2][N+1][2*M+3];
  for( int c = 0; c < 2; c++ ) {
    for( int n = 0; n < N+1; n++ ) {
      for( int m = 0; m < 2*M+3; m++ ) {
        b[c][n][m] = 0;
        a[c][n][m] = a0[n][m];//*exp(-gamma2*pow(phi_y(m),2));
      }
    }
  }
  
  int current = 0; int next = 1;
  const ffloat alpha = Delta_nu*d*d*Me/(2*hbar*hbar);
  const ffloat nu = (1+dt/2);

  const ffloat abdt = alpha*B*dt/(4*dPhi);

  for( ffloat t = 0; t < t_max; t += dt ) {
    #pragma omp parallel for
    for( int m = 1; m < 2*M+2; m++ ) {
      // #pragma omp parallel
      for( int n = 0; n < N; n++ ) {
        /*
        ffloat nu = 1 + dt/2; // good
        ffloat nu2 = nu * nu;
        ffloat mu_t_plus_1 = (host_E_dc + host_E_omega*cos(host_omega*(t+dt)))*n*dt/2;
        ffloat g=dt*a0[n]+a[n]*(1-dt/2)-eE(t)*n*b[n]*dt/2;
        ffloat h=b[n]*(1-dt/2)+eE(t)*n*a[n]*dt/2;
        a[n] = (g*nu-h*mu_t_plus_1)/(nu*nu + mu_t_plus_1*mu_t_plus_1);
        b[n] = (h*nu+g*mu_t_plus_1)/(nu*nu + mu_t_plus_1*mu_t_plus_1);
        */
        //////////

        ffloat beta_t_plus_1 = host_E_dc + host_E_omega*cos(host_omega*(t+dt))+B*phi_y(m);
        ffloat beta_t        = host_E_dc + host_E_omega*cos(host_omega*(t))+B*phi_y(m);

        ffloat mu_t_plus_1   = n*beta_t_plus_1*dt/2;
        ffloat mu_t          = n*beta_t*dt/2;
        ffloat g = dt*a0[n][m] + a[current][n][m]*(1-dt/2) - b[current][n][m]*mu_t 
          + abdt*(b[current][n+1][m+1] - b[current][n+1][m-1] 
          - ( n < 2 ? 0 : ( b[current][n-1][m+1] - b[current][n-1][m-1])));

        ffloat h = b[current][n][m]*(1-dt/2) + a[current][n][m]*mu_t 
          + abdt*((n==1?2:1)*(n==0?0:(a[current][n-1][m+1]-a[current][n-1][m-1]))
          - (a[current][n+1][m+1]-a[current][n+1][m-1]));
                  

        a[next][n][m] = (g*nu-h*mu_t_plus_1)/(nu*nu+mu_t_plus_1*mu_t_plus_1);
        if( n > 0 ) {
          b[next][n][m] = (g*mu_t_plus_1+h*nu)/(nu*nu+mu_t_plus_1*mu_t_plus_1);
        }

        //////////////////////////////////////
        /*
        ffloat g = a[current][n][m] + dt*a0[n][m] + 
          abdt*(b[current][n+1][m+1] - b[current][n+1][m-1] 
          - ( n < 2 ? 0 : ( b[current][n-1][m+1] - b[current][n-1][m-1])));

        ffloat h = b[current][n][m] + 
          abdt*((n==1?2:1)*(n==0?0:(a[current][n-1][m+1]-a[current][n-1][m-1]))
           - (a[current][n+1][m+1]-a[current][n+1][m-1]));

        ffloat beta_t_plus_1 = host_E_dc + host_E_omega*cos(host_omega*(t+dt))+B*phi_y(m);

        ffloat mu = n*beta_t_plus_1*dt;
        a[next][n][m] = (g*nu-h*mu)/(nu*nu+mu*mu);
        if( n > 0 ) {
          b[next][n][m] = (g*mu+h*nu)/(nu*nu+mu*mu);
        }
        */

        ///////////////////////////////////////
        /*
        a[next][n][m] = dt*a0[n][m]
          + (a[current][n][m-1]+a[current][n][m+1])*(1-dt)/2
          - (b[current][n][m-1]+b[current][n][m+1])*n*beta*dt/2
          + alpha*B*dt/(4*dPhi)*(b[current][n+1][m+1] - b[current][n+1][m-1] 
                                 - ( n < 2 ? 0 : ( b[current][n-1][m+1] - b[current][n-1][m-1]) ) 
                                 );

        if( n == 0 ) { continue; }
        // n here is always 1 or greater
        b[next][n][m] = (b[current][n][m-1]+b[current][n][m+1])*(1-dt)/2
          + (a[current][n][m-1]+a[current][n][m+1])*n*beta*dt/2 
          + alpha*B*dt/(4*dPhi)*((n==1?2:1)*(a[current][n-1][m+1]-a[current][n-1][m-1])
                                 - (a[current][n+1][m+1]-a[current][n+1][m-1]));
        */

      }
    }
    #pragma end parallel for
    //printf("%d\n", current);
    if( current == 0 ) { current = 1; next = 0; } else { current = 0; next = 1; }
  }

  if( display == 2 ) {
    for( ffloat phi_x = -PI; phi_x < PI; phi_x += 0.025 ) {
      ffloat value = 0; ffloat value0 = 0;
      for( int n=0; n<N; n++ ) {
        value += a[current][n][962]*cos(n*phi_x);// + b[current][n][962]*sin(n*phi_x);
        // value += a0[n][M+1]*cos(n*phi_x);
        value0 += a0[n][962]*cos(n*phi_x);
      }
      printf("%0.20f %0.20f %0.20f\n", phi_x, value, value0); // (d/(2*PI*hbar*gsl_sf_bessel_I0(mu)*sqrt(2*PI*Me*Kb*T)))*exp(mu*cos(phi_x)));
    }
    return 0;
  }

  if( display == 3 ) {
    ffloat value_min = 100;
    int m_min = -1;
    for( ffloat phi_x = -PI; phi_x < PI; phi_x += 0.04 ) {
      for( int m = 1; m < 2*M+2; m++ ) {
        ffloat value = 0;
        ffloat value0 = 0;
        for( int n = 0; n < N+1; n++ ) {
          value  += a[current][n][m]*cos(n*phi_x) + b[current][n][m]*sin(n*phi_x);
          value0 += a0[n][m]*cos(n*phi_x);
        }
        printf("%0.20f %0.20f %0.20f %0.20f\n", phi_x, phi_y(m), value<0?0:value, value0);
        if( value < value_min ) { value_min = value; m_min = m; }
      }
      printf("# v_min = %0.20f @ m=%d\n", value_min, m_min);
    }
    return 0;
  }

  if( display == 4 ) {
    ffloat norm = 0;
    for( int m = 1; m < 2*M+2; m++ ) {
      norm += a[current][0][m]*dPhi;
    }
    norm *= hbar*2*PI/(d*d);

    ffloat v_dr_av = 0;
    ffloat v_dr_final = 0;
    for( int m = 1; m < 2*M+2; m++ ) {
      v_dr_final += b[current][1][m]*dPhi;
    }
    v_dr_av = hbar * PI * v_dr_final / ( d * d ); // this is really v_{dr}/v_0

    printf("#E_{dc}                \\tilde{E}_{\\omega}     \\tilde{\\omega}         T                      <v_{dr}/v_{0}>         A(\\omega)              NORM\n");
    printf("%0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f\n", host_E_dc, host_E_omega, host_omega, T, v_dr_av, 0.0, norm);

  }

}
int main(int argc, char **argv) {
  parse_cmd(argc, argv);

  cudaSetDevice(device);

  ffloat T = host_omega>0?(2*PI/host_omega):0; // period of external a/c emf
  if( display == 9 ) {
    t_max = t_start + 101*T;
    init_strobe_array();
  } else {
    t_max = t_start + T;
  }
  if( quiet == 0 ) { printf("# t_max = %0.20f kernel=%d\n", t_max, BLTZM_KERNEL); }

  // we will allocate enough memory to accommodate range
  // from -PhiY_max_range to PhiY_max_range, but will use only
  // part of it from PhiYmin to PhiYmax
  ffloat PhiY_max_range = fabs(PhiYmin);
  if( PhiY_max_range < fabs(PhiYmax) ) {
    PhiY_max_range = fabs(PhiYmax);
  }

  //host_dPhi = PhiY_max_range/host_M;
  host_dPhi = (PhiYmax-PhiYmin)/host_M;

  NSIZE = host_N+1;
  //MSIZE = 2*host_M+3;
  MSIZE = host_M+3;
  PADDED_MSIZE = (MSIZE*sizeof(ffloat))%128==0?MSIZE:((((MSIZE*sizeof(ffloat))/128)*128+128)/sizeof(ffloat));
  printf("PADDED MEMORY FROM %d ELEMENTS PER ROW TO %d\n", MSIZE, (int)PADDED_MSIZE);

  MP1 = host_M+1; // 

  SIZE_2D = NSIZE*PADDED_MSIZE;
  const int SIZE_2Df = SIZE_2D*sizeof(ffloat);

  host_TMSIZE=host_M+1;

  host_nu = 1+host_dt/2;
  host_nu2 = host_nu * host_nu;
  host_nu_tilde = 1-host_dt/2;
  host_bdt = host_B*host_dt/(4*host_dPhi);

  load_data();

  // create a0 and populate it with f0
  ffloat *host_a0; host_a0 = (ffloat *)calloc(SIZE_2D, sizeof(ffloat));
  for( int n=0; n<host_N+1; n++ ) {
    ffloat a = gsl_sf_bessel_In(n, host_mu)*(n==0?0.5:1)/(PI*gsl_sf_bessel_In(0, host_mu))*sqrt(host_mu/(2*PI*host_alpha));
    for( int m = 0; m < host_M+3; m++ ) {
      nm(host_a0, n, m) = a*expl(-host_mu*pow(phi_y(m),2)/2);
    }
  }

  // create device_a0 and transfer data from host_a0 to device_a0
  ffloat *a0;
  HANDLE_ERROR(cudaMalloc((void **)&a0, SIZE_2Df));
  HANDLE_ERROR(cudaMemcpy(a0, host_a0, SIZE_2Df, cudaMemcpyHostToDevice));

  // create a and b 2D vectors, four of each. one for current,
  // another for next pointer on main and shifted grids
  ffloat *host_a = (ffloat *)calloc(SIZE_2D, sizeof(ffloat));
  ffloat *host_b = (ffloat *)calloc(SIZE_2D, sizeof(ffloat));

  ffloat *a[4];
  ffloat *b[4];
  for( int i = 0; i < 4; i++ ) {
    HANDLE_ERROR(cudaMalloc((void **)&a[i], SIZE_2Df));
    HANDLE_ERROR(cudaMalloc((void **)&b[i], SIZE_2Df));

    // zero vector b[i]
    HANDLE_ERROR(cudaMemset((void *)a[i], 0, SIZE_2Df));
    HANDLE_ERROR(cudaMemset((void *)b[i], 0, SIZE_2Df));
  }

  int current = 0; int next = 1;
  int current_hs = 2; int next_hs = 3; // 'hs' - half step

  // init vectors a[0] and a[2]
  HANDLE_ERROR(cudaMemcpy(a[current], host_a0, SIZE_2Df,
                          cudaMemcpyHostToDevice));

  int blocks = (host_M+3)/TH_PER_BLOCK;

  // tiptow to the first half step
  ffloat *host_a_hs = (ffloat *)calloc(SIZE_2D, sizeof(ffloat));
  ffloat *host_b_hs = (ffloat *)calloc(SIZE_2D, sizeof(ffloat));
  ffloat cos_omega_t = 1; // cos(host_omega*t); for t = 0
  ffloat cos_omega_t_plus_dt = cos(host_omega*(host_dt));
  step_on_grid(blocks, a0, a[current], b[current], a[current_hs], b[current_hs],
               a[current], b[current], 0, 0,
               cos_omega_t, cos_omega_t_plus_dt);
  /*
  // temporary solution // FIX ME!!!
  memcpy(host_a_hs, host_a, SIZE_2D*sizeof(ffloat));
  HANDLE_ERROR(cudaMemcpy(a[current_hs], host_a_hs,
                          SIZE_2Df, cudaMemcpyHostToDevice));
  HANDLE_ERROR(cudaMemcpy(b[current_hs], host_b_hs,
                          SIZE_2Df, cudaMemcpyHostToDevice));
  */

  // used for file names when generated data for making animation
  char *file_name_buf = (char *)calloc(128, sizeof(char));

  char buf[16384]; // output buffer for writing frame data when display==77

  int step = 0;
  ffloat frame_time = 0; int frame_number = 1;

  ffloat *host_av_data; host_av_data = (ffloat *)calloc(5, sizeof(ffloat));
  ffloat *av_data;
  HANDLE_ERROR(cudaMalloc((void **)&av_data, 6*sizeof(ffloat)));
  HANDLE_ERROR(cudaMemset((void *)av_data, 0, 6*sizeof(ffloat)));

  float t_hs = 0;

  ffloat t0 = 0;
  ffloat t = t0;
  ffloat timeout = -999;

  ffloat last_tT_reminder = 0;

  for(;;) {
    //read_from
    int ccc = 0;
    for( t = t0; t < t_max; t += host_dt ) {
      /// XXX
      //ccc++;
      //if( ccc == 51 ) { break; }

      t_hs = t + host_dt/2;
      cos_omega_t = cos(host_omega*t);
      cos_omega_t_plus_dt = cos(host_omega*(t+host_dt));
      step_on_grid(blocks, a0, a[current], b[current], a[next], b[next], a[current_hs],
                   b[current_hs], t, t_hs,
                   cos_omega_t, cos_omega_t_plus_dt);

      cudaThreadSynchronize();

      cos_omega_t = cos(host_omega*t_hs);
      cos_omega_t_plus_dt = cos(host_omega*(t_hs+host_dt));
      step_on_half_grid(blocks, a0, a[current], b[current], a[next], b[next], a[current_hs],
                        b[current_hs], a[next_hs], b[next_hs], t, t_hs,
                        cos_omega_t, cos_omega_t_plus_dt);

      /*
      if( t >= 0 ) { 
	HANDLE_ERROR(cudaMemcpy(host_a, a[current], SIZE_2Df, cudaMemcpyDeviceToHost));
	HANDLE_ERROR(cudaMemcpy(host_b, b[current], SIZE_2Df, cudaMemcpyDeviceToHost));
          sprintf(file_name_buf, "strobe.data");
          FILE *frame_file_stream = fopen(file_name_buf, "w");
          setvbuf(frame_file_stream, buf, _IOFBF, sizeof(buf));
          printf("\nWriting strobe %s\n", file_name_buf);
          print_2d_strobe(frame_file_stream, MSIZE, host_a0, host_a, host_b, host_alpha, t);
          fclose(frame_file_stream);
          frame_time = 0;

	break; } /// XXX REMOVE ME
      */

      if( host_E_omega > 0 && display == 77 && frame_time >= 0.01) {
        // we need to perform averaging of v_dr, m_x and A
        av(blocks, a[next], b[next], av_data, t);
        HANDLE_ERROR(cudaMemcpy(host_a, a[current], SIZE_2Df, cudaMemcpyDeviceToHost));
        HANDLE_ERROR(cudaMemcpy(host_b, b[current], SIZE_2Df, cudaMemcpyDeviceToHost));
        HANDLE_ERROR(cudaMemcpy(host_av_data, av_data, 6*sizeof(ffloat), cudaMemcpyDeviceToHost));
        ffloat norm = eval_norm(host_a, host_alpha, MSIZE);
        print_time_evolution_of_parameters(out, norm, host_a, host_b, MSIZE,
                                           host_mu, host_alpha, host_E_dc, host_E_omega, host_omega,
                                           host_av_data, t);
        frame_time = 0;
      }

      if( host_E_omega > 0 && display != 7 && display != 77 && display != 8 && t >= t_start ) {
        // we need to perform averaging of v_dr, m_x and A
        av(blocks, a[next], b[next], av_data, t);
      }

      if( current    == 0 ) {    current = 1;    next = 0; } else { current = 0; next = 1; }
      if( current_hs == 2 ) { current_hs = 3; next_hs = 2; } else { current_hs = 2; next_hs = 3; }

      //if( display == 9 && t >= t_start ) {
      //  ffloat tT = t/T;
      //  printf("t=%0.12f %0.12f %0.12f\n", t, , T);
      //}

      if( display == 9 && t >= t_start ) { // XXX PUT ME BACK
        ffloat tT = t/T;
        ffloat tT_reminder = tT-((int)tT);
        if( tT_reminder < last_tT_reminder ) { 
          HANDLE_ERROR(cudaMemcpy(host_a, a[current], SIZE_2Df, cudaMemcpyDeviceToHost));
          HANDLE_ERROR(cudaMemcpy(host_b, b[current], SIZE_2Df, cudaMemcpyDeviceToHost));
          sprintf(file_name_buf, "strobe%08d.data", frame_number++);
          FILE *frame_file_stream = fopen(file_name_buf, "w");
          setvbuf(frame_file_stream, buf, _IOFBF, sizeof(buf));
          printf("\nWriting strobe %s\n", file_name_buf);
          print_2d_strobe(frame_file_stream, MSIZE, host_a0, host_a, host_b, host_alpha, t);
          fclose(frame_file_stream);
          frame_time = 0;
	}
        last_tT_reminder = tT_reminder;
      }

      if( display == 7 && frame_time >= 0.01 && t > frame_start ) { // we are making movie
        HANDLE_ERROR(cudaMemcpy(host_a, a[current], SIZE_2Df, cudaMemcpyDeviceToHost));
        HANDLE_ERROR(cudaMemcpy(host_b, b[current], SIZE_2Df, cudaMemcpyDeviceToHost));
        sprintf(file_name_buf, "frame%08d.data", frame_number++);
        FILE *frame_file_stream = fopen(file_name_buf, "w");
        setvbuf(frame_file_stream, buf, _IOFBF, sizeof(buf));
        printf("\nWriting frame %s\n", file_name_buf);
        print_2d_data(frame_file_stream, MSIZE, host_a0, host_a, host_b, host_alpha, t);
        fclose(frame_file_stream);
        frame_time=0;
      }

      if( out != stdout && display != 7 ) {
        step++;
        if( step == 300 ) {
          printf("\rt=%0.9f %0.2f%%", t, t/t_max*100);
          fflush(stdout);
          step = 0;
        }
      }
      frame_time += host_dt;

      if( display == 9 && t <= t_start && frame_time >= T ) {
        frame_time == 0;
      }
    }

    HANDLE_ERROR(cudaMemcpy(host_a, a[current], SIZE_2Df, cudaMemcpyDeviceToHost));
    HANDLE_ERROR(cudaMemcpy(host_b, b[current], SIZE_2Df, cudaMemcpyDeviceToHost));
    HANDLE_ERROR(cudaMemcpy(host_av_data, av_data, 6*sizeof(ffloat), cudaMemcpyDeviceToHost));

    ffloat norm = 0;
    ffloat dphi_over_2 = host_dPhi/2.0;
    for( int m = 1; m < host_M+1; m++ ) {
      norm += (nm(host_a,0,m)+nm(host_a,0,m))*dphi_over_2;
    }
    norm *= 2*PI*sqrt(host_alpha);

    if( display == 3 ) {
      for( ffloat phi_x = -PI; phi_x < PI; phi_x += 0.01 ) {
        for( int m = 1; m < host_M; m++ ) {
          ffloat value = 0;
          ffloat value0 = 0;
          for( int n = 0; n < host_N+1; n++ ) {
            value  += nm(host_a,n,m)*cos(n*phi_x) + nm(host_b,n,m)*sin(n*phi_x);
            value0 += nm(host_a0,n,m)*cos(n*phi_x);
          }
          fprintf(out, "%0.5f %0.5f %0.20f %0.20f\n", phi_x, phi_y(m), value<0?0:value, value0<0?0:value0);
        }
      }
      fprintf(out, "# norm=%0.20f\n", norm);
      printf("# norm=%0.20f\n", norm);
      //if( out != stdout ) { fclose(out); }
      cuda_clean_up();
      return EXIT_SUCCESS;
    }

    if( display == 8 ) {
      // single shot image
      HANDLE_ERROR(cudaMemcpy(host_a, a[current], SIZE_2Df, cudaMemcpyDeviceToHost));
      HANDLE_ERROR(cudaMemcpy(host_b, b[current], SIZE_2Df, cudaMemcpyDeviceToHost));
      sprintf(file_name_buf, "frame.data");
      FILE *frame_file_stream = fopen(file_name_buf, "w");
      setvbuf(frame_file_stream, buf, _IOFBF, sizeof(buf));
      printf("\nWriting frame %s\n", file_name_buf);
      print_2d_data(frame_file_stream, MSIZE, host_a0, host_a, host_b, host_alpha, t);
      fclose(frame_file_stream);
      frame_time=0;
      return EXIT_SUCCESS;
    }

    if( display == 4 ) {
      if( quiet == 0 ) { printf("\n# norm=%0.20f\n", norm); }
      ffloat v_dr_inst = 0 ;
      ffloat v_y_inst = 0;
      ffloat m_over_m_x_inst = 0;
      for( int m = 1; m < host_M; m++ ) {
        v_dr_inst += nm(host_b,1,m)*host_dPhi;
        v_y_inst  += nm(host_a,0,m)*phi_y(m)*host_dPhi;
        m_over_m_x_inst += nm(host_a,1,m)*host_dPhi;
      }

      ffloat v_dr_multiplier = 2*gsl_sf_bessel_I0(host_mu)*PI*sqrt(host_alpha)/gsl_sf_bessel_In(1, host_mu);
      ffloat v_y_multiplier  = 4*PI*gsl_sf_bessel_I0(host_mu)/gsl_sf_bessel_In(1, host_mu);
      ffloat m_over_multiplier = PI*host_alpha*sqrt(host_alpha);
      v_dr_inst       *= v_dr_multiplier;
      v_y_inst        *= v_y_multiplier;
      m_over_m_x_inst *= m_over_multiplier;

      host_av_data[1] *= v_dr_multiplier;
      host_av_data[2] *= v_y_multiplier;
      host_av_data[3] *= m_over_multiplier;
      host_av_data[4] *= v_dr_multiplier;
      host_av_data[4] /= T;
      host_av_data[5] *= v_dr_multiplier;
      host_av_data[5] /= T;

      fprintf(out, "# display=%d E_dc=%0.20f E_omega=%0.20f omega=%0.20f mu=%0.20f alpha=%0.20f n-harmonics=%d PhiYmin=%0.20f PhiYmax=%0.20f B=%0.20f t-max=%0.20f dt=%0.20f g-grid=%d\n",
                      display,   host_E_dc,  host_E_omega,  host_omega,  host_mu,  host_alpha,  host_N,        PhiYmin,       PhiYmax,       host_B,  t_start,     host_dt,  host_M);
      fprintf(out, "#E_{dc}                \\tilde{E}_{\\omega}     \\tilde{\\omega}         mu                     v_{dr}/v_{p}         A(\\omega)              NORM     v_{y}/v_{p}    m/m_{x,k}   <v_{dr}/v_{p}>   <v_{y}/v_{p}>    <m/m_{x,k}>    Asin\n");
      fprintf(out, "%0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f %0.20f\n",
              host_E_dc, host_E_omega, host_omega, host_mu, v_dr_inst, host_av_data[4], norm, v_y_inst,
              m_over_m_x_inst, host_av_data[1], host_av_data[2], host_av_data[3], host_av_data[5]);
    }

    if( read_from == NULL ) { break; }

    // scan for new parameters
    timeout = scan_for_new_parameters();
    if( timeout < -900 ) { break; } // user entered 'exit'
    t_start = t + timeout;
    t_max = t_start + T;
    t0 = t + host_dt;
    T=host_omega>0?(2*PI/host_omega):0;
    load_data(); // re-load data
    HANDLE_ERROR(cudaMemset((void *)av_data, 0, 6*sizeof(ffloat))); // clear averaging data
    if( quiet == 0 ) { printf("# t_max = %0.20f\n", t_max); }
  } // for(;;)

  if( out != NULL && out != stdout ) {
    fclose(out);
  }
  cuda_clean_up();
  return EXIT_SUCCESS;
} // end of main(...)
Exemple #4
0
double FC_FUNC_(oct_bessel_in, OCT_BESSEL_IN)
     (const int *n, const double *x)
{
  return gsl_sf_bessel_In(*n, *x);
}