Exemple #1
0
/** Get address of registers and IRQ for given device.
 *
 * @param[in] dev Device asking for the addresses.
 * @param[out] mem_reg_address Base address of the memory range.
 * @param[out] mem_reg_size Size of the memory range.
 * @param[out] irq_no IRQ assigned to the device.
 * @return Error code.
 */
int get_my_registers(ddf_dev_t *dev,
    uintptr_t *mem_reg_address, size_t *mem_reg_size, int *irq_no)
{
	assert(dev);

	async_sess_t *parent_sess =
	    devman_parent_device_connect(EXCHANGE_SERIALIZE,
	    ddf_dev_get_handle(dev), IPC_FLAG_BLOCKING);
	if (!parent_sess)
		return ENOMEM;

	hw_res_list_parsed_t hw_res;
	hw_res_list_parsed_init(&hw_res);
	const int ret =  hw_res_get_list_parsed(parent_sess, &hw_res, 0);
	async_hangup(parent_sess);
	if (ret != EOK) {
		return ret;
	}

	/* We want one irq and one mem range. */
	if (hw_res.irqs.count != 1 || hw_res.mem_ranges.count != 1) {
		hw_res_list_parsed_clean(&hw_res);
		return EINVAL;
	}

	if (mem_reg_address)
		*mem_reg_address = hw_res.mem_ranges.ranges[0].address;
	if (mem_reg_size)
		*mem_reg_size = hw_res.mem_ranges.ranges[0].size;
	if (irq_no)
		*irq_no = hw_res.irqs.irqs[0];

	hw_res_list_parsed_clean(&hw_res);
	return EOK;
}
Exemple #2
0
/** Get address of I/O registers.
 *
 * @param[in] dev Device asking for the addresses.
 * @param[out] io_reg_address Base address of the memory range.
 * @param[out] io_reg_size Size of the memory range.
 * @return Error code.
 */
int hc_get_my_registers(
    const ddf_dev_t *dev, uintptr_t *io_reg_address, size_t *io_reg_size)
{
	assert(dev);

	async_sess_t *parent_sess =
	    devman_parent_device_connect(EXCHANGE_SERIALIZE, dev->handle,
	    IPC_FLAG_BLOCKING);
	if (!parent_sess)
		return ENOMEM;

	hw_res_list_parsed_t hw_res;
	hw_res_list_parsed_init(&hw_res);
	const int ret =  hw_res_get_list_parsed(parent_sess, &hw_res, 0);
	async_hangup(parent_sess);
	if (ret != EOK) {
		return ret;
	}

	if (hw_res.io_ranges.count != 1) {
		hw_res_list_parsed_clean(&hw_res);
		return EINVAL;
	}

	if (io_reg_address != NULL)
		*io_reg_address = hw_res.io_ranges.ranges[0].address;

	if (io_reg_size != NULL)
		*io_reg_size = hw_res.io_ranges.ranges[0].size;

	hw_res_list_parsed_clean(&hw_res);
	return EOK;
}
/**
 * Connect to the parent's driver and get HW resources list in parsed format.
 * Note: this function should be called only from add_device handler, therefore
 * we don't need to use locks.
 *
 * @param		nic_data
 * @param[out]	resources	Parsed lists of resources.
 *
 * @return EOK or negative error code
 */
int nic_get_resources(nic_t *nic_data, hw_res_list_parsed_t *resources)
{
	ddf_dev_t *dev = nic_data->dev;
	async_sess_t *parent_sess;
	
	/* Connect to the parent's driver. */
	parent_sess = ddf_dev_parent_sess_create(dev, EXCHANGE_SERIALIZE);
	if (parent_sess == NULL)
		return EPARTY;
	
	return hw_res_get_list_parsed(parent_sess, resources, 0);
}
Exemple #4
0
/** Get address of I/O registers.
 *
 * @param[in]  dev            Device asking for the addresses.
 * @param[out] io_reg_address Base address of the memory range.
 * @param[out] io_reg_size    Size of the memory range.
 * @param[out] kbd_irq        Primary port IRQ.
 * @param[out] mouse_irq      Auxiliary port IRQ.
 *
 * @return Error code.
 *
 */
static int get_my_registers(ddf_dev_t *dev, uintptr_t *io_reg_address,
    size_t *io_reg_size, int *kbd_irq, int *mouse_irq)
{
	assert(dev);
	
	async_sess_t *parent_sess = ddf_dev_parent_sess_create(
	    dev, EXCHANGE_SERIALIZE);
	if (parent_sess == NULL)
		return ENOMEM;
	
	hw_res_list_parsed_t hw_resources;
	hw_res_list_parsed_init(&hw_resources);
	const int ret = hw_res_get_list_parsed(parent_sess, &hw_resources, 0);
	if (ret != EOK)
		return ret;
	
	if ((hw_resources.irqs.count != 2) ||
	    (hw_resources.io_ranges.count != 1)) {
		hw_res_list_parsed_clean(&hw_resources);
		return EINVAL;
	}
	
	if (io_reg_address)
		*io_reg_address = hw_resources.io_ranges.ranges[0].address;
	
	if (io_reg_size)
		*io_reg_size = hw_resources.io_ranges.ranges[0].size;
	
	if (kbd_irq)
		*kbd_irq = hw_resources.irqs.irqs[0];
	
	if (mouse_irq)
		*mouse_irq = hw_resources.irqs.irqs[1];
	
	hw_res_list_parsed_clean(&hw_resources);
	return EOK;
}
Exemple #5
0
/** Initialize new SB16 driver instance.
 *
 * @param[in] device DDF instance of the device to initialize.
 * @return Error code.
 */
static int sb_add_device(ddf_dev_t *device)
{
	bool handler_regd = false;
	const size_t irq_cmd_count = sb16_irq_code_size();
	irq_cmd_t irq_cmds[irq_cmd_count];
	irq_pio_range_t irq_ranges[1];

	sb16_t *soft_state = ddf_dev_data_alloc(device, sizeof(sb16_t));
	int rc = soft_state ? EOK : ENOMEM;
	if (rc != EOK) {
		ddf_log_error("Failed to allocate sb16 structure.");
		goto error;
	}

	addr_range_t sb_regs;
	addr_range_t *p_sb_regs = &sb_regs;
	addr_range_t mpu_regs;
	addr_range_t *p_mpu_regs = &mpu_regs;
	int irq = 0, dma8 = 0, dma16 = 0;

	rc = sb_get_res(device, &p_sb_regs, &p_mpu_regs, &irq, &dma8, &dma16);
	if (rc != EOK) {
		ddf_log_error("Failed to get resources: %s.", str_error(rc));
		goto error;
	}

	sb16_irq_code(p_sb_regs, dma8, dma16, irq_cmds, irq_ranges);

	irq_code_t irq_code = {
		.cmdcount = irq_cmd_count,
		.cmds = irq_cmds,
		.rangecount = 1,
		.ranges = irq_ranges
	};

	rc = register_interrupt_handler(device, irq, irq_handler, &irq_code);
	if (rc != EOK) {
		ddf_log_error("Failed to register irq handler: %s.",
		    str_error(rc));
		goto error;
	}

	handler_regd = true;

	rc = sb_enable_interrupts(device);
	if (rc != EOK) {
		ddf_log_error("Failed to enable interrupts: %s.",
		    str_error(rc));
		goto error;
	}

	rc = sb16_init_sb16(soft_state, p_sb_regs, device, dma8, dma16);
	if (rc != EOK) {
		ddf_log_error("Failed to init sb16 driver: %s.",
		    str_error(rc));
		goto error;
	}

	rc = sb16_init_mpu(soft_state, p_mpu_regs);
	if (rc == EOK) {
		ddf_fun_t *mpu_fun =
		    ddf_fun_create(device, fun_exposed, "midi");
		if (mpu_fun) {
			rc = ddf_fun_bind(mpu_fun);
			if (rc != EOK)
				ddf_log_error(
				    "Failed to bind midi function: %s.",
				    str_error(rc));
		} else {
			ddf_log_error("Failed to create midi function.");
		}
	} else {
		ddf_log_warning("Failed to init mpu driver: %s.",
		    str_error(rc));
	}

	/* MPU state does not matter */
	return EOK;
error:
	if (handler_regd)
		unregister_interrupt_handler(device, irq);
	return rc;
}

static int sb_get_res(ddf_dev_t *device, addr_range_t **pp_sb_regs,
    addr_range_t **pp_mpu_regs, int *irq, int *dma8, int *dma16)
{
	assert(device);

	async_sess_t *parent_sess = devman_parent_device_connect(
	    ddf_dev_get_handle(device), IPC_FLAG_BLOCKING);
	if (!parent_sess)
		return ENOMEM;

	hw_res_list_parsed_t hw_res;
	hw_res_list_parsed_init(&hw_res);
	const int ret = hw_res_get_list_parsed(parent_sess, &hw_res, 0);
	async_hangup(parent_sess);
	if (ret != EOK) {
		return ret;
	}

	/* 1x IRQ, 1-2x DMA(8,16), 1-2x IO (MPU is separate). */
	if (hw_res.irqs.count != 1 ||
	   (hw_res.io_ranges.count != 1 && hw_res.io_ranges.count != 2) ||
	   (hw_res.dma_channels.count != 1 && hw_res.dma_channels.count != 2)) {
		hw_res_list_parsed_clean(&hw_res);
		return EINVAL;
	}

	if (irq)
		*irq = hw_res.irqs.irqs[0];

	if (dma8) {
		if (hw_res.dma_channels.channels[0] < 4) {
			*dma8 = hw_res.dma_channels.channels[0];
		} else {
			if (hw_res.dma_channels.count == 2 &&
			    hw_res.dma_channels.channels[1] < 4) {
				*dma8 = hw_res.dma_channels.channels[1];
			}
		}
	}

	if (dma16) {
		if (hw_res.dma_channels.channels[0] > 4) {
			*dma16 = hw_res.dma_channels.channels[0];
		} else {
			if (hw_res.dma_channels.count == 2 &&
			    hw_res.dma_channels.channels[1] > 4) {
				*dma16 = hw_res.dma_channels.channels[1];
			}
		}
	}

	if (hw_res.io_ranges.count == 1) {
		if (pp_sb_regs && *pp_sb_regs)
			**pp_sb_regs = hw_res.io_ranges.ranges[0];
		if (pp_mpu_regs)
			*pp_mpu_regs = NULL;
	} else {
		const int sb =
		    (hw_res.io_ranges.ranges[0].size >= sizeof(sb16_regs_t))
		        ? 0 : 1;
		const int mpu = 1 - sb;
		if (pp_sb_regs && *pp_sb_regs)
			**pp_sb_regs = hw_res.io_ranges.ranges[sb];
		if (pp_mpu_regs && *pp_mpu_regs)
			**pp_mpu_regs = hw_res.io_ranges.ranges[mpu];
	}

	return EOK;
}