Exemple #1
0
/* user to have to play with the cgroup hierarchy to modify it */
extern int task_cgroup_cpuset_set_task_affinity(stepd_step_rec_t *job)
{
	int fstatus = SLURM_ERROR;

#ifndef HAVE_HWLOC

	error("task/cgroup: plugin not compiled with hwloc support, "
	      "skipping affinity.");
	return fstatus;

#else
	char mstr[1 + CPU_SETSIZE / 4];
	cpu_bind_type_t bind_type;
	cpu_set_t ts;
	hwloc_obj_t obj;
	hwloc_obj_type_t socket_or_node;
	hwloc_topology_t topology;
	hwloc_bitmap_t cpuset;
	hwloc_obj_type_t hwtype;
	hwloc_obj_type_t req_hwtype;
	int bind_verbose = 0;
	int rc = SLURM_SUCCESS, match;
	pid_t    pid = job->envtp->task_pid;
	size_t tssize;
	uint32_t nldoms;
	uint32_t nsockets;
	uint32_t ncores;
	uint32_t npus;
	uint32_t nobj;
	uint32_t taskid = job->envtp->localid;
	uint32_t jntasks = job->node_tasks;
	uint32_t jnpus;

	/* Allocate and initialize hwloc objects */
	hwloc_topology_init(&topology);
	hwloc_topology_load(topology);
	cpuset = hwloc_bitmap_alloc();

	int spec_threads = 0;

	if (job->batch) {
		jnpus = job->cpus;
		job->cpus_per_task = job->cpus;
	} else
		jnpus = jntasks * job->cpus_per_task;

	bind_type = job->cpu_bind_type;
	if ((conf->task_plugin_param & CPU_BIND_VERBOSE) ||
	    (bind_type & CPU_BIND_VERBOSE))
		bind_verbose = 1 ;

	if ( hwloc_get_type_depth(topology, HWLOC_OBJ_NODE) >
	     hwloc_get_type_depth(topology, HWLOC_OBJ_SOCKET) ) {
		/* One socket contains multiple NUMA-nodes
		 * like AMD Opteron 6000 series etc.
		 * In such case, use NUMA-node instead of socket. */
		socket_or_node = HWLOC_OBJ_NODE;
	} else {
		socket_or_node = HWLOC_OBJ_SOCKET;
	}

	if (bind_type & CPU_BIND_NONE) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting no affinity",
			     taskid);
		return 0;
	} else if (bind_type & CPU_BIND_TO_THREADS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "thread level binding",taskid);
		req_hwtype = HWLOC_OBJ_PU;
	} else if (bind_type & CPU_BIND_TO_CORES) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "core level binding",taskid);
		req_hwtype = HWLOC_OBJ_CORE;
	} else if (bind_type & CPU_BIND_TO_SOCKETS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "socket level binding",taskid);
		req_hwtype = socket_or_node;
	} else if (bind_type & CPU_BIND_TO_LDOMS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "ldom level binding",taskid);
		req_hwtype = HWLOC_OBJ_NODE;
	} else if (bind_type & CPU_BIND_TO_BOARDS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "board level binding",taskid);
		req_hwtype = HWLOC_OBJ_GROUP;
	} else if (bind_type & bind_mode_ldom) {
		req_hwtype = HWLOC_OBJ_NODE;
	} else {
		if (bind_verbose)
			info("task/cgroup: task[%u] using core level binding"
			     " by default",taskid);
		req_hwtype = HWLOC_OBJ_CORE;
	}

	/*
	 * Perform the topology detection. It will only get allowed PUs.
	 * Detect in the same time the granularity to use for binding.
	 * The granularity can be relaxed from threads to cores if enough
	 * cores are available as with hyperthread support, ntasks-per-core
	 * param can let us have access to more threads per core for each
	 * task
	 * Revert back to machine granularity if no finer-grained granularity
	 * matching the request is found. This will result in no affinity
	 * applied.
	 * The detected granularity will be used to find where to best place
	 * the task, then the cpu_bind option will be used to relax the
	 * affinity constraint and use more PUs. (i.e. use a core granularity
	 * to dispatch the tasks across the sockets and then provide access
	 * to each task to the cores of its socket.)
	 */
	npus = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						   HWLOC_OBJ_PU);
	ncores = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						     HWLOC_OBJ_CORE);
	nsockets = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						       socket_or_node);
	nldoms = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						     HWLOC_OBJ_NODE);
	//info("PU:%d CORE:%d SOCK:%d LDOM:%d", npus, ncores, nsockets, nldoms);

	hwtype = HWLOC_OBJ_MACHINE;
	nobj = 1;
	if ((job->job_core_spec != (uint16_t) NO_VAL) &&
	    (job->job_core_spec &  CORE_SPEC_THREAD)  &&
	    (job->job_core_spec != CORE_SPEC_THREAD)) {
		spec_threads = job->job_core_spec & (~CORE_SPEC_THREAD);
	}
	if (npus >= (jnpus + spec_threads) || bind_type & CPU_BIND_TO_THREADS) {
		hwtype = HWLOC_OBJ_PU;
		nobj = npus;
	}
	if (ncores >= jnpus || bind_type & CPU_BIND_TO_CORES) {
		hwtype = HWLOC_OBJ_CORE;
		nobj = ncores;
	}
	if (nsockets >= jntasks &&
	    bind_type & CPU_BIND_TO_SOCKETS) {
		hwtype = socket_or_node;
		nobj = nsockets;
	}
	/*
	 * HWLOC returns all the NUMA nodes available regardless of the
	 * number of underlying sockets available (regardless of the allowed
	 * resources). So there is no guarantee that each ldom will be populated
	 * with usable sockets. So add a simple check that at least ensure that
	 * we have as many sockets as ldoms before moving to ldoms granularity
	 */
	if (nldoms >= jntasks &&
	    nsockets >= nldoms &&
	    bind_type & (CPU_BIND_TO_LDOMS | bind_mode_ldom)) {
		hwtype = HWLOC_OBJ_NODE;
		nobj = nldoms;
	}

	/*
	 * If not enough objects to do the job, revert to no affinity mode
	 */
	if (hwloc_compare_types(hwtype, HWLOC_OBJ_MACHINE) == 0) {
		info("task/cgroup: task[%u] disabling affinity because of %s "
		     "granularity",taskid, hwloc_obj_type_string(hwtype));

	} else if ((hwloc_compare_types(hwtype, HWLOC_OBJ_CORE) >= 0) &&
		   (nobj < jnpus)) {
		info("task/cgroup: task[%u] not enough %s objects (%d < %d), "
		     "disabling affinity",
		     taskid, hwloc_obj_type_string(hwtype), nobj, jnpus);

	} else if (bind_type & bind_mode) {
		/* Explicit binding mode specified by the user
		 * Bind the taskid in accordance with the specified mode
		 */
		obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_MACHINE, 0);
		match = hwloc_bitmap_isequal(obj->complete_cpuset,
					     obj->allowed_cpuset);
		if ((job->job_core_spec == (uint16_t) NO_VAL) && !match) {
			info("task/cgroup: entire node must be allocated, "
			     "disabling affinity, task[%u]", taskid);
			fprintf(stderr, "Requested cpu_bind option requires "
				"entire node to be allocated; disabling "
				"affinity\n");
		} else {
			if (bind_verbose) {
				info("task/cgroup: task[%u] is requesting "
				     "explicit binding mode", taskid);
			}
			_get_sched_cpuset(topology, hwtype, req_hwtype, &ts,
					  job);
			tssize = sizeof(cpu_set_t);
			fstatus = SLURM_SUCCESS;
			if (job->job_core_spec != (uint16_t) NO_VAL)
				_validate_mask(taskid, obj, &ts);
			if ((rc = sched_setaffinity(pid, tssize, &ts))) {
				error("task/cgroup: task[%u] unable to set "
				      "mask 0x%s", taskid,
				      cpuset_to_str(&ts, mstr));
				error("sched_setaffinity rc = %d", rc);
				fstatus = SLURM_ERROR;
			} else if (bind_verbose) {
				info("task/cgroup: task[%u] mask 0x%s",
				     taskid, cpuset_to_str(&ts, mstr));
			}
			_slurm_chkaffinity(&ts, job, rc);
		}
	} else {
		/* Bind the detected object to the taskid, respecting the
		 * granularity, using the designated or default distribution
		 * method (block or cyclic). */
		char *str;

		if (bind_verbose) {
			info("task/cgroup: task[%u] using %s granularity dist %u",
			     taskid, hwloc_obj_type_string(hwtype),
			     job->task_dist);
		}

		/* See srun man page for detailed information on --distribution
		 * option.
		 *
		 * You can see the equivalent code for the
		 * task/affinity plugin in
		 * src/plugins/task/affinity/dist_tasks.c, around line 368
		 */
		switch (job->task_dist & SLURM_DIST_NODESOCKMASK) {
		case SLURM_DIST_BLOCK_BLOCK:
		case SLURM_DIST_CYCLIC_BLOCK:
		case SLURM_DIST_PLANE:
			/* tasks are distributed in blocks within a plane */
			_task_cgroup_cpuset_dist_block(topology,
				hwtype, req_hwtype,
				nobj, job, bind_verbose, cpuset);
			break;
		case SLURM_DIST_ARBITRARY:
		case SLURM_DIST_BLOCK:
		case SLURM_DIST_CYCLIC:
		case SLURM_DIST_UNKNOWN:
			if (slurm_get_select_type_param()
			    & CR_CORE_DEFAULT_DIST_BLOCK) {
				_task_cgroup_cpuset_dist_block(topology,
					hwtype, req_hwtype,
					nobj, job, bind_verbose, cpuset);
				break;
			}
			/* We want to fall through here if we aren't doing a
			   default dist block.
			*/
		default:
			_task_cgroup_cpuset_dist_cyclic(topology,
				hwtype, req_hwtype,
				job, bind_verbose, cpuset);
			break;
		}

		hwloc_bitmap_asprintf(&str, cpuset);

		tssize = sizeof(cpu_set_t);
		if (hwloc_cpuset_to_glibc_sched_affinity(topology, cpuset,
							 &ts, tssize) == 0) {
			fstatus = SLURM_SUCCESS;
			if ((rc = sched_setaffinity(pid, tssize, &ts))) {
				error("task/cgroup: task[%u] unable to set "
				      "taskset '%s'", taskid, str);
				fstatus = SLURM_ERROR;
			} else if (bind_verbose) {
				info("task/cgroup: task[%u] set taskset '%s'",
				     taskid, str);
			}
			_slurm_chkaffinity(&ts, job, rc);
		} else {
			error("task/cgroup: task[%u] unable to build "
			      "taskset '%s'",taskid,str);
			fstatus = SLURM_ERROR;
		}
		free(str);
	}

	/* Destroy hwloc objects */
	hwloc_bitmap_free(cpuset);
	hwloc_topology_destroy(topology);

	return fstatus;
#endif

}
int main(void)
{
  hwloc_topology_t topology;
  hwloc_bitmap_t set, set2;
  hwloc_const_bitmap_t cset_available, cset_all;
  hwloc_obj_t obj;
  char *buffer;
  char type[64];
  unsigned i;
  int err;

  /* create a topology */
  err = hwloc_topology_init(&topology);
  if (err < 0) {
    fprintf(stderr, "failed to initialize the topology\n");
    return EXIT_FAILURE;
  }
  err = hwloc_topology_load(topology);
  if (err < 0) {
    fprintf(stderr, "failed to load the topology\n");
    hwloc_topology_destroy(topology);
    return EXIT_FAILURE;
  }

  /* retrieve the entire set of available PUs */
  cset_available = hwloc_topology_get_topology_cpuset(topology);

  /* retrieve the CPU binding of the current entire process */
  set = hwloc_bitmap_alloc();
  if (!set) {
    fprintf(stderr, "failed to allocate a bitmap\n");
    hwloc_topology_destroy(topology);
    return EXIT_FAILURE;
  }
  err = hwloc_get_cpubind(topology, set, HWLOC_CPUBIND_PROCESS);
  if (err < 0) {
    fprintf(stderr, "failed to get cpu binding\n");
    hwloc_bitmap_free(set);
    hwloc_topology_destroy(topology);
  }

  /* display the processing units that cannot be used by this process */
  if (hwloc_bitmap_isequal(set, cset_available)) {
    printf("this process can use all available processing units in the system\n");
  } else {
    /* compute the set where we currently cannot run.
     * we can't modify cset_available because it's a system read-only one,
     * so we do   set = available &~ set
     */
    hwloc_bitmap_andnot(set, cset_available, set);
    hwloc_bitmap_asprintf(&buffer, set);
    printf("process cannot use %d process units (%s) among %u in the system\n",
	   hwloc_bitmap_weight(set), buffer, hwloc_bitmap_weight(cset_available));
    free(buffer);
    /* restore set where it was before the &~ operation above */
    hwloc_bitmap_andnot(set, cset_available, set);
  }
  /* print the smallest object covering the current process binding */
  obj = hwloc_get_obj_covering_cpuset(topology, set);
  hwloc_obj_type_snprintf(type, sizeof(type), obj, 0);
  printf("process is bound within object %s logical index %u\n", type, obj->logical_index);

  /* retrieve the single PU where the current thread actually runs within this process binding */
  set2 = hwloc_bitmap_alloc();
  if (!set2) {
    fprintf(stderr, "failed to allocate a bitmap\n");
    hwloc_bitmap_free(set);
    hwloc_topology_destroy(topology);
    return EXIT_FAILURE;
  }
  err = hwloc_get_last_cpu_location(topology, set2, HWLOC_CPUBIND_THREAD);
  if (err < 0) {
    fprintf(stderr, "failed to get last cpu location\n");
    hwloc_bitmap_free(set);
    hwloc_bitmap_free(set2);
    hwloc_topology_destroy(topology);
  }
  /* sanity checks that are not actually needed but help the reader */
  /* this thread runs within the process binding */
  assert(hwloc_bitmap_isincluded(set2, set));
  /* this thread runs on a single PU at a time */
  assert(hwloc_bitmap_weight(set2) == 1);

  /* print the logical number of the PU where that thread runs */
  /* extract the PU OS index from the bitmap */
  i = hwloc_bitmap_first(set2);
  obj = hwloc_get_pu_obj_by_os_index(topology, i);
  printf("thread is now running on PU logical index %u (OS/physical index %u)\n",
	 obj->logical_index, i);

  /* migrate this single thread to where other PUs within the current binding */
  hwloc_bitmap_andnot(set2, set, set2);
  err = hwloc_set_cpubind(topology, set2, HWLOC_CPUBIND_THREAD);
  if (err < 0) {
    fprintf(stderr, "failed to set thread binding\n");
    hwloc_bitmap_free(set);
    hwloc_bitmap_free(set2);
    hwloc_topology_destroy(topology);
  }
  /* reprint the PU where that thread runs */
  err = hwloc_get_last_cpu_location(topology, set2, HWLOC_CPUBIND_THREAD);
  if (err < 0) {
    fprintf(stderr, "failed to get last cpu location\n");
    hwloc_bitmap_free(set);
    hwloc_bitmap_free(set2);
    hwloc_topology_destroy(topology);
  }
  /* print the logical number of the PU where that thread runs */
  /* extract the PU OS index from the bitmap */
  i = hwloc_bitmap_first(set2);
  obj = hwloc_get_pu_obj_by_os_index(topology, i);
  printf("thread is running on PU logical index %u (OS/physical index %u)\n",
	 obj->logical_index, i);

  hwloc_bitmap_free(set);
  hwloc_bitmap_free(set2);

  /* retrieve the entire set of all PUs */
  cset_all = hwloc_topology_get_complete_cpuset(topology);
  if (hwloc_bitmap_isequal(cset_all, cset_available)) {
    printf("all hardware PUs are available\n");
  } else {
    printf("only %d hardware PUs are available in the machine among %d\n",
	   hwloc_bitmap_weight(cset_available), hwloc_bitmap_weight(cset_all));
  }

  hwloc_topology_destroy(topology);
  return EXIT_SUCCESS;
}
Exemple #3
0
int main(void)
{
  hwloc_topology_t topology;
  int i;
  int err;

  hwloc_topology_init(&topology);
  hwloc_topology_set_type_filter(topology, HWLOC_OBJ_PCI_DEVICE, HWLOC_TYPE_FILTER_KEEP_IMPORTANT);
  hwloc_topology_set_type_filter(topology, HWLOC_OBJ_OS_DEVICE, HWLOC_TYPE_FILTER_KEEP_IMPORTANT);
  hwloc_topology_load(topology);

  for(i=0; ; i++) {
    hwloc_bitmap_t set;
    hwloc_obj_t osdev, ancestor;
    const char *value;

    osdev = hwloc_intel_mic_get_device_osdev_by_index(topology, i);
    if (!osdev)
      break;
    assert(osdev);

    ancestor = hwloc_get_non_io_ancestor_obj(topology, osdev);

    printf("found OSDev %s\n", osdev->name);
    err = strncmp(osdev->name, "mic", 3);
    assert(!err);
    assert(atoi(osdev->name+3) == (int) i);

    assert(osdev->attr->osdev.type == HWLOC_OBJ_OSDEV_COPROC);

    value = hwloc_obj_get_info_by_name(osdev, "CoProcType");
    err = strcmp(value, "MIC");
    assert(!err);

    value = hwloc_obj_get_info_by_name(osdev, "MICFamily");
    printf("found MICFamily %s\n", value);
    value = hwloc_obj_get_info_by_name(osdev, "MICSKU");
    printf("found MICSKU %s\n", value);
    value = hwloc_obj_get_info_by_name(osdev, "MICActiveCores");
    printf("found MICActiveCores %s\n", value);
    value = hwloc_obj_get_info_by_name(osdev, "MICMemorySize");
    printf("found MICMemorySize %s\n", value);

    set = hwloc_bitmap_alloc();
    err = hwloc_intel_mic_get_device_cpuset(topology, i, set);
    if (err < 0) {
      printf("failed to get cpuset for device %d\n", i);
    } else {
      char *cpuset_string = NULL;
      hwloc_bitmap_asprintf(&cpuset_string, set);
      printf("got cpuset %s for device %d\n", cpuset_string, i);
      if (hwloc_bitmap_isequal(hwloc_topology_get_complete_cpuset(topology), hwloc_topology_get_topology_cpuset(topology)))
	/* only compare if the topology is complete, otherwise things can be significantly different */
	assert(hwloc_bitmap_isequal(set, ancestor->cpuset));
      free(cpuset_string);
    }
    hwloc_bitmap_free(set);
  }

  hwloc_topology_destroy(topology);

  return 0;
}
Exemple #4
0
int main(void)
{
  hwloc_topology_t topology;
  cl_int clret;
  cl_platform_id *platform_ids;
  unsigned nrp, nrd, count, i, j;
  int err;

  hwloc_topology_init(&topology);
  hwloc_topology_set_type_filter(topology, HWLOC_OBJ_PCI_DEVICE, HWLOC_TYPE_FILTER_KEEP_IMPORTANT);
  hwloc_topology_set_type_filter(topology, HWLOC_OBJ_OS_DEVICE, HWLOC_TYPE_FILTER_KEEP_IMPORTANT);
  hwloc_topology_load(topology);

  clret = clGetPlatformIDs(0, NULL, &nrp);
  if (CL_SUCCESS != clret || !nrp)
    return 0;
  platform_ids = malloc(nrp * sizeof(*platform_ids));
  if (!platform_ids)
    return 0;
  clret = clGetPlatformIDs(nrp, platform_ids, &nrp);
  if (CL_SUCCESS != clret || !nrp)
    return 0;

  count = 0;
  for(i=0; i<nrp; i++) {
    cl_device_id *device_ids;

    clret = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, 0, NULL, &nrd);
    if (CL_SUCCESS != clret || !nrd)
      continue;
    device_ids = malloc(nrd * sizeof(*device_ids));
    if (!device_ids)
      continue;
    clret = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, nrd, device_ids, &nrd);
    if (CL_SUCCESS != clret || !nrd)
      continue;

    for(j=0; j<nrd; j++) {
      hwloc_bitmap_t set;
      hwloc_obj_t osdev, osdev2, ancestor;
      const char *value;
      unsigned p, d;

      osdev = hwloc_opencl_get_device_osdev_by_index(topology, i, j);
      /* we currently insert all OpenCL devices, except CPU devices */
      if (!osdev) {
	cl_device_type type;
	clGetDeviceInfo(device_ids[j], CL_DEVICE_TYPE, sizeof(type), &type, NULL);
	assert(type == CL_DEVICE_TYPE_CPU);
	continue;
      }

      /* try to get it from PCI locality (only works with AMD extensions) */
      osdev2 = hwloc_opencl_get_device_osdev(topology, device_ids[j]);
      if (osdev2) {
        assert(osdev == osdev2);
      }

      ancestor = hwloc_get_non_io_ancestor_obj(topology, osdev);

      set = hwloc_bitmap_alloc();
      err = hwloc_opencl_get_device_cpuset(topology, device_ids[j], set);
      if (err < 0) {
	printf("no cpuset for platform %u device %u\n", i, j);
      } else {
	char *cpuset_string = NULL;
	hwloc_bitmap_asprintf(&cpuset_string, set);
	printf("got cpuset %s for platform %u device %u\n", cpuset_string, i, j);
	free(cpuset_string);
	if (hwloc_bitmap_isequal(hwloc_topology_get_complete_cpuset(topology), hwloc_topology_get_topology_cpuset(topology)))
	  /* only compare if the topology is complete, otherwise things can be significantly different */
	  assert(hwloc_bitmap_isequal(set, ancestor->cpuset));
      }
      hwloc_bitmap_free(set);

      printf("found OSDev %s\n", osdev->name);
      err = sscanf(osdev->name, "opencl%ud%u", &p, &d);
      assert(err == 2);
      assert(p == i);
      assert(d == j);

      value = hwloc_obj_get_info_by_name(osdev, "Backend");
      err = strcmp(value, "OpenCL");
      assert(!err);

      assert(osdev->attr->osdev.type == HWLOC_OBJ_OSDEV_COPROC);

      value = osdev->subtype;
      assert(value);
      err = strcmp(value, "OpenCL");
      assert(!err);

      value = hwloc_obj_get_info_by_name(osdev, "GPUModel");
      printf("found OSDev model %s\n", value);

      count++;
    }
  }

  hwloc_topology_destroy(topology);

  return 0;
}
Exemple #5
0
int main(int argc, char *argv[])
{
  hwloc_topology_t topology;
  int loaded = 0;
  int depth;
  hwloc_bitmap_t cpubind_set, membind_set;
  int got_cpubind = 0, got_membind = 0;
  int working_on_cpubind = 1; /* membind if 0 */
  int get_binding = 0;
  int use_nodeset = 0;
  int get_last_cpu_location = 0;
  unsigned long flags = 0;
  int force = 0;
  int single = 0;
  int verbose = 0;
  int only_hbm = -1;
  int logical = 1;
  int taskset = 0;
  unsigned cpubind_flags = 0;
  hwloc_membind_policy_t membind_policy = HWLOC_MEMBIND_BIND;
  int got_mempolicy = 0;
  unsigned membind_flags = 0;
  int opt;
  int ret;
  int pid_number = -1;
  int tid_number = -1;
  hwloc_pid_t pid = 0; /* only valid when pid_number > 0, but gcc-4.8 still reports uninitialized warnings */
  char *callname;
  struct hwloc_calc_location_context_s lcontext;
  struct hwloc_calc_set_context_s scontext;

  callname = argv[0];
  /* skip argv[0], handle options */
  argv++;
  argc--;

  hwloc_utils_check_api_version(callname);

  cpubind_set = hwloc_bitmap_alloc();
  membind_set = hwloc_bitmap_alloc();

  /* don't load now, in case some options change the config before the topology is actually used */
#define LOADED() (loaded)
#define ENSURE_LOADED() do { \
  if (!loaded) { \
    hwloc_topology_init(&topology); \
    hwloc_topology_set_all_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_ALL); \
    hwloc_topology_set_flags(topology, flags); \
    hwloc_topology_load(topology); \
    depth = hwloc_topology_get_depth(topology); \
    loaded = 1; \
  } \
} while (0)

  while (argc >= 1) {
    if (!strcmp(argv[0], "--")) {
      argc--;
      argv++;
      break;
    }

    opt = 0;

    if (*argv[0] == '-') {
      if (!strcmp(argv[0], "-v") || !strcmp(argv[0], "--verbose")) {
	verbose++;
	goto next;
      }
      if (!strcmp(argv[0], "-q") || !strcmp(argv[0], "--quiet")) {
	verbose--;
	goto next;
      }
      if (!strcmp(argv[0], "--help")) {
        usage("hwloc-bind", stdout);
	return EXIT_SUCCESS;
      }
      if (!strcmp(argv[0], "--single")) {
	single = 1;
	goto next;
      }
      if (!strcmp(argv[0], "-f") || !strcmp(argv[0], "--force")) {
	force = 1;
	goto next;
      }
      if (!strcmp(argv[0], "--strict")) {
	cpubind_flags |= HWLOC_CPUBIND_STRICT;
	membind_flags |= HWLOC_MEMBIND_STRICT;
	goto next;
      }
      if (!strcmp(argv[0], "--pid")) {
        if (argc < 2) {
          usage ("hwloc-bind", stderr);
          exit(EXIT_FAILURE);
        }
        pid_number = atoi(argv[1]);
        opt = 1;
        goto next;
      }
#ifdef HWLOC_LINUX_SYS
      if (!strcmp(argv[0], "--tid")) {
        if (argc < 2) {
          usage ("hwloc-bind", stderr);
          exit(EXIT_FAILURE);
        }
        tid_number = atoi(argv[1]);
        opt = 1;
        goto next;
      }
#endif
      if (!strcmp (argv[0], "--version")) {
	printf("%s %s\n", callname, HWLOC_VERSION);
	exit(EXIT_SUCCESS);
      }
      if (!strcmp(argv[0], "-l") || !strcmp(argv[0], "--logical")) {
        logical = 1;
        goto next;
      }
      if (!strcmp(argv[0], "-p") || !strcmp(argv[0], "--physical")) {
        logical = 0;
        goto next;
      }
      if (!strcmp(argv[0], "--taskset")) {
        taskset = 1;
        goto next;
      }
      if (!strcmp (argv[0], "-e") || !strncmp (argv[0], "--get-last-cpu-location", 10)) {
	get_last_cpu_location = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--get")) {
	get_binding = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--nodeset")) {
	use_nodeset = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--cpubind")) {
	working_on_cpubind = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--membind")) {
	working_on_cpubind = 0;
	goto next;
      }
      if (!strcmp (argv[0], "--mempolicy")) {
	if (!strncmp(argv[1], "default", 2))
	  membind_policy = HWLOC_MEMBIND_DEFAULT;
	else if (!strncmp(argv[1], "firsttouch", 2))
	  membind_policy = HWLOC_MEMBIND_FIRSTTOUCH;
	else if (!strncmp(argv[1], "bind", 2))
	  membind_policy = HWLOC_MEMBIND_BIND;
	else if (!strncmp(argv[1], "interleave", 2))
	  membind_policy = HWLOC_MEMBIND_INTERLEAVE;
	else if (!strncmp(argv[1], "nexttouch", 2))
	  membind_policy = HWLOC_MEMBIND_NEXTTOUCH;
	else {
	  fprintf(stderr, "Unrecognized memory binding policy %s\n", argv[1]);
          usage ("hwloc-bind", stderr);
          exit(EXIT_FAILURE);
	}
	got_mempolicy = 1;
	opt = 1;
	goto next;
      }
      if (!strcmp(argv[0], "--hbm")) {
	only_hbm = 1;
	goto next;
      }
      if (!strcmp(argv[0], "--no-hbm")) {
	only_hbm = 0;
	goto next;
      }
      if (!strcmp (argv[0], "--whole-system")) {
	if (loaded) {
	  fprintf(stderr, "Input option %s disallowed after options using the topology\n", argv[0]);
	  exit(EXIT_FAILURE);
	}
	flags |= HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM;
	goto next;
      }
      if (!strcmp (argv[0], "--restrict")) {
	hwloc_bitmap_t restrictset;
	int err;
	if (argc < 2) {
	  usage (callname, stdout);
	  exit(EXIT_FAILURE);
	}
	restrictset = hwloc_bitmap_alloc();
	hwloc_bitmap_sscanf(restrictset, argv[1]);
	ENSURE_LOADED();
	err = hwloc_topology_restrict (topology, restrictset, 0);
	if (err) {
	  perror("Restricting the topology");
	  /* FALLTHRU */
	}
	hwloc_bitmap_free(restrictset);
	argc--;
	argv++;
	goto next;
      }

      fprintf (stderr, "Unrecognized option: %s\n", argv[0]);
      usage("hwloc-bind", stderr);
      return EXIT_FAILURE;
    }

    ENSURE_LOADED();

    lcontext.topology = topology;
    lcontext.topodepth = depth;
    lcontext.only_hbm = only_hbm;
    lcontext.logical = logical;
    lcontext.verbose = verbose;
    scontext.nodeset_input = use_nodeset;
    scontext.nodeset_output = working_on_cpubind ? 0 : 1;
    scontext.output_set = working_on_cpubind ? cpubind_set : membind_set;
    ret = hwloc_calc_process_location_as_set(&lcontext, &scontext, argv[0]);
    if (ret < 0) {
      if (verbose > 0)
	fprintf(stderr, "assuming the command starts at %s\n", argv[0]);
      break;
    }
    if (working_on_cpubind)
      got_cpubind = 1;
    else
      got_membind = 1;

  next:
    argc -= opt+1;
    argv += opt+1;
  }

  ENSURE_LOADED();

  if (pid_number > 0 && tid_number > 0) {
    fprintf(stderr, "cannot operate both on tid and pid\n");
    return EXIT_FAILURE;
  }

  if (pid_number > 0) {
    pid = hwloc_pid_from_number(pid_number, !(get_binding || get_last_cpu_location));
    /* no need to set_pid()
     * the doc just says we're operating on pid, not that we're retrieving the topo/cpuset as seen from inside pid
     */
  }

  if (get_last_cpu_location && !working_on_cpubind) {
    fprintf(stderr, "Options --membind and --get-last-cpu-location cannot be combined.\n");
    return EXIT_FAILURE;
  }
  if ((get_binding || get_last_cpu_location) && (got_cpubind || got_membind)) {
    /* doesn't work because get_binding/get_last_cpu_location overwrites cpubind_set */
    fprintf(stderr, "Cannot display and set binding at the same time.\n");
    return EXIT_FAILURE;
  }

  if (get_binding || get_last_cpu_location) {
    char *s;
    const char *policystr = NULL;
    int err;
    if (working_on_cpubind) {
      if (get_last_cpu_location) {
	if (pid_number > 0)
	  err = hwloc_get_proc_last_cpu_location(topology, pid, cpubind_set, 0);
#ifdef HWLOC_LINUX_SYS
	else if (tid_number > 0)
	  err = hwloc_linux_get_tid_last_cpu_location(topology, tid_number, cpubind_set);
#endif
	else
	  err = hwloc_get_last_cpu_location(topology, cpubind_set, 0);
      } else {
	if (pid_number > 0)
	  err = hwloc_get_proc_cpubind(topology, pid, cpubind_set, 0);
#ifdef HWLOC_LINUX_SYS
	else if (tid_number > 0)
	  err = hwloc_linux_get_tid_cpubind(topology, tid_number, cpubind_set);
#endif
	else
	  err = hwloc_get_cpubind(topology, cpubind_set, 0);
      }
      if (err) {
	const char *errmsg = strerror(errno);
	if (pid_number > 0)
	  fprintf(stderr, "hwloc_get_proc_%s %d failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", pid_number, errno, errmsg);
	else if (tid_number > 0)
	  fprintf(stderr, "hwloc_get_tid_%s %d failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", tid_number, errno, errmsg);
	else
	  fprintf(stderr, "hwloc_get_%s failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", errno, errmsg);
	return EXIT_FAILURE;
      }
      if (use_nodeset) {
	hwloc_bitmap_t nset = hwloc_bitmap_alloc();
	hwloc_cpuset_to_nodeset(topology, cpubind_set, nset);
	if (taskset)
	  hwloc_bitmap_taskset_asprintf(&s, nset);
	else
	  hwloc_bitmap_asprintf(&s, nset);
	hwloc_bitmap_free(nset);
      } else {
	if (taskset)
	  hwloc_bitmap_taskset_asprintf(&s, cpubind_set);
	else
	  hwloc_bitmap_asprintf(&s, cpubind_set);
      }

      } else {
      hwloc_membind_policy_t policy;
      if (pid_number > 0) {
	err = hwloc_get_proc_membind(topology, pid, membind_set, &policy, use_nodeset ? HWLOC_MEMBIND_BYNODESET : 0);
      } else if (tid_number > 0) {
	err = -1; errno = ENOSYS;
      } else {
	err = hwloc_get_membind(topology, membind_set, &policy, use_nodeset ? HWLOC_MEMBIND_BYNODESET : 0);
      }
      if (err) {
	const char *errmsg = strerror(errno);
        if (pid_number > 0)
          fprintf(stderr, "hwloc_get_proc_membind %d failed (errno %d %s)\n", pid_number, errno, errmsg);
        else
	  fprintf(stderr, "hwloc_get_membind failed (errno %d %s)\n", errno, errmsg);
	return EXIT_FAILURE;
      }
      if (taskset)
	hwloc_bitmap_taskset_asprintf(&s, membind_set);
      else
	hwloc_bitmap_asprintf(&s, membind_set);
      switch (policy) {
      case HWLOC_MEMBIND_FIRSTTOUCH: policystr = "firsttouch"; break;
      case HWLOC_MEMBIND_BIND: policystr = "bind"; break;
      case HWLOC_MEMBIND_INTERLEAVE: policystr = "interleave"; break;
      case HWLOC_MEMBIND_NEXTTOUCH: policystr = "nexttouch"; break;
      default: fprintf(stderr, "unknown memory policy %d\n", policy); assert(0); break;
      }
    }
    if (policystr)
      printf("%s (%s)\n", s, policystr);
    else
      printf("%s\n", s);
    free(s);
  }

  if (got_membind) {
    if (hwloc_bitmap_iszero(membind_set)) {
      if (verbose >= 0)
	fprintf(stderr, "cannot membind to empty set\n");
      if (!force)
	goto failed_binding;
    }
    if (verbose > 0) {
      char *s;
      hwloc_bitmap_asprintf(&s, membind_set);
      fprintf(stderr, "binding on memory set %s\n", s);
      free(s);
    }
    if (single)
      hwloc_bitmap_singlify(membind_set);
    if (pid_number > 0)
      ret = hwloc_set_proc_membind(topology, pid, membind_set, membind_policy, membind_flags | HWLOC_MEMBIND_BYNODESET);
    else if (tid_number > 0) {
      ret = -1; errno = ENOSYS;
    } else
      ret = hwloc_set_membind(topology, membind_set, membind_policy, membind_flags | HWLOC_MEMBIND_BYNODESET);
    if (ret && verbose >= 0) {
      int bind_errno = errno;
      const char *errmsg = strerror(bind_errno);
      char *s;
      hwloc_bitmap_asprintf(&s, membind_set);
      if (pid_number > 0)
        fprintf(stderr, "hwloc_set_proc_membind %s (policy %d flags %x) PID %d failed (errno %d %s)\n",
		s, membind_policy, membind_flags, pid_number, bind_errno, errmsg);
      else
        fprintf(stderr, "hwloc_set_membind %s (policy %d flags %x) failed (errno %d %s)\n",
		s, membind_policy, membind_flags, bind_errno, errmsg);
      free(s);
    }
    if (ret && !force)
      goto failed_binding;
  } else {
    if (got_mempolicy)
      fprintf(stderr, "--mempolicy ignored unless memory binding is also requested with --membind.\n");
  }

  if (got_cpubind) {
    if (hwloc_bitmap_iszero(cpubind_set)) {
      if (verbose >= 0)
	fprintf(stderr, "cannot cpubind to empty set\n");
      if (!force)
	goto failed_binding;
    }
    if (verbose > 0) {
      char *s;
      hwloc_bitmap_asprintf(&s, cpubind_set);
      fprintf(stderr, "binding on cpu set %s\n", s);
      free(s);
    }
    if (got_membind && !hwloc_bitmap_isequal(membind_set, cpubind_set)) {
      if (verbose)
	fprintf(stderr, "Conflicting CPU and memory binding requested, adding HWLOC_CPUBIND_NOMEMBIND flag.\n");
      cpubind_flags |= HWLOC_CPUBIND_NOMEMBIND;
    }
    if (single)
      hwloc_bitmap_singlify(cpubind_set);
    if (pid_number > 0)
      ret = hwloc_set_proc_cpubind(topology, pid, cpubind_set, cpubind_flags);
#ifdef HWLOC_LINUX_SYS
    else if (tid_number > 0)
      ret = hwloc_linux_set_tid_cpubind(topology, tid_number, cpubind_set);
#endif
    else
      ret = hwloc_set_cpubind(topology, cpubind_set, cpubind_flags);
    if (ret && verbose >= 0) {
      int bind_errno = errno;
      const char *errmsg = strerror(bind_errno);
      char *s;
      hwloc_bitmap_asprintf(&s, cpubind_set);
      if (pid_number > 0)
        fprintf(stderr, "hwloc_set_proc_cpubind %s (flags %x) PID %d failed (errno %d %s)\n",
		s, cpubind_flags, pid_number, bind_errno, errmsg);
      else if (tid_number > 0)
        fprintf(stderr, "hwloc_set_tid_cpubind %s (flags %x) PID %d failed (errno %d %s)\n",
		s, cpubind_flags, tid_number, bind_errno, errmsg);
      else
        fprintf(stderr, "hwloc_set_cpubind %s (flags %x) failed (errno %d %s)\n",
		s, cpubind_flags, bind_errno, errmsg);
      free(s);
    }
    if (ret && !force)
      goto failed_binding;
  }

  hwloc_bitmap_free(cpubind_set);
  hwloc_bitmap_free(membind_set);

  hwloc_topology_destroy(topology);

  if (pid_number > 0 || tid_number > 0)
    return EXIT_SUCCESS;

  if (0 == argc) {
    if (get_binding || get_last_cpu_location)
      return EXIT_SUCCESS;
    fprintf(stderr, "%s: nothing to do!\n", callname);
    return EXIT_FAILURE;
  }

  /* FIXME: check whether Windows execvp() passes INHERIT_PARENT_AFFINITY to CreateProcess()
   * because we need to propagate processor group affinity. However process-wide affinity
   * isn't supported with processor groups so far.
   */
  ret = execvp(argv[0], argv);
  if (ret) {
      fprintf(stderr, "%s: Failed to launch executable \"%s\"\n",
              callname, argv[0]);
      perror("execvp");
  }
  return EXIT_FAILURE;


failed_binding:
  hwloc_bitmap_free(cpubind_set);
  hwloc_bitmap_free(membind_set);
  hwloc_topology_destroy(topology);
  return EXIT_FAILURE;
}
Exemple #6
0
int main(void)
{
  hwloc_topology_t topology;
  cl_int clret;
  cl_platform_id *platform_ids;
  unsigned nrp, nrd, count, i, j;
  int err;

  hwloc_topology_init(&topology);
  hwloc_topology_set_flags(topology, HWLOC_TOPOLOGY_FLAG_IO_DEVICES);
  hwloc_topology_load(topology);

  clret = clGetPlatformIDs(0, NULL, &nrp);
  if (CL_SUCCESS != clret || !nrp)
    return 0;
  platform_ids = malloc(nrp * sizeof(*platform_ids));
  if (!platform_ids)
    return 0;
  clret = clGetPlatformIDs(nrp, platform_ids, &nrp);
  if (CL_SUCCESS != clret || !nrp)
    return 0;

  count = 0;
  for(i=0; i<nrp; i++) {
    cl_device_id *device_ids;

    clret = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, 0, NULL, &nrd);
    if (CL_SUCCESS != clret || !nrd)
      continue;
    device_ids = malloc(nrd * sizeof(*device_ids));
    if (!device_ids)
      continue;
    clret = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, nrd, device_ids, &nrd);
    if (CL_SUCCESS != clret || !nrd)
      continue;

    for(j=0; j<nrd; j++) {
      hwloc_bitmap_t set;
      hwloc_obj_t osdev, osdev2, ancestor;
      const char *value;

      osdev = hwloc_opencl_get_device_osdev(topology, device_ids[j]);
      osdev2 = hwloc_opencl_get_device_osdev_by_index(topology, i, j);
      assert(osdev == osdev2);
      if (!osdev) {
	printf("no osdev for platform %d device %d\n", i, j);
	continue;
      }

      ancestor = hwloc_get_non_io_ancestor_obj(topology, osdev);

      set = hwloc_bitmap_alloc();
      err = hwloc_opencl_get_device_cpuset(topology, device_ids[j], set);
      if (err < 0) {
	printf("no cpuset for platform %d device %d\n", i, j);
      } else {
	char *cpuset_string = NULL;
	hwloc_bitmap_asprintf(&cpuset_string, set);
	printf("got cpuset %s for platform %d device %d\n", cpuset_string, i, j);
	free(cpuset_string);
	assert(hwloc_bitmap_isequal(set, ancestor->cpuset));
      }
      hwloc_bitmap_free(set);

      printf("found OSDev %s\n", osdev->name);
      err = strncmp(osdev->name, "opencl", 6);
      assert(!err);
      assert(atoi(osdev->name+6) == (int) count);

      value = hwloc_obj_get_info_by_name(osdev, "Backend");
      err = strcmp(value, "OpenCL");
      assert(!err);

      value = hwloc_obj_get_info_by_name(osdev, "Name");
      printf("found OSDev name %s\n", value);

      count++;
    }
  }

  hwloc_topology_destroy(topology);

  return 0;
}
Exemple #7
0
int main(void)
{
  hwloc_topology_t topology;
  cl_int clret;
  cl_platform_id *platform_ids;
  unsigned nrp, nrd, count, i, j;
  int err;

  hwloc_topology_init(&topology);
  hwloc_topology_set_flags(topology, HWLOC_TOPOLOGY_FLAG_IO_DEVICES);
  hwloc_topology_load(topology);

  clret = clGetPlatformIDs(0, NULL, &nrp);
  if (CL_SUCCESS != clret || !nrp)
    return 0;
  platform_ids = malloc(nrp * sizeof(*platform_ids));
  if (!platform_ids)
    return 0;
  clret = clGetPlatformIDs(nrp, platform_ids, &nrp);
  if (CL_SUCCESS != clret || !nrp)
    return 0;

  count = 0;
  for(i=0; i<nrp; i++) {
    cl_device_id *device_ids;

    clret = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, 0, NULL, &nrd);
    if (CL_SUCCESS != clret || !nrd)
      continue;
    device_ids = malloc(nrd * sizeof(*device_ids));
    if (!device_ids)
      continue;
    clret = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, nrd, device_ids, &nrd);
    if (CL_SUCCESS != clret || !nrd)
      continue;

    for(j=0; j<nrd; j++) {
      hwloc_bitmap_t set;
      hwloc_obj_t osdev, osdev2, ancestor;
      const char *value;
      unsigned p, d;

      osdev = hwloc_opencl_get_device_osdev(topology, device_ids[j]);
      osdev2 = hwloc_opencl_get_device_osdev_by_index(topology, i, j);
      assert(osdev == osdev2);
      if (!osdev) {
	printf("no osdev for platform %u device %u\n", i, j);
	continue;
      }

      ancestor = hwloc_get_non_io_ancestor_obj(topology, osdev);

      set = hwloc_bitmap_alloc();
      err = hwloc_opencl_get_device_cpuset(topology, device_ids[j], set);
      if (err < 0) {
	printf("no cpuset for platform %u device %u\n", i, j);
      } else {
	char *cpuset_string = NULL;
	hwloc_bitmap_asprintf(&cpuset_string, set);
	printf("got cpuset %s for platform %u device %u\n", cpuset_string, i, j);
	free(cpuset_string);
	if (hwloc_bitmap_isequal(hwloc_topology_get_complete_cpuset(topology), hwloc_topology_get_topology_cpuset(topology)))
	  /* only compare if the topology is complete, otherwise things can be significantly different */
	  assert(hwloc_bitmap_isequal(set, ancestor->cpuset));
      }
      hwloc_bitmap_free(set);

      printf("found OSDev %s\n", osdev->name);
      err = sscanf(osdev->name, "opencl%ud%u", &p, &d);
      assert(err == 2);
      assert(p == i);
      assert(d == j);

      value = hwloc_obj_get_info_by_name(osdev, "Backend");
      err = strcmp(value, "OpenCL");
      assert(!err);

      assert(osdev->attr->osdev.type == HWLOC_OBJ_OSDEV_COPROC);

      value = hwloc_obj_get_info_by_name(osdev, "CoProcType");
      err = strcmp(value, "OpenCL");
      assert(!err);

      value = hwloc_obj_get_info_by_name(osdev, "GPUModel");
      printf("found OSDev model %s\n", value);

      count++;
    }
  }

  hwloc_topology_destroy(topology);

  return 0;
}
int main(void)
{
    int depth;
    unsigned i, n;
    unsigned long size;
    int levels;
    char string[128];
    int topodepth;
    void *m;
    hwloc_topology_t topology;
    hwloc_cpuset_t cpuset;
    hwloc_obj_t obj;

    /* Allocate and initialize topology object. */
    hwloc_topology_init(&topology);

    /* ... Optionally, put detection configuration here to ignore
       some objects types, define a synthetic topology, etc....  

       The default is to detect all the objects of the machine that
       the caller is allowed to access.  See Configure Topology
       Detection. */

    /* Perform the topology detection. */
    hwloc_topology_load(topology);

    /* Optionally, get some additional topology information
       in case we need the topology depth later. */
    topodepth = hwloc_topology_get_depth(topology);

    /*****************************************************************
     * First example:
     * Walk the topology with an array style, from level 0 (always
     * the system level) to the lowest level (always the proc level).
     *****************************************************************/
    for (depth = 0; depth < topodepth; depth++) {
        printf("*** Objects at level %d\n", depth);
        for (i = 0; i < hwloc_get_nbobjs_by_depth(topology, depth); 
             i++) {
            hwloc_obj_type_snprintf(string, sizeof(string),
				    hwloc_get_obj_by_depth(topology, depth, i), 0);
            printf("Index %u: %s\n", i, string);
        }
    }

    /*****************************************************************
     * Second example:
     * Walk the topology with a tree style.
     *****************************************************************/
    printf("*** Printing overall tree\n");
    print_children(topology, hwloc_get_root_obj(topology), 0);

    /*****************************************************************
     * Third example:
     * Print the number of packages.
     *****************************************************************/
    depth = hwloc_get_type_depth(topology, HWLOC_OBJ_PACKAGE);
    if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
        printf("*** The number of packages is unknown\n");
    } else {
        printf("*** %u package(s)\n",
               hwloc_get_nbobjs_by_depth(topology, depth));
    }

    /*****************************************************************
     * Fourth example:
     * Compute the amount of cache that the first logical processor
     * has above it.
     *****************************************************************/
    levels = 0;
    size = 0;
    for (obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_PU, 0);
         obj;
         obj = obj->parent)
      if (obj->type == HWLOC_OBJ_CACHE) {
        levels++;
        size += obj->attr->cache.size;
      }
    printf("*** Logical processor 0 has %d caches totaling %luKB\n", 
           levels, size / 1024);

    /*****************************************************************
     * Fifth example:
     * Bind to only one thread of the last core of the machine.
     *
     * First find out where cores are, or else smaller sets of CPUs if
     * the OS doesn't have the notion of a "core".
     *****************************************************************/
    depth = hwloc_get_type_or_below_depth(topology, HWLOC_OBJ_CORE);

    /* Get last core. */
    obj = hwloc_get_obj_by_depth(topology, depth,
                   hwloc_get_nbobjs_by_depth(topology, depth) - 1);
    if (obj) {
        /* Get a copy of its cpuset that we may modify. */
        cpuset = hwloc_bitmap_dup(obj->cpuset);

        /* Get only one logical processor (in case the core is
           SMT/hyper-threaded). */
        hwloc_bitmap_singlify(cpuset);

        /* And try to bind ourself there. */
        if (hwloc_set_cpubind(topology, cpuset, 0)) {
            char *str;
            int error = errno;
            hwloc_bitmap_asprintf(&str, obj->cpuset);
            printf("Couldn't bind to cpuset %s: %s\n", str, strerror(error));
            free(str);
        }

        /* Free our cpuset copy */
        hwloc_bitmap_free(cpuset);
    }

    /*****************************************************************
     * Sixth example:
     * Allocate some memory on the last NUMA node, bind some existing
     * memory to the last NUMA node.
     *****************************************************************/
    /* Get last node. There's always at least one. */
    n = hwloc_get_nbobjs_by_type(topology, HWLOC_OBJ_NUMANODE);
    obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_NUMANODE, n - 1);

    size = 1024*1024;
    m = hwloc_alloc_membind_nodeset(topology, size, obj->nodeset,
                                    HWLOC_MEMBIND_BIND, 0);
    hwloc_free(topology, m, size);

    m = malloc(size);
    hwloc_set_area_membind_nodeset(topology, m, size, obj->nodeset,
                                   HWLOC_MEMBIND_BIND, 0);
    free(m);

    /* Destroy topology object. */
    hwloc_topology_destroy(topology);

    return 0;
}
PASTIX_INT sopalin_bindthread(PASTIX_INT cpu)
{
#ifdef MARCEL

  {
    marcel_vpset_t vpset = MARCEL_VPSET_ZERO;
    marcel_vpset_vp(&vpset, cpu);
    marcel_apply_vpset(&vpset);
  }

#else /* Dans les autres cas on se preoccupe de l'archi */

#ifdef WITH_HWLOC
  {
    hwloc_topology_t topology; /* Topology object */
    hwloc_obj_t      obj;      /* Hwloc object    */
    hwloc_cpuset_t   cpuset;   /* HwLoc cpuset    */

    /* Allocate and initialize topology object.  */
    hwloc_topology_init(&topology);

    /* Perform the topology detection.  */
    hwloc_topology_load(topology);

    /* Get last one.  */
    obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_CORE, cpu);
    if (!obj)
      return 0;

    /* Get a copy of its cpuset that we may modify.  */
    /* Get only one logical processor (in case the core is SMT/hyperthreaded).  */
#if !defined(HWLOC_BITMAP_H)
    cpuset = hwloc_cpuset_dup(obj->cpuset);
    hwloc_cpuset_singlify(cpuset);
#else
    cpuset = hwloc_bitmap_dup(obj->cpuset);
    hwloc_bitmap_singlify(cpuset);
#endif

    /* And try to bind ourself there.  */
    if (hwloc_set_cpubind(topology, cpuset, HWLOC_CPUBIND_THREAD)) {
      char *str = NULL;
#if !defined(HWLOC_BITMAP_H)
      hwloc_cpuset_asprintf(&str, obj->cpuset);
#else
      hwloc_bitmap_asprintf(&str, obj->cpuset);
#endif
      printf("Couldn't bind to cpuset %s\n", str);
      free(str);
    }

    /* Get the number at Proc level */
    cpu = obj->children[0]->os_index;

    /* Free our cpuset copy */
#if !defined(HWLOC_BITMAP_H)
    hwloc_cpuset_free(cpuset);
#else
    hwloc_bitmap_free(cpuset);
#endif

    /* Destroy topology object.  */
    hwloc_topology_destroy(topology);
  }
#else /* WITH_HWLOC */
#ifdef X_ARCHpower_ibm_aix
  {
    tid_t self_ktid = thread_self ();

    bindprocessor(BINDTHREAD, self_ktid, cpu);
  }
#elif (defined X_ARCHalpha_compaq_osf1)
  {
    bind_to_cpu_id(getpid(), cpu, 0);
  }
#elif (defined X_ARCHi686_pc_linux)

#ifndef X_ARCHi686_mac
  {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);

#ifdef HAVE_OLD_SCHED_SETAFFINITY
    if(sched_setaffinity(0,&mask) < 0)
#else /* HAVE_OLD_SCHED_SETAFFINITY */
    if(sched_setaffinity(0,sizeof(mask),&mask) < 0)
#endif /* HAVE_OLD_SCHED_SETAFFINITY */
      {
  perror("sched_setaffinity");
  EXIT(MOD_SOPALIN, INTERNAL_ERR);
      }
  }
#else /* X_ARCHi686_mac */
  {
    thread_affinity_policy_data_t ap;
    int                           ret;

    ap.affinity_tag = 1; /* non-null affinity tag */
    ret = thread_policy_set(
          mach_thread_self(),
          THREAD_AFFINITY_POLICY,
          (integer_t*) &ap,
          THREAD_AFFINITY_POLICY_COUNT
          );
    if(ret != 0)
      {
  perror("thread_policy_set");
  EXIT(MOD_SOPALIN, INTERNAL_ERR);
      }
  }
#endif /* X_ARCHi686_mac */
#endif /* X_ACHIxxx      */
#endif /* WITH_HWLOC     */
#endif /* MARCEL         */

  return cpu;
}
Exemple #10
0
int main(int argc, char *argv[])
{
  hwloc_topology_t topology;
  unsigned depth;
  hwloc_bitmap_t cpubind_set, membind_set;
  int cpubind = 1; /* membind if 0 */
  int get_binding = 0;
  int get_last_cpu_location = 0;
  int single = 0;
  int verbose = 0;
  int logical = 1;
  int taskset = 0;
  int cpubind_flags = 0;
  hwloc_membind_policy_t membind_policy = HWLOC_MEMBIND_BIND;
  int membind_flags = 0;
  int opt;
  int ret;
  hwloc_pid_t pid = 0;
  char **orig_argv = argv;

  cpubind_set = hwloc_bitmap_alloc();
  membind_set = hwloc_bitmap_alloc();

  hwloc_topology_init(&topology);
  hwloc_topology_set_flags(topology, HWLOC_TOPOLOGY_FLAG_WHOLE_IO);
  hwloc_topology_load(topology);
  depth = hwloc_topology_get_depth(topology);

  /* skip argv[0], handle options */
  argv++;
  argc--;

  while (argc >= 1) {
    if (!strcmp(argv[0], "--")) {
      argc--;
      argv++;
      break;
    }

    opt = 0;

    if (*argv[0] == '-') {
      if (!strcmp(argv[0], "-v")) {
	verbose = 1;
	goto next;
      }
      else if (!strcmp(argv[0], "--help")) {
	usage(stdout);
	return EXIT_SUCCESS;
      }
      else if (!strcmp(argv[0], "--single")) {
	single = 1;
	goto next;
      }
      else if (!strcmp(argv[0], "--strict")) {
	cpubind_flags |= HWLOC_CPUBIND_STRICT;
	membind_flags |= HWLOC_MEMBIND_STRICT;
	goto next;
      }
      else if (!strcmp(argv[0], "--pid")) {
        if (argc < 2) {
          usage (stderr);
          exit(EXIT_FAILURE);
        }
        pid = atoi(argv[1]);
        opt = 1;
        goto next;
      }
      else if (!strcmp (argv[0], "--version")) {
          printf("%s %s\n", orig_argv[0], VERSION);
          exit(EXIT_SUCCESS);
      }
      if (!strcmp(argv[0], "-l") || !strcmp(argv[0], "--logical")) {
        logical = 1;
        goto next;
      }
      if (!strcmp(argv[0], "-p") || !strcmp(argv[0], "--physical")) {
        logical = 0;
        goto next;
      }
      if (!strcmp(argv[0], "--taskset")) {
        taskset = 1;
        goto next;
      }
      else if (!strncmp (argv[0], "--get-last-cpu-location", 10)) {
	get_last_cpu_location = 1;
	goto next;
      }
      else if (!strcmp (argv[0], "--get")) {
	get_binding = 1;
	goto next;
      }
      else if (!strcmp (argv[0], "--cpubind")) {
	  cpubind = 1;
	  goto next;
      }
      else if (!strcmp (argv[0], "--membind")) {
	  cpubind = 0;
	  goto next;
      }
      else if (!strcmp (argv[0], "--mempolicy")) {
	if (!strncmp(argv[1], "default", 2))
	  membind_policy = HWLOC_MEMBIND_DEFAULT;
	else if (!strncmp(argv[1], "firsttouch", 2))
	  membind_policy = HWLOC_MEMBIND_FIRSTTOUCH;
	else if (!strncmp(argv[1], "bind", 2))
	  membind_policy = HWLOC_MEMBIND_BIND;
	else if (!strncmp(argv[1], "interleave", 2))
	  membind_policy = HWLOC_MEMBIND_INTERLEAVE;
	else if (!strncmp(argv[1], "replicate", 2))
	  membind_policy = HWLOC_MEMBIND_REPLICATE;
	else if (!strncmp(argv[1], "nexttouch", 2))
	  membind_policy = HWLOC_MEMBIND_NEXTTOUCH;
	else {
	  fprintf(stderr, "Unrecognized memory binding policy %s\n", argv[1]);
          usage (stderr);
          exit(EXIT_FAILURE);
	}
	opt = 1;
	goto next;
      }

      fprintf (stderr, "Unrecognized option: %s\n", argv[0]);
      usage(stderr);
      return EXIT_FAILURE;
    }

    ret = hwloc_calc_process_arg(topology, depth, argv[0], logical,
				 cpubind ? cpubind_set : membind_set,
				 verbose);
    if (ret < 0) {
      if (verbose)
	fprintf(stderr, "assuming the command starts at %s\n", argv[0]);
      break;
    }

  next:
    argc -= opt+1;
    argv += opt+1;
  }

  if (get_binding || get_last_cpu_location) {
    char *s;
    const char *policystr = NULL;
    int err;
    if (cpubind) {
      if (get_last_cpu_location) {
	if (pid)
	  err = hwloc_get_proc_last_cpu_location(topology, pid, cpubind_set, 0);
	else
	  err = hwloc_get_last_cpu_location(topology, cpubind_set, 0);
      } else {
	if (pid)
	  err = hwloc_get_proc_cpubind(topology, pid, cpubind_set, 0);
	else
	  err = hwloc_get_cpubind(topology, cpubind_set, 0);
      }
      if (err) {
	const char *errmsg = strerror(errno);
	if (pid)
	  fprintf(stderr, "hwloc_get_proc_%s %ld failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", (long) pid, errno, errmsg);
	else
	  fprintf(stderr, "hwloc_get_%s failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", errno, errmsg);
	return EXIT_FAILURE;
      }
      if (taskset)
	hwloc_bitmap_taskset_asprintf(&s, cpubind_set);
      else
	hwloc_bitmap_asprintf(&s, cpubind_set);
    } else {
      hwloc_membind_policy_t policy;
      if (pid)
	err = hwloc_get_proc_membind(topology, pid, membind_set, &policy, 0);
      else
	err = hwloc_get_membind(topology, membind_set, &policy, 0);
      if (err) {
	const char *errmsg = strerror(errno);
        if (pid)
          fprintf(stderr, "hwloc_get_proc_membind %ld failed (errno %d %s)\n", (long) pid, errno, errmsg);
        else
	  fprintf(stderr, "hwloc_get_membind failed (errno %d %s)\n", errno, errmsg);
	return EXIT_FAILURE;
      }
      if (taskset)
	hwloc_bitmap_taskset_asprintf(&s, membind_set);
      else
	hwloc_bitmap_asprintf(&s, membind_set);
      switch (policy) {
      case HWLOC_MEMBIND_DEFAULT: policystr = "default"; break;
      case HWLOC_MEMBIND_FIRSTTOUCH: policystr = "firsttouch"; break;
      case HWLOC_MEMBIND_BIND: policystr = "bind"; break;
      case HWLOC_MEMBIND_INTERLEAVE: policystr = "interleave"; break;
      case HWLOC_MEMBIND_REPLICATE: policystr = "replicate"; break;
      case HWLOC_MEMBIND_NEXTTOUCH: policystr = "nexttouch"; break;
      default: fprintf(stderr, "unknown memory policy %d\n", policy); assert(0); break;
      }
    }
    if (policystr)
      printf("%s (%s)\n", s, policystr);
    else
      printf("%s\n", s);
    free(s);
    return EXIT_SUCCESS;
  }

  if (!hwloc_bitmap_iszero(membind_set)) {
    if (verbose) {
      char *s;
      hwloc_bitmap_asprintf(&s, membind_set);
      fprintf(stderr, "binding on memory set %s\n", s);
      free(s);
    }
    if (single)
      hwloc_bitmap_singlify(membind_set);
    if (pid)
      ret = hwloc_set_proc_membind(topology, pid, membind_set, membind_policy, membind_flags);
    else
      ret = hwloc_set_membind(topology, membind_set, membind_policy, membind_flags);
    if (ret) {
      int bind_errno = errno;
      const char *errmsg = strerror(bind_errno);
      char *s;
      hwloc_bitmap_asprintf(&s, membind_set);
      if (pid)
        fprintf(stderr, "hwloc_set_proc_membind %s %ld failed (errno %d %s)\n", s, (long) pid, bind_errno, errmsg);
      else
        fprintf(stderr, "hwloc_set_membind %s failed (errno %d %s)\n", s, bind_errno, errmsg);
      free(s);
    }
  }

  if (!hwloc_bitmap_iszero(cpubind_set)) {
    if (verbose) {
      char *s;
      hwloc_bitmap_asprintf(&s, cpubind_set);
      fprintf(stderr, "binding on cpu set %s\n", s);
      free(s);
    }
    if (single)
      hwloc_bitmap_singlify(cpubind_set);
    if (pid)
      ret = hwloc_set_proc_cpubind(topology, pid, cpubind_set, cpubind_flags);
    else
      ret = hwloc_set_cpubind(topology, cpubind_set, cpubind_flags);
    if (ret) {
      int bind_errno = errno;
      const char *errmsg = strerror(bind_errno);
      char *s;
      hwloc_bitmap_asprintf(&s, cpubind_set);
      if (pid)
        fprintf(stderr, "hwloc_set_proc_cpubind %s %ld failed (errno %d %s)\n", s, (long) pid, bind_errno, errmsg);
      else
        fprintf(stderr, "hwloc_set_cpubind %s failed (errno %d %s)\n", s, bind_errno, errmsg);
      free(s);
    }
  }

  hwloc_bitmap_free(cpubind_set);
  hwloc_bitmap_free(membind_set);

  hwloc_topology_destroy(topology);

  if (pid)
    return EXIT_SUCCESS;

  if (0 == argc) {
    fprintf(stderr, "%s: nothing to do!\n", orig_argv[0]);
    return EXIT_FAILURE;
  }

  ret = execvp(argv[0], argv);
  if (ret) {
      fprintf(stderr, "%s: Failed to launch executable \"%s\"\n", 
              orig_argv[0], argv[0]);
      perror("execvp");
  }
  return EXIT_FAILURE;
}
/* user to have to play with the cgroup hierarchy to modify it */
extern int task_cgroup_cpuset_set_task_affinity(slurmd_job_t *job)
{
	int fstatus = SLURM_ERROR;

#ifndef HAVE_HWLOC

	error("task/cgroup: plugin not compiled with hwloc support, "
	      "skipping affinity.");
	return fstatus;

#else
	uint32_t i;
	uint32_t nldoms;
	uint32_t nsockets;
	uint32_t ncores;
	uint32_t npus;
	uint32_t nobj;

	uint32_t pfirst,plast;
	uint32_t taskid = job->envtp->localid;
	uint32_t jntasks = job->node_tasks;
	uint32_t jnpus = jntasks * job->cpus_per_task;
	pid_t    pid = job->envtp->task_pid;

	cpu_bind_type_t bind_type;
	int verbose;

	hwloc_topology_t topology;
#if HWLOC_API_VERSION <= 0x00010000
	hwloc_cpuset_t cpuset,ct;
#else
	hwloc_bitmap_t cpuset,ct;
#endif
	hwloc_obj_t obj;
	struct hwloc_obj *pobj;
	hwloc_obj_type_t hwtype;
	hwloc_obj_type_t req_hwtype;
	int hwdepth;

	size_t tssize;
	cpu_set_t ts;

	bind_type = job->cpu_bind_type ;
	if (conf->task_plugin_param & CPU_BIND_VERBOSE ||
	    bind_type & CPU_BIND_VERBOSE)
		verbose = 1 ;

	if (bind_type & CPU_BIND_NONE) {
		if (verbose)
			info("task/cgroup: task[%u] is requesting no affinity",
			     taskid);
		return 0;
	} else if (bind_type & CPU_BIND_TO_THREADS) {
		if (verbose)
			info("task/cgroup: task[%u] is requesting "
			     "thread level binding",taskid);
		req_hwtype = HWLOC_OBJ_PU;
	} else if (bind_type & CPU_BIND_TO_CORES) {
		if (verbose)
			info("task/cgroup: task[%u] is requesting "
			     "core level binding",taskid);
		req_hwtype = HWLOC_OBJ_CORE;
	} else if (bind_type & CPU_BIND_TO_SOCKETS) {
		if (verbose)
			info("task/cgroup: task[%u] is requesting "
			     "socket level binding",taskid);
		req_hwtype = HWLOC_OBJ_SOCKET;
	} else if (bind_type & CPU_BIND_TO_LDOMS) {
		if (verbose)
			info("task/cgroup: task[%u] is requesting "
			     "ldom level binding",taskid);
		req_hwtype = HWLOC_OBJ_NODE;
	} else {
		if (verbose)
			info("task/cgroup: task[%u] using core level binding"
			     " by default",taskid);
		req_hwtype = HWLOC_OBJ_CORE;
	}

	/* Allocate and initialize hwloc objects */
	hwloc_topology_init(&topology);
#if HWLOC_API_VERSION <= 0x00010000
	cpuset = hwloc_cpuset_alloc() ;
#else
	cpuset = hwloc_bitmap_alloc() ;
#endif

	/*
	 * Perform the topology detection. It will only get allowed PUs.
	 * Detect in the same time the granularity to use for binding.
	 * The granularity can be relaxed from threads to cores if enough
	 * cores are available as with hyperthread support, ntasks-per-core
	 * param can let us have access to more threads per core for each
	 * task
	 * Revert back to machine granularity if no finer-grained granularity
	 * matching the request is found. This will result in no affinity
	 * applied.
	 * The detected granularity will be used to find where to best place
	 * the task, then the cpu_bind option will be used to relax the
	 * affinity constraint and use more PUs. (i.e. use a core granularity
	 * to dispatch the tasks across the sockets and then provide access
	 * to each task to the cores of its socket.)
	 */
	hwloc_topology_load(topology);
	npus = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						   HWLOC_OBJ_PU);
	ncores = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						     HWLOC_OBJ_CORE);
	nsockets = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						       HWLOC_OBJ_SOCKET);
	nldoms = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						     HWLOC_OBJ_NODE);
	hwtype = HWLOC_OBJ_MACHINE;
	nobj = 1;
	if (npus >= jnpus || bind_type & CPU_BIND_TO_THREADS) {
		hwtype = HWLOC_OBJ_PU;
		nobj = npus;
	}
	if (ncores >= jnpus || bind_type & CPU_BIND_TO_CORES) {
		hwtype = HWLOC_OBJ_CORE;
		nobj = ncores;
	}
	if (nsockets >= jntasks &&
	     bind_type & CPU_BIND_TO_SOCKETS) {
		hwtype = HWLOC_OBJ_SOCKET;
		nobj = nsockets;
	}
	/*
	 * HWLOC returns all the NUMA nodes available regardless of the
	 * number of underlying sockets available (regardless of the allowed
	 * resources). So there is no guarantee that each ldom will be populated
	 * with usable sockets. So add a simple check that at least ensure that
	 * we have as many sockets as ldoms before moving to ldoms granularity
	 */
	if (nldoms >= jntasks &&
	     nsockets >= nldoms &&
	     bind_type & CPU_BIND_TO_LDOMS) {
		hwtype = HWLOC_OBJ_NODE;
		nobj = nldoms;
	}

	/*
	 * Perform a block binding on the detected object respecting the
	 * granularity.
	 * If not enough objects to do the job, revert to no affinity mode
	 */
	if (hwloc_compare_types(hwtype,HWLOC_OBJ_MACHINE) == 0) {

		info("task/cgroup: task[%u] disabling affinity because of %s "
		     "granularity",taskid,hwloc_obj_type_string(hwtype));

	} else if (hwloc_compare_types(hwtype,HWLOC_OBJ_CORE) >= 0 &&
		    jnpus > nobj) {

		info("task/cgroup: task[%u] not enough %s objects, disabling "
		     "affinity",taskid,hwloc_obj_type_string(hwtype));

	} else {

		if (verbose) {
			info("task/cgroup: task[%u] using %s granularity",
			     taskid,hwloc_obj_type_string(hwtype));
		}
		if (hwloc_compare_types(hwtype,HWLOC_OBJ_CORE) >= 0) {
			/* cores or threads granularity */
			pfirst = taskid *  job->cpus_per_task ;
			plast = pfirst + job->cpus_per_task - 1;
		} else {
			/* sockets or ldoms granularity */
			pfirst = taskid;
			plast = pfirst;
		}

		hwdepth = hwloc_get_type_depth(topology,hwtype);
		for (i = pfirst; i <= plast && i < nobj ; i++) {
			obj = hwloc_get_obj_by_depth(topology,hwdepth,(int)i);

			/* if requested binding overlap the granularity */
			/* use the ancestor cpuset instead of the object one */
			if (hwloc_compare_types(hwtype,req_hwtype) > 0) {

				/* Get the parent object of req_hwtype or the */
				/* one just above if not found (meaning of >0)*/
				/* (useful for ldoms binding with !NUMA nodes)*/
				pobj = obj->parent;
				while (pobj != NULL &&
					hwloc_compare_types(pobj->type,
							    req_hwtype) > 0)
					pobj = pobj->parent;

				if (pobj != NULL) {
					if (verbose)
						info("task/cgroup: task[%u] "
						     "higher level %s found",
						     taskid,
						     hwloc_obj_type_string(
							     pobj->type));
#if HWLOC_API_VERSION <= 0x00010000
					ct = hwloc_cpuset_dup(pobj->
							      allowed_cpuset);
					hwloc_cpuset_or(cpuset,cpuset,ct);
					hwloc_cpuset_free(ct);
#else
					ct = hwloc_bitmap_dup(pobj->
							      allowed_cpuset);
					hwloc_bitmap_or(cpuset,cpuset,ct);
					hwloc_bitmap_free(ct);
#endif
				} else {
					/* should not be executed */
					if (verbose)
						info("task/cgroup: task[%u] "
						     "no higher level found",
						     taskid);
#if HWLOC_API_VERSION <= 0x00010000
					ct = hwloc_cpuset_dup(obj->
							      allowed_cpuset);
					hwloc_cpuset_or(cpuset,cpuset,ct);
					hwloc_cpuset_free(ct);
#else
					ct = hwloc_bitmap_dup(obj->
							      allowed_cpuset);
					hwloc_bitmap_or(cpuset,cpuset,ct);
					hwloc_bitmap_free(ct);
#endif
				}

			} else {
#if HWLOC_API_VERSION <= 0x00010000
				ct = hwloc_cpuset_dup(obj->allowed_cpuset);
				hwloc_cpuset_or(cpuset,cpuset,ct);
				hwloc_cpuset_free(ct);
#else
				ct = hwloc_bitmap_dup(obj->allowed_cpuset);
				hwloc_bitmap_or(cpuset,cpuset,ct);
				hwloc_bitmap_free(ct);
#endif
			}
		}

		char *str;
#if HWLOC_API_VERSION <= 0x00010000
		hwloc_cpuset_asprintf(&str,cpuset);
#else
		hwloc_bitmap_asprintf(&str,cpuset);
#endif
		tssize = sizeof(cpu_set_t);
		if (hwloc_cpuset_to_glibc_sched_affinity(topology,cpuset,
							  &ts,tssize) == 0) {
			fstatus = SLURM_SUCCESS;
			if (sched_setaffinity(pid,tssize,&ts)) {
				error("task/cgroup: task[%u] unable to set "
				      "taskset '%s'",taskid,str);
				fstatus = SLURM_ERROR;
			} else if (verbose) {
				info("task/cgroup: task[%u] taskset '%s' is set"
				     ,taskid,str);
			}
		} else {
			error("task/cgroup: task[%u] unable to build "
			      "taskset '%s'",taskid,str);
			fstatus = SLURM_ERROR;
		}
		free(str);

	}

	/* Destroy hwloc objects */
#if HWLOC_API_VERSION <= 0x00010000
	hwloc_cpuset_free(cpuset);
#else
	hwloc_bitmap_free(cpuset);
#endif
	hwloc_topology_destroy(topology);

	return fstatus;
#endif

}
Exemple #12
0
        void computeCPUOMP(int threadId, expression_type * expr, im_type * im, element_iterator * elt_it, std::vector<std::pair<element_iterator, element_iterator> > * elts)
        {
            char * a;
            int cid;
            std::ostringstream oss;

#if 0
            hwloc_cpuset_t set = nullptr;

            /* get a cpuset object */
            set = hwloc_bitmap_alloc();

            /* Get the cpu thread affinity info of the current process/thread */
            hwloc_get_cpubind(Environment::getHwlocTopology(), set, 0);
            hwloc_bitmap_asprintf(&a, set);
            oss << a;
            free(a); 
            
            cid = hwloc_bitmap_first(set);
            oss << "(";
            while(cid != -1)
            {
                oss << cid << " ";
                cid = hwloc_bitmap_next(set, cid);
            }
            oss << ")|";
            std::cout << Environment::worldComm().rank() << "|" << M_threadId << " " << oss.str() << std::endl;

            /* Get the latest core location of the current process/thread */
            hwloc_get_last_cpu_location(Environment::getHwlocTopology(), set, 0);
            hwloc_bitmap_asprintf(&a, set);
            oss << a;
            free(a);

            cid = hwloc_bitmap_first(set);
            oss << "(";
            while(cid != -1)
            {
                oss << cid << " ";
                cid = hwloc_bitmap_next(set, cid);
            }
            oss << ");";
            std::cout << Environment::worldComm().rank() << "|" << M_threadId << " " << oss.str() << std::endl;
#endif

#if defined(FEELPP_HAS_HARTS)
            perf_mng.init("cpu") ;
            perf_mng.start("cpu") ;
            perf_mng.init("1.1") ;
            perf_mng.init("1.2") ;
            perf_mng.init("2.1") ;
            perf_mng.init("2.2") ;
            perf_mng.init("3") ;
#endif
            
            //M_gm((*elt_it)->gm());
            gm_ptrtype gm = (*elt_it)->gm();
            //M_geopc(new typename eval::gmpc_type( M_gm, im->points() ));
            typename eval::gmpc_ptrtype __geopc( new typename eval::gmpc_type(gm, im->points()) );
            //M_c(new gmc_type( M_gm, *(*elt_it), M_geopc ));
            gmc_ptrtype __c( new gmc_type( gm, *(*elt_it), __geopc ) );
            //M_expr( (*expr), map_gmc_type( fusion::make_pair<vf::detail::gmc<0> >( M_c ) ) );
            eval_expr_type __expr( (*expr), map_gmc_type( fusion::make_pair<vf::detail::gmc<0> >( __c ) ) );


            for (int i = 0; i < elts->size(); i++)
            {
                /*
                std::cout << Environment::worldComm().rank() <<  " nbItems: " << elts->size() 
                          << " nbElts " << std::distance(elts->at(i), elts->at(i+1))
                          << " 1st id " << elts->at(i)->id() << std::endl;
                */

                //std::cout << Environment::worldComm().rank() << "|" << theadId << " fid=" elts.at(i).first.id() << std::endl;
                for ( auto _elt = elts->at(i).first; _elt != elts->at(i).second; ++_elt )
                {
                    //perf_mng.start("1.1") ;
                    __c->update( *_elt );
                    //perf_mng.stop("1.1") ;
                    //perf_mng.start("1.2") ;
                    map_gmc_type mapgmc( fusion::make_pair<vf::detail::gmc<0> >( __c ) );
                    //perf_mng.stop("1.2") ;

                    //perf_mng.start("2.1") ;
                    __expr.update( mapgmc );
                    //perf_mng.stop("2.1") ;
                    //perf_mng.start("2.2") ;
                    im->update( *__c );
                    //perf_mng.stop("2.2") ;

                    //perf_mng.start("3") ;
                    for ( uint16_type c1 = 0; c1 < eval::shape::M; ++c1 )
                    {
                        for ( uint16_type c2 = 0; c2 < eval::shape::N; ++c2 )
                        {
                            M_ret( c1,c2 ) += (*im)( __expr, c1, c2 );
                        }
                    }
                    //perf_mng.stop("3") ;
                }
            }

#if defined(FEELPP_HAS_HARTS)
            perf_mng.stop("cpu") ;
            M_cpuTime = perf_mng.getValueInSeconds("cpu");
#endif
        }
Exemple #13
0
        void computeCPU(DataArgsType& args)
        {
            char * a;
            int cid;
            hwloc_cpuset_t set = nullptr;
            std::ostringstream oss;
            
            /* This initialization takes some time */
            /* When using hartsi, the object instanciation is done when creating tasks */
            /* and this is not a parallel section, thus we lose time in initialization */
            /* doing it the computation step allows to incorporate this init time in the parallel section */
            /*
            M_threadId( threadId ),
            M_gm( new gm_type( *_elt.gm() ) ),
            M_geopc( new gmpc_type( M_gm, _im.points() ) ),
            M_c( new gmc_type( M_gm, _elt, M_geopc ) ),
            M_expr( _expr, map_gmc_type( fusion::make_pair<vf::detail::gmc<0> >( M_c ) ) ),
            M_im( _im ),
            M_ret( eval::matrix_type::Zero() ),
            M_cpuTime( 0.0 )
            */

#if 0
            /* get a cpuset object */
            set = hwloc_bitmap_alloc();

            /* Get the cpu thread affinity info of the current process/thread */
            hwloc_get_cpubind(Environment::getHwlocTopology(), set, 0);
            hwloc_bitmap_asprintf(&a, set);
            oss << a;
            free(a); 
            
            cid = hwloc_bitmap_first(set);
            oss << "(";
            while(cid != -1)
            {
                oss << cid << " ";
                cid = hwloc_bitmap_next(set, cid);
            }
            oss << ")|";
            std::cout << Environment::worldComm().rank() << "|" << M_threadId << " " << oss.str() << std::endl;

            /* Get the latest core location of the current process/thread */
            hwloc_get_last_cpu_location(Environment::getHwlocTopology(), set, 0);
            hwloc_bitmap_asprintf(&a, set);
            oss << a;
            free(a);

            cid = hwloc_bitmap_first(set);
            oss << "(";
            while(cid != -1)
            {
                oss << cid << " ";
                cid = hwloc_bitmap_next(set, cid);
            }
            oss << ");";
            std::cout << Environment::worldComm().rank() << "|" << M_threadId << " " << oss.str() << std::endl;
#endif

            perf_mng.init("1.1") ;
            perf_mng.init("1.1") ;
            perf_mng.init("2.1") ;
            perf_mng.init("2.2") ;
            perf_mng.init("3") ;

            /* free memory */
            if(set != nullptr)
            {
                hwloc_bitmap_free(set);
            }

            //perf_mng.init("data") ;
            //perf_mng.start("data") ;

            // DEFINE the range to be iterated on
            std::vector<std::pair<element_iterator, element_iterator> > * elts =
                args.get("elements")->get<std::vector<std::pair<element_iterator, element_iterator> > >();

            int * threadId = args.get("threadId")->get<int>();
            expression_type * expr = args.get("expr")->get<expression_type>();
            im_type * im = args.get("im")->get<im_type>();
            element_iterator * elt_it = args.get("elt")->get<element_iterator>();
            
            //M_gm((*elt_it)->gm());
            gm_ptrtype gm = (*elt_it)->gm();
            //M_geopc(new typename eval::gmpc_type( M_gm, im->points() ));
            typename eval::gmpc_ptrtype __geopc( new typename eval::gmpc_type(gm, im->points()) );
            //M_c(new gmc_type( M_gm, *(*elt_it), M_geopc ));
            gmc_ptrtype __c( new gmc_type( gm, *(*elt_it), __geopc ) );
            //M_expr( (*expr), map_gmc_type( fusion::make_pair<vf::detail::gmc<0> >( M_c ) ) );
            eval_expr_type __expr( (*expr), map_gmc_type( fusion::make_pair<vf::detail::gmc<0> >( __c ) ) );

            //perf_mng.stop("data");

            perf_mng.init("cpu") ;
            perf_mng.start("cpu") ;

            for (int i = 0; i < elts->size(); i++)
            {
                //std::cout << Environment::worldComm().rank() <<  " nbItems: " << elts->size() << " nbElts " << std::distance(elts->at(i), elts->at(i+1)) << std::endl;
                for ( auto _elt = elts->at(i).first; _elt != elts->at(i).second; ++_elt )
                {
                    //perf_mng.start("1.1") ;
                    //M_c->update( *_elt );
                    __c->update( *_elt );
                    //perf_mng.stop("1.1") ;
                    //perf_mng.start("1.2") ;
                    map_gmc_type mapgmc( fusion::make_pair<vf::detail::gmc<0> >( __c ) );
                    //perf_mng.stop("1.2") ;

                    //perf_mng.start("2.1") ;
                    __expr.update( mapgmc );
                    //perf_mng.stop("2.1") ;
                    //perf_mng.start("2.2") ;
                    im->update( *__c );
                    //perf_mng.stop("2.2") ;

                    //perf_mng.start("3") ;
                    for ( uint16_type c1 = 0; c1 < eval::shape::M; ++c1 )
                    {
                        for ( uint16_type c2 = 0; c2 < eval::shape::N; ++c2 )
                        {
                            M_ret( c1,c2 ) += (*im)( __expr, c1, c2 );
                        }
                    }
                    //perf_mng.stop("3") ;
                }
            }

            perf_mng.stop("cpu") ;
            M_cpuTime = perf_mng.getValueInSeconds("cpu");
        }
int main(void)
{
  hwloc_topology_t topology;
  hwloc_bitmap_t set;
  hwloc_const_bitmap_t cset;
  hwloc_membind_policy_t policy;
  const struct hwloc_topology_support *support;
  int nbnodes;
  hwloc_obj_t obj;
  char *buffer;
  unsigned i;
  int err;

  /* create a topology */
  err = hwloc_topology_init(&topology);
  if (err < 0) {
    fprintf(stderr, "failed to initialize the topology\n");
    return EXIT_FAILURE;
  }
  err = hwloc_topology_load(topology);
  if (err < 0) {
    fprintf(stderr, "failed to load the topology\n");
    hwloc_topology_destroy(topology);
    return EXIT_FAILURE;
  }

  /* retrieve the entire set of NUMA nodes and count them */
  cset = hwloc_topology_get_topology_nodeset(topology);
  nbnodes = hwloc_bitmap_weight(cset);
  if (nbnodes <= 0) {
    /* nbnodes may be -1 when there's no NUMA information,
     * or 0 when the machine is known to be non-NUMA */
    printf("this machine is not NUMA, nothing to do\n");
    hwloc_topology_destroy(topology);
    return EXIT_SUCCESS;
  }
  printf("there are %d nodes in the machine\n", nbnodes);

  /* get the process memory binding as a nodeset */
  set = hwloc_bitmap_alloc();
  if (!set) {
    fprintf(stderr, "failed to allocate a bitmap\n");
    hwloc_topology_destroy(topology);
    return EXIT_FAILURE;
  }
  err = hwloc_get_membind_nodeset(topology, set, &policy, 0);
  if (err < 0) {
    fprintf(stderr, "failed to retrieve my memory binding and policy\n");
    hwloc_topology_destroy(topology);
    hwloc_bitmap_free(set);
    return EXIT_FAILURE;
  }

  /* print the corresponding NUMA nodes */
  hwloc_bitmap_asprintf(&buffer, set);
  printf("bound to nodeset %s with contains:\n", buffer);
  free(buffer);
  hwloc_bitmap_foreach_begin(i, set) {
    obj = hwloc_get_numanode_obj_by_os_index(topology, i);
    printf("  node #%u (OS index %u) with %lld bytes of memory\n",
	   obj->logical_index, i, (unsigned long long) obj->memory.local_memory);
  } hwloc_bitmap_foreach_end();
int main(void)
{
  const struct hwloc_topology_support *support;
  char *buffer;
  hwloc_topology_t topology;
  hwloc_bitmap_t set = hwloc_bitmap_alloc();
  hwloc_bitmap_t total = hwloc_bitmap_alloc();
  hwloc_obj_t node;
  char *s;
  int err;

  err = hwloc_topology_init(&topology);
  assert(!err);
  err = hwloc_topology_load(topology);
  assert(!err);

  support = hwloc_topology_get_support(topology);
  if (!support->membind->get_area_memlocation)
    goto out;

  buffer = hwloc_alloc(topology, LEN);
  assert(buffer);
  printf("buffer %p length %u\n", buffer, LEN);

  err = hwloc_get_area_memlocation(topology, buffer, LEN, set, HWLOC_MEMBIND_BYNODESET);
  if (err < 0 && errno == ENOSYS) {
    fprintf(stderr, "hwloc_get_area_memlocation() failed with ENOSYS, aborting\n");
    goto out_with_buffer;
  }
  assert(!err);
  hwloc_bitmap_asprintf(&s, set);
  printf("address %p length %u allocated in nodeset %s\n", buffer, LEN, s);
  free(s);
  hwloc_bitmap_copy(total, set);

  node = NULL;
 next1:
  node = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_NUMANODE, node);
  if (!node)
    goto out_with_buffer;
  if (!node->memory.local_memory)
    goto next1;
  printf("binding to 1st node and touching 1st quarter\n");
  err = hwloc_set_area_membind(topology, buffer, LEN, node->nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET);
  if (err < 0 && errno == ENOSYS) {
    fprintf(stderr, "hwloc_set_area_membind() failed with ENOSYS, aborting\n");
    goto out_with_buffer;
  }
  assert(!err);

  memset(buffer, 0, LEN/4);
  err = hwloc_get_area_memlocation(topology, buffer, 1, set, HWLOC_MEMBIND_BYNODESET);
  assert(!err);
  hwloc_bitmap_asprintf(&s, set);
  printf("address %p length %u allocated in nodeset %s\n", buffer, LEN/4, s);
  free(s);
  hwloc_bitmap_or(total, total, set);

 next2:
  node = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_NUMANODE, node);
  if (!node)
    goto out_with_nomorenodes;
  if (!node->memory.local_memory)
    goto next2;
  printf("binding to 2nd node and touching 2nd quarter\n");
  err = hwloc_set_area_membind(topology, buffer, LEN, node->nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET);
  assert(!err);

  memset(buffer+LEN/4, 0, LEN/4);
  err = hwloc_get_area_memlocation(topology, buffer+LEN/4, LEN/4, set, HWLOC_MEMBIND_BYNODESET);
  assert(!err);
  hwloc_bitmap_asprintf(&s, set);
  printf("address %p length %u allocated in nodeset %s\n", buffer+LEN/4, LEN/4, s);
  free(s);
  hwloc_bitmap_or(total, total, set);

 next3:
  node = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_NUMANODE, node);
  if (!node)
    goto out_with_nomorenodes;
  if (!node->memory.local_memory)
    goto next3;
  printf("binding to 3rd node and touching 3rd quarter\n");
  err = hwloc_set_area_membind(topology, buffer, LEN, node->nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET);
  assert(!err);

  memset(buffer+LEN/2, 0, LEN/4);
  err = hwloc_get_area_memlocation(topology, buffer+LEN/2, LEN/4, set, HWLOC_MEMBIND_BYNODESET);
  assert(!err);
  hwloc_bitmap_asprintf(&s, set);
  printf("address %p length %u allocated in nodeset %s\n", buffer+LEN/2, LEN/4, s);
  free(s);
  hwloc_bitmap_or(total, total, set);

 next4:
  node = hwloc_get_next_obj_by_type(topology, HWLOC_OBJ_NUMANODE, node);
  if (!node)
    goto out_with_nomorenodes;
  if (!node->memory.local_memory)
    goto next4;
  printf("binding to 4th node and touching 4th quarter\n");
  err = hwloc_set_area_membind(topology, buffer, LEN, node->nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_BYNODESET);
  assert(!err);

  memset(buffer+3*LEN/4, 0, LEN/4);
  err = hwloc_get_area_memlocation(topology, buffer+3*LEN/4, LEN/4, set, HWLOC_MEMBIND_BYNODESET);
  assert(!err);
  hwloc_bitmap_asprintf(&s, set);
  printf("address %p length %u allocated in nodeset %s\n", buffer+3*LEN/4, LEN/4, s);
  free(s);
  hwloc_bitmap_or(total, total, set);

 out_with_nomorenodes:
  err = hwloc_get_area_memlocation(topology, buffer, LEN, set, HWLOC_MEMBIND_BYNODESET);
  assert(!err);
  hwloc_bitmap_asprintf(&s, set);
  printf("address %p length %u located on %s\n", buffer, LEN, s);
  free(s);
  assert(hwloc_bitmap_isincluded(total, set));

 out_with_buffer:
  hwloc_free(topology, buffer, LEN);

 out:
  hwloc_topology_destroy(topology);
  hwloc_bitmap_free(set);
  hwloc_bitmap_free(total);
  return 0;
}
Exemple #16
0
static void create_hwloc_cpusets() {
#ifdef USE_HWLOC
    int i;

    int err = hwloc_topology_init(&topology);
    assert(err == 0);

    err = hwloc_topology_load(topology);
    assert(err == 0);

    hwloc_bitmap_t cpuset = hwloc_bitmap_alloc();
    assert(cpuset);

    err = hwloc_get_cpubind(topology, cpuset, HWLOC_CPUBIND_PROCESS);
    assert(err == 0);
    const int available_pus = hwloc_bitmap_weight(cpuset);
    const int last_set_index = hwloc_bitmap_last(cpuset);
    const int num_workers = hc_context->nworkers;

    hclib_affinity_t selected_affinity = HCLIB_AFFINITY_STRIDED;
    const char *user_selected_affinity = getenv("HCLIB_AFFINITY");
    if (user_selected_affinity) {
        if (strcmp(user_selected_affinity, "strided") == 0) {
            selected_affinity = HCLIB_AFFINITY_STRIDED;
        } else if (strcmp(user_selected_affinity, "chunked") == 0) {
            selected_affinity = HCLIB_AFFINITY_CHUNKED;
        } else {
            fprintf(stderr, "Unsupported thread affinity \"%s\" specified with "
                    "HCLIB_AFFINITY.\n", user_selected_affinity);
            exit(1);
        }
    }

    thread_cpusets = (hwloc_bitmap_t *)malloc(hc_context->nworkers *
            sizeof(*thread_cpusets));
    assert(thread_cpusets);

    for (i = 0; i < hc_context->nworkers; i++) {
        thread_cpusets[i] = hwloc_bitmap_alloc();
        assert(thread_cpusets[i]);
    }

    switch (selected_affinity) {
        case (HCLIB_AFFINITY_STRIDED): {
            if (available_pus < num_workers) {
                fprintf(stderr, "ERROR Available PUs (%d) was less than number "
                        "of workers (%d), don't currently support "
                        "oversubscription with strided thread pinning\n",
                        available_pus, num_workers);
                exit(1);
            }

            int count = 0;
            int index = 0;
            while (index <= last_set_index) {
                if (hwloc_bitmap_isset(cpuset, index)) {
                    hwloc_bitmap_set(thread_cpusets[count % num_workers],
                            index);
                    count++;
                }
                index++;
            }
            break;
        }
        case (HCLIB_AFFINITY_CHUNKED): {
            const int chunk_size = (available_pus + num_workers - 1) /
                    num_workers;
            int count = 0;
            int index = 0;
            while (index <= last_set_index) {
                if (hwloc_bitmap_isset(cpuset, index)) {
                    hwloc_bitmap_set(thread_cpusets[count / chunk_size], index);
                    count++;
                }
                index++;
            }
            break;
        }
        default:
            assert(false);
    }

    hwloc_bitmap_t nodeset = hwloc_bitmap_alloc();
    hwloc_bitmap_t other_nodeset = hwloc_bitmap_alloc();
    assert(nodeset && other_nodeset);

    /*
     * Here, we look for contiguous ranges of worker threads that share any NUMA
     * nodes with us. In theory, this should be more hierarchical but isn't yet.
     * This is also super inefficient... O(T^2) where T is the number of
     * workers.
     */
    bool revert_to_naive_stealing = false;
    for (i = 0; i < hc_context->nworkers; i++) {
        // Get the NUMA nodes for this CPU set
        hwloc_cpuset_to_nodeset(topology, thread_cpusets[i], nodeset);

        int base = -1;
        int limit = -1;
        int j;
        for (j = 0; j < hc_context->nworkers; j++) {
            hwloc_cpuset_to_nodeset(topology, thread_cpusets[j], other_nodeset);
            // Take the intersection, see if there is any overlap
            hwloc_bitmap_and(other_nodeset, nodeset, other_nodeset);

            if (base < 0) {
                // Haven't found a contiguous chunk of workers yet.
                if (!hwloc_bitmap_iszero(other_nodeset)) {
                    base = j;
                }
            } else {
                /*
                 * Have a contiguous chunk of workers, either still inside it or
                 * after it.
                 */
                if (limit < 0) {
                    // Inside the contiguous chunk of workers
                    if (hwloc_bitmap_iszero(other_nodeset)) {
                        // Found the end
                        limit = j;
                    }
                } else {
                    // After the contiguous chunk of workers
                    if (!hwloc_bitmap_iszero(other_nodeset)) {
                        // No contiguous chunk to find, just do something naive.
                        revert_to_naive_stealing = true;
                        break;
                    }
                }
            }
        }

        if (revert_to_naive_stealing) {
            fprintf(stderr, "WARNING: Using naive work-stealing patterns.\n");
            base = 0;
            limit = hc_context->nworkers;
        } else {
            assert(base >= 0);
            if (limit < 0) {
                limit = hc_context->nworkers;
            }
        }

        hc_context->workers[i]->base_intra_socket_workers = base;
        hc_context->workers[i]->limit_intra_socket_workers = limit;

#ifdef VERBOSE
        char *nbuf;
        hwloc_bitmap_asprintf(&nbuf, nodeset);

        char *buffer;
        hwloc_bitmap_asprintf(&buffer, thread_cpusets[i]);
        fprintf(stderr, "Worker %d has access to %d PUs (%s), %d NUMA nodes "
                "(%s). Shared NUMA nodes with [%d, %d).\n", i,
                hwloc_bitmap_weight(thread_cpusets[i]), buffer,
                hwloc_bitmap_weight(nodeset), nbuf, base, limit);
        free(buffer);
#endif
    }

#endif
}
Exemple #17
0
int main(void)
{
  hwloc_topology_t topology;
  CUresult cres;
  CUdevice device;
  int count, i;
  int err;

  cres = cuInit(0);
  if (cres != CUDA_SUCCESS) {
    printf("cuInit failed %d\n", cres);
    return 0;
  }

  cres = cuDeviceGetCount(&count);
  if (cres != CUDA_SUCCESS) {
    printf("cuDeviceGetCount failed %d\n", cres);
    return 0;
  }
  printf("cuDeviceGetCount found %d devices\n", count);

  hwloc_topology_init(&topology);
  hwloc_topology_set_flags(topology, HWLOC_TOPOLOGY_FLAG_IO_DEVICES);
  hwloc_topology_load(topology);

  for(i=0; i<count; i++) {
    hwloc_bitmap_t set;
    hwloc_obj_t osdev, osdev2, ancestor;
    const char *value;

    cres = cuDeviceGet(&device, i);
    if (cres != CUDA_SUCCESS) {
      printf("failed to get device %d\n", i);
      continue;
    }

    osdev = hwloc_cuda_get_device_osdev(topology, device);
    assert(osdev);
    osdev2 = hwloc_cuda_get_device_osdev_by_index(topology, i);
    assert(osdev == osdev2);

    ancestor = hwloc_get_non_io_ancestor_obj(topology, osdev);

    printf("found OSDev %s\n", osdev->name);
    err = strncmp(osdev->name, "cuda", 4);
    assert(!err);
    assert(atoi(osdev->name+4) == (int) i);

    value = hwloc_obj_get_info_by_name(osdev, "Backend");
    err = strcmp(value, "CUDA");
    assert(!err);

    assert(osdev->attr->osdev.type == HWLOC_OBJ_OSDEV_COPROC);

    value = hwloc_obj_get_info_by_name(osdev, "CoProcType");
    err = strcmp(value, "CUDA");
    assert(!err);

    value = hwloc_obj_get_info_by_name(osdev, "GPUModel");
    printf("found OSDev model %s\n", value);

    set = hwloc_bitmap_alloc();
    err = hwloc_cuda_get_device_cpuset(topology, device, set);
    if (err < 0) {
      printf("failed to get cpuset for device %d\n", i);
    } else {
      char *cpuset_string = NULL;
      hwloc_bitmap_asprintf(&cpuset_string, set);
      printf("got cpuset %s for device %d\n", cpuset_string, i);
      assert(hwloc_bitmap_isequal(set, ancestor->cpuset));
      free(cpuset_string);
    }
    hwloc_bitmap_free(set);
  }

  hwloc_topology_destroy(topology);

  return 0;
}
Exemple #18
0
void output_console(hwloc_topology_t topology, const char *filename, int logical, int legend __hwloc_attribute_unused, int verbose_mode)
{
  unsigned topodepth;
  FILE *output;

  if (!filename || !strcmp(filename, "-"))
    output = stdout;
  else {
    output = open_file(filename, "w"); 
    if (!output) {
      fprintf(stderr, "Failed to open %s for writing (%s)\n", filename, strerror(errno));
      return;
    }
  }

  topodepth = hwloc_topology_get_depth(topology);

  /*
   * if verbose_mode == 0, only print the summary.
   * if verbose_mode == 1, only print the topology tree.
   * if verbose_mode > 1, print both.
   */

  if (lstopo_show_only != (hwloc_obj_type_t)-1) {
    if (verbose_mode > 1)
      fprintf(output, "Only showing %s objects\n", hwloc_obj_type_string(lstopo_show_only));
    output_only (topology, hwloc_get_root_obj(topology), output, logical, verbose_mode);
  } else if (verbose_mode >= 1) {
    output_topology (topology, hwloc_get_root_obj(topology), NULL, output, 0, logical, verbose_mode);
    fprintf(output, "\n");
  }

  if ((verbose_mode > 1 || !verbose_mode) && lstopo_show_only == (hwloc_obj_type_t)-1) {
    hwloc_lstopo_show_summary(output, topology);
 }

  if (verbose_mode > 1 && lstopo_show_only == (hwloc_obj_type_t)-1) {
    const struct hwloc_distances_s * distances;
    unsigned depth;

    for (depth = 0; depth < topodepth; depth++) {
      distances = hwloc_get_whole_distance_matrix_by_depth(topology, depth);
      if (!distances || !distances->latency)
        continue;
      printf("latency matrix between %ss (depth %u) by %s indexes:\n",
	     hwloc_obj_type_string(hwloc_get_depth_type(topology, depth)),
	     depth,
	     logical ? "logical" : "physical");
      hwloc_utils_print_distance_matrix(topology, hwloc_get_root_obj(topology), distances->nbobjs, depth, distances->latency, logical);
    }
  }

  if (verbose_mode > 1 && lstopo_show_only == (hwloc_obj_type_t)-1) {
    hwloc_const_bitmap_t complete = hwloc_topology_get_complete_cpuset(topology);
    hwloc_const_bitmap_t topo = hwloc_topology_get_topology_cpuset(topology);
    hwloc_const_bitmap_t online = hwloc_topology_get_online_cpuset(topology);
    hwloc_const_bitmap_t allowed = hwloc_topology_get_allowed_cpuset(topology);

    if (complete && !hwloc_bitmap_isequal(topo, complete)) {
      hwloc_bitmap_t unknown = hwloc_bitmap_alloc();
      char *unknownstr;
      hwloc_bitmap_copy(unknown, complete);
      hwloc_bitmap_andnot(unknown, unknown, topo);
      hwloc_bitmap_asprintf(&unknownstr, unknown);
      fprintf (output, "%d processors not represented in topology: %s\n", hwloc_bitmap_weight(unknown), unknownstr);
      free(unknownstr);
      hwloc_bitmap_free(unknown);
    }
    if (complete && !hwloc_bitmap_isequal(online, complete)) {
      hwloc_bitmap_t offline = hwloc_bitmap_alloc();
      char *offlinestr;
      hwloc_bitmap_copy(offline, complete);
      hwloc_bitmap_andnot(offline, offline, online);
      hwloc_bitmap_asprintf(&offlinestr, offline);
      fprintf (output, "%d processors offline: %s\n", hwloc_bitmap_weight(offline), offlinestr);
      free(offlinestr);
      hwloc_bitmap_free(offline);
    }
    if (complete && !hwloc_bitmap_isequal(allowed, online)) {
      if (!hwloc_bitmap_isincluded(online, allowed)) {
        hwloc_bitmap_t forbidden = hwloc_bitmap_alloc();
        char *forbiddenstr;
        hwloc_bitmap_copy(forbidden, online);
        hwloc_bitmap_andnot(forbidden, forbidden, allowed);
        hwloc_bitmap_asprintf(&forbiddenstr, forbidden);
        fprintf(output, "%d processors online but not allowed: %s\n", hwloc_bitmap_weight(forbidden), forbiddenstr);
        free(forbiddenstr);
        hwloc_bitmap_free(forbidden);
      }
      if (!hwloc_bitmap_isincluded(allowed, online)) {
        hwloc_bitmap_t potential = hwloc_bitmap_alloc();
        char *potentialstr;
        hwloc_bitmap_copy(potential, allowed);
        hwloc_bitmap_andnot(potential, potential, online);
        hwloc_bitmap_asprintf(&potentialstr, potential);
        fprintf(output, "%d processors allowed but not online: %s\n", hwloc_bitmap_weight(potential), potentialstr);
        free(potentialstr);
        hwloc_bitmap_free(potential);
      }
    }
    if (!hwloc_topology_is_thissystem(topology))
      fprintf (output, "Topology not from this system\n");
  }

  if (output != stdout)
    fclose(output);
}
Exemple #19
0
int main(int argc, char *argv[])
{
  hwloc_topology_t topology;
  int loaded = 0;
  unsigned depth;
  hwloc_bitmap_t cpubind_set, membind_set;
  int got_cpubind = 0, got_membind = 0;
  int working_on_cpubind = 1; /* membind if 0 */
  int get_binding = 0;
  int get_last_cpu_location = 0;
  unsigned long flags = HWLOC_TOPOLOGY_FLAG_WHOLE_IO|HWLOC_TOPOLOGY_FLAG_ICACHES;
  int force = 0;
  int single = 0;
  int verbose = 0;
  int logical = 1;
  int taskset = 0;
  int cpubind_flags = 0;
  hwloc_membind_policy_t membind_policy = HWLOC_MEMBIND_BIND;
  int membind_flags = 0;
  int opt;
  int ret;
  int pid_number = -1;
  hwloc_pid_t pid = 0; /* only valid when pid_number > 0, but gcc-4.8 still reports uninitialized warnings */
  char *callname;

  cpubind_set = hwloc_bitmap_alloc();
  membind_set = hwloc_bitmap_alloc();

  /* don't load now, in case some options change the config before the topology is actually used */
#define LOADED() (loaded)
#define ENSURE_LOADED() do { \
  if (!loaded) { \
    hwloc_topology_init(&topology); \
    hwloc_topology_set_flags(topology, flags); \
    hwloc_topology_load(topology); \
    depth = hwloc_topology_get_depth(topology); \
    loaded = 1; \
  } \
} while (0)

  callname = argv[0];
  /* skip argv[0], handle options */
  argv++;
  argc--;

  while (argc >= 1) {
    if (!strcmp(argv[0], "--")) {
      argc--;
      argv++;
      break;
    }

    opt = 0;

    if (*argv[0] == '-') {
      if (!strcmp(argv[0], "-v") || !strcmp(argv[0], "--verbose")) {
	verbose++;
	goto next;
      }
      if (!strcmp(argv[0], "-q") || !strcmp(argv[0], "--quiet")) {
	verbose--;
	goto next;
      }
      if (!strcmp(argv[0], "--help")) {
        usage("hwloc-bind", stdout);
	return EXIT_SUCCESS;
      }
      if (!strcmp(argv[0], "--single")) {
	single = 1;
	goto next;
      }
      if (!strcmp(argv[0], "-f") || !strcmp(argv[0], "--force")) {
	force = 1;
	goto next;
      }
      if (!strcmp(argv[0], "--strict")) {
	cpubind_flags |= HWLOC_CPUBIND_STRICT;
	membind_flags |= HWLOC_MEMBIND_STRICT;
	goto next;
      }
      if (!strcmp(argv[0], "--pid")) {
        if (argc < 2) {
          usage ("hwloc-bind", stderr);
          exit(EXIT_FAILURE);
        }
        pid_number = atoi(argv[1]);
        opt = 1;
        goto next;
      }
      if (!strcmp (argv[0], "--version")) {
	printf("%s %s\n", callname, HWLOC_VERSION);
	exit(EXIT_SUCCESS);
      }
      if (!strcmp(argv[0], "-l") || !strcmp(argv[0], "--logical")) {
        logical = 1;
        goto next;
      }
      if (!strcmp(argv[0], "-p") || !strcmp(argv[0], "--physical")) {
        logical = 0;
        goto next;
      }
      if (!strcmp(argv[0], "--taskset")) {
        taskset = 1;
        goto next;
      }
      if (!strcmp (argv[0], "-e") || !strncmp (argv[0], "--get-last-cpu-location", 10)) {
	get_last_cpu_location = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--get")) {
	get_binding = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--cpubind")) {
	working_on_cpubind = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--membind")) {
	working_on_cpubind = 0;
	goto next;
      }
      if (!strcmp (argv[0], "--mempolicy")) {
	if (!strncmp(argv[1], "default", 2))
	  membind_policy = HWLOC_MEMBIND_DEFAULT;
	else if (!strncmp(argv[1], "firsttouch", 2))
	  membind_policy = HWLOC_MEMBIND_FIRSTTOUCH;
	else if (!strncmp(argv[1], "bind", 2))
	  membind_policy = HWLOC_MEMBIND_BIND;
	else if (!strncmp(argv[1], "interleave", 2))
	  membind_policy = HWLOC_MEMBIND_INTERLEAVE;
	else if (!strncmp(argv[1], "replicate", 2))
	  membind_policy = HWLOC_MEMBIND_REPLICATE;
	else if (!strncmp(argv[1], "nexttouch", 2))
	  membind_policy = HWLOC_MEMBIND_NEXTTOUCH;
	else {
	  fprintf(stderr, "Unrecognized memory binding policy %s\n", argv[1]);
          usage ("hwloc-bind", stderr);
          exit(EXIT_FAILURE);
	}
	opt = 1;
	goto next;
      }
      if (!strcmp (argv[0], "--whole-system")) {
	if (loaded) {
	  fprintf(stderr, "Input option %s disallowed after options using the topology\n", argv[0]);
	  exit(EXIT_FAILURE);
	}
	flags |= HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM;
	goto next;
      }
      if (!strcmp (argv[0], "--restrict")) {
	hwloc_bitmap_t restrictset;
	int err;
	if (argc < 2) {
	  usage (callname, stdout);
	  exit(EXIT_FAILURE);
	}
	restrictset = hwloc_bitmap_alloc();
	hwloc_bitmap_sscanf(restrictset, argv[1]);
	ENSURE_LOADED();
	err = hwloc_topology_restrict (topology, restrictset, 0);
	if (err) {
	  perror("Restricting the topology");
	  /* fallthrough */
	}
	hwloc_bitmap_free(restrictset);
	argc--;
	argv++;
	goto next;
      }

      fprintf (stderr, "Unrecognized option: %s\n", argv[0]);
      usage("hwloc-bind", stderr);
      return EXIT_FAILURE;
    }

    ENSURE_LOADED();
    ret = hwloc_calc_process_arg(topology, depth, argv[0], logical,
				 working_on_cpubind ? cpubind_set : membind_set,
				 verbose);
    if (ret < 0) {
      if (verbose > 0)
	fprintf(stderr, "assuming the command starts at %s\n", argv[0]);
      break;
    }
    if (working_on_cpubind)
      got_cpubind = 1;
    else
      got_membind = 1;

  next:
    argc -= opt+1;
    argv += opt+1;
  }

  ENSURE_LOADED();

  if (pid_number > 0) {
    pid = hwloc_pid_from_number(pid_number, !(get_binding || get_last_cpu_location));
    /* no need to set_pid()
     * the doc just says we're operating on pid, not that we're retrieving the topo/cpuset as seen from inside pid
     */
  }

  if (get_last_cpu_location && !working_on_cpubind) {
    fprintf(stderr, "Options --membind and --get-last-cpu-location cannot be combined.\n");
    return EXIT_FAILURE;
  }
  if ((get_binding || get_last_cpu_location) && (got_cpubind || got_membind)) {
    /* doesn't work because get_binding/get_last_cpu_location overwrites cpubind_set */
    fprintf(stderr, "Cannot display and set binding at the same time.\n");
    return EXIT_FAILURE;
  }

  if (get_binding || get_last_cpu_location) {
    char *s;
    const char *policystr = NULL;
    int err;
    if (working_on_cpubind) {
      if (get_last_cpu_location) {
	if (pid_number > 0)
	  err = hwloc_get_proc_last_cpu_location(topology, pid, cpubind_set, 0);
	else
	  err = hwloc_get_last_cpu_location(topology, cpubind_set, 0);
      } else {
	if (pid_number > 0)
	  err = hwloc_get_proc_cpubind(topology, pid, cpubind_set, 0);
	else
	  err = hwloc_get_cpubind(topology, cpubind_set, 0);
      }
      if (err) {
	const char *errmsg = strerror(errno);
	if (pid_number > 0)
	  fprintf(stderr, "hwloc_get_proc_%s %d failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", pid_number, errno, errmsg);
	else
	  fprintf(stderr, "hwloc_get_%s failed (errno %d %s)\n", get_last_cpu_location ? "last_cpu_location" : "cpubind", errno, errmsg);
	return EXIT_FAILURE;
      }
      if (taskset)
	hwloc_bitmap_taskset_asprintf(&s, cpubind_set);
      else
	hwloc_bitmap_asprintf(&s, cpubind_set);
    } else {
      hwloc_membind_policy_t policy;
      if (pid_number > 0)
	err = hwloc_get_proc_membind(topology, pid, membind_set, &policy, 0);
      else
	err = hwloc_get_membind(topology, membind_set, &policy, 0);
      if (err) {
	const char *errmsg = strerror(errno);
        if (pid_number > 0)
          fprintf(stderr, "hwloc_get_proc_membind %d failed (errno %d %s)\n", pid_number, errno, errmsg);
        else
	  fprintf(stderr, "hwloc_get_membind failed (errno %d %s)\n", errno, errmsg);
	return EXIT_FAILURE;
      }
      if (taskset)
	hwloc_bitmap_taskset_asprintf(&s, membind_set);
      else
	hwloc_bitmap_asprintf(&s, membind_set);
      switch (policy) {
      case HWLOC_MEMBIND_DEFAULT: policystr = "default"; break;
      case HWLOC_MEMBIND_FIRSTTOUCH: policystr = "firsttouch"; break;
      case HWLOC_MEMBIND_BIND: policystr = "bind"; break;
      case HWLOC_MEMBIND_INTERLEAVE: policystr = "interleave"; break;
      case HWLOC_MEMBIND_REPLICATE: policystr = "replicate"; break;
      case HWLOC_MEMBIND_NEXTTOUCH: policystr = "nexttouch"; break;
      default: fprintf(stderr, "unknown memory policy %d\n", policy); assert(0); break;
      }
    }
    if (policystr)
      printf("%s (%s)\n", s, policystr);
    else
      printf("%s\n", s);
    free(s);
  }

  if (got_membind) {
    if (hwloc_bitmap_iszero(membind_set)) {
      if (verbose >= 0)
	fprintf(stderr, "cannot membind to empty set\n");
      if (!force)
	goto failed_binding;
    }
    if (verbose > 0) {
      char *s;
      hwloc_bitmap_asprintf(&s, membind_set);
      fprintf(stderr, "binding on memory set %s\n", s);
      free(s);
    }
    if (single)
      hwloc_bitmap_singlify(membind_set);
    if (pid_number > 0)
      ret = hwloc_set_proc_membind(topology, pid, membind_set, membind_policy, membind_flags);
    else
      ret = hwloc_set_membind(topology, membind_set, membind_policy, membind_flags);
    if (ret && verbose >= 0) {
      int bind_errno = errno;
      const char *errmsg = strerror(bind_errno);
      char *s;
      hwloc_bitmap_asprintf(&s, membind_set);
      if (pid_number > 0)
        fprintf(stderr, "hwloc_set_proc_membind %s %d failed (errno %d %s)\n", s, pid_number, bind_errno, errmsg);
      else
        fprintf(stderr, "hwloc_set_membind %s failed (errno %d %s)\n", s, bind_errno, errmsg);
      free(s);
    }
    if (ret && !force)
      goto failed_binding;
  }

  if (got_cpubind) {
    if (hwloc_bitmap_iszero(cpubind_set)) {
      if (verbose >= 0)
	fprintf(stderr, "cannot cpubind to empty set\n");
      if (!force)
	goto failed_binding;
    }
    if (verbose > 0) {
      char *s;
      hwloc_bitmap_asprintf(&s, cpubind_set);
      fprintf(stderr, "binding on cpu set %s\n", s);
      free(s);
    }
    if (single)
      hwloc_bitmap_singlify(cpubind_set);
    if (pid_number > 0)
      ret = hwloc_set_proc_cpubind(topology, pid, cpubind_set, cpubind_flags);
    else
      ret = hwloc_set_cpubind(topology, cpubind_set, cpubind_flags);
    if (ret && verbose >= 0) {
      int bind_errno = errno;
      const char *errmsg = strerror(bind_errno);
      char *s;
      hwloc_bitmap_asprintf(&s, cpubind_set);
      if (pid_number > 0)
        fprintf(stderr, "hwloc_set_proc_cpubind %s %d failed (errno %d %s)\n", s, pid_number, bind_errno, errmsg);
      else
        fprintf(stderr, "hwloc_set_cpubind %s failed (errno %d %s)\n", s, bind_errno, errmsg);
      free(s);
    }
    if (ret && !force)
      goto failed_binding;
  }

  hwloc_bitmap_free(cpubind_set);
  hwloc_bitmap_free(membind_set);

  hwloc_topology_destroy(topology);

  if (pid_number > 0)
    return EXIT_SUCCESS;

  if (0 == argc) {
    if (get_binding || get_last_cpu_location)
      return EXIT_SUCCESS;
    fprintf(stderr, "%s: nothing to do!\n", callname);
    return EXIT_FAILURE;
  }

  ret = execvp(argv[0], argv);
  if (ret) {
      fprintf(stderr, "%s: Failed to launch executable \"%s\"\n",
              callname, argv[0]);
      perror("execvp");
  }
  return EXIT_FAILURE;


failed_binding:
  hwloc_bitmap_free(cpubind_set);
  hwloc_bitmap_free(membind_set);
  hwloc_topology_destroy(topology);
  return EXIT_FAILURE;
}
Exemple #20
0
/* user to have to play with the cgroup hierarchy to modify it */
extern int task_cgroup_cpuset_set_task_affinity(stepd_step_rec_t *job)
{
	int fstatus = SLURM_ERROR;

#ifndef HAVE_HWLOC

	error("task/cgroup: plugin not compiled with hwloc support, "
	      "skipping affinity.");
	return fstatus;

#else
	char mstr[1 + CPU_SETSIZE / 4];
	cpu_bind_type_t bind_type;
	cpu_set_t ts;
	hwloc_obj_t obj;
	hwloc_obj_type_t socket_or_node;
	hwloc_topology_t topology;
	hwloc_bitmap_t cpuset;
	hwloc_obj_type_t hwtype;
	hwloc_obj_type_t req_hwtype;
	int bind_verbose = 0;
	int rc = SLURM_SUCCESS;
	pid_t    pid = job->envtp->task_pid;
	size_t tssize;
	uint32_t nldoms;
	uint32_t nsockets;
	uint32_t ncores;
	uint32_t npus;
	uint32_t nobj;
	uint32_t taskid = job->envtp->localid;
	uint32_t jntasks = job->node_tasks;
	uint32_t jnpus = jntasks * job->cpus_per_task;

	bind_type = job->cpu_bind_type;
	if (conf->task_plugin_param & CPU_BIND_VERBOSE ||
	    bind_type & CPU_BIND_VERBOSE)
		bind_verbose = 1 ;

	/* Allocate and initialize hwloc objects */
	hwloc_topology_init(&topology);
	hwloc_topology_load(topology);
	cpuset = hwloc_bitmap_alloc();

	if ( hwloc_get_type_depth(topology, HWLOC_OBJ_NODE) >
	     hwloc_get_type_depth(topology, HWLOC_OBJ_SOCKET) ) {
		/* One socket contains multiple NUMA-nodes
		 * like AMD Opteron 6000 series etc.
		 * In such case, use NUMA-node instead of socket. */
		socket_or_node = HWLOC_OBJ_NODE;
	} else {
		socket_or_node = HWLOC_OBJ_SOCKET;
	}

	if (bind_type & CPU_BIND_NONE) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting no affinity",
			     taskid);
		return 0;
	} else if (bind_type & CPU_BIND_TO_THREADS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "thread level binding",taskid);
		req_hwtype = HWLOC_OBJ_PU;
	} else if (bind_type & CPU_BIND_TO_CORES) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "core level binding",taskid);
		req_hwtype = HWLOC_OBJ_CORE;
	} else if (bind_type & CPU_BIND_TO_SOCKETS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "socket level binding",taskid);
		req_hwtype = socket_or_node;
	} else if (bind_type & CPU_BIND_TO_LDOMS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "ldom level binding",taskid);
		req_hwtype = HWLOC_OBJ_NODE;
	} else if (bind_type & CPU_BIND_TO_BOARDS) {
		if (bind_verbose)
			info("task/cgroup: task[%u] is requesting "
			     "board level binding",taskid);
		req_hwtype = HWLOC_OBJ_GROUP;
	} else if (bind_type & bind_mode_ldom) {
		req_hwtype = HWLOC_OBJ_NODE;
	} else {
		if (bind_verbose)
			info("task/cgroup: task[%u] using core level binding"
			     " by default",taskid);
		req_hwtype = HWLOC_OBJ_CORE;
	}

	/*
	 * Perform the topology detection. It will only get allowed PUs.
	 * Detect in the same time the granularity to use for binding.
	 * The granularity can be relaxed from threads to cores if enough
	 * cores are available as with hyperthread support, ntasks-per-core
	 * param can let us have access to more threads per core for each
	 * task
	 * Revert back to machine granularity if no finer-grained granularity
	 * matching the request is found. This will result in no affinity
	 * applied.
	 * The detected granularity will be used to find where to best place
	 * the task, then the cpu_bind option will be used to relax the
	 * affinity constraint and use more PUs. (i.e. use a core granularity
	 * to dispatch the tasks across the sockets and then provide access
	 * to each task to the cores of its socket.)
	 */
	npus = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						   HWLOC_OBJ_PU);
	ncores = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						     HWLOC_OBJ_CORE);
	nsockets = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						       socket_or_node);
	nldoms = (uint32_t) hwloc_get_nbobjs_by_type(topology,
						     HWLOC_OBJ_NODE);

	hwtype = HWLOC_OBJ_MACHINE;
	nobj = 1;
	if (npus >= jnpus || bind_type & CPU_BIND_TO_THREADS) {
		hwtype = HWLOC_OBJ_PU;
		nobj = npus;
	}
	if (ncores >= jnpus || bind_type & CPU_BIND_TO_CORES) {
		hwtype = HWLOC_OBJ_CORE;
		nobj = ncores;
	}
	if (nsockets >= jntasks &&
	    bind_type & CPU_BIND_TO_SOCKETS) {
		hwtype = socket_or_node;
		nobj = nsockets;
	}
	/*
	 * HWLOC returns all the NUMA nodes available regardless of the
	 * number of underlying sockets available (regardless of the allowed
	 * resources). So there is no guarantee that each ldom will be populated
	 * with usable sockets. So add a simple check that at least ensure that
	 * we have as many sockets as ldoms before moving to ldoms granularity
	 */
	if (nldoms >= jntasks &&
	    nsockets >= nldoms &&
	    bind_type & (CPU_BIND_TO_LDOMS | bind_mode_ldom)) {
		hwtype = HWLOC_OBJ_NODE;
		nobj = nldoms;
	}

	/*
	 * If not enough objects to do the job, revert to no affinity mode
	 */
	if (hwloc_compare_types(hwtype,HWLOC_OBJ_MACHINE) == 0) {

		info("task/cgroup: task[%u] disabling affinity because of %s "
		     "granularity",taskid,hwloc_obj_type_string(hwtype));

	} else if (hwloc_compare_types(hwtype,HWLOC_OBJ_CORE) >= 0 &&
		   jnpus > nobj) {

		info("task/cgroup: task[%u] not enough %s objects, disabling "
		     "affinity",taskid,hwloc_obj_type_string(hwtype));

	} else if (bind_type & bind_mode) {
		/* Explicit binding mode specified by the user
		 * Bind the taskid in accordance with the specified mode
		 */
		obj = hwloc_get_obj_by_type(topology, HWLOC_OBJ_MACHINE, 0);
		if (!hwloc_bitmap_isequal(obj->complete_cpuset,
				obj->allowed_cpuset)) {
			info("task/cgroup: entire node must be allocated, "
			     "disabling affinity, task[%u]", taskid);
			fprintf(stderr, "Requested cpu_bind option requires "
				"entire node to be allocated; disabling "
				"affinity\n");
		} else {
			if (bind_verbose)
				info("task/cgroup: task[%u] is requesting "
					"explicit binding mode",taskid);
			_get_sched_cpuset(topology, hwtype, req_hwtype, &ts,
					job);
			tssize = sizeof(cpu_set_t);
			fstatus = SLURM_SUCCESS;
			if ((rc = sched_setaffinity(pid, tssize, &ts))) {
				error("task/cgroup: task[%u] unable to set "
					"mask 0x%s", taskid,
					cpuset_to_str(&ts, mstr));
				fstatus = SLURM_ERROR;
			} else if (bind_verbose)
				info("task/cgroup: task[%u] mask 0x%s",
					taskid, cpuset_to_str(&ts, mstr));
			slurm_chkaffinity(&ts, job, rc);
		}
	} else {
		/* Bind the detected object to the taskid, respecting the
		 * granularity, using the designated or default distribution
		 * method (block or cyclic). */
		char *str;

		if (bind_verbose) {
			info("task/cgroup: task[%u] using %s granularity",
			     taskid,hwloc_obj_type_string(hwtype));
		}

		/* There are two "distributions,"  controlled by the
		 * -m option of srun and friends. The first is the
		 * distribution of tasks to nodes.  The second is the
		 * distribution of allocated cpus to tasks for
		 * binding.  This code is handling the second
		 * distribution.  Here's how the values get set, based
		 * on the value of -m
		 *
		 * SLURM_DIST_CYCLIC = srun -m cyclic
		 * SLURM_DIST_BLOCK = srun -m block
		 * SLURM_DIST_CYCLIC_CYCLIC = srun -m cyclic:cyclic
		 * SLURM_DIST_BLOCK_CYCLIC = srun -m block:cyclic
		 *
		 * In the first two cases, the user only specified the
		 * first distribution.  The second distribution
		 * defaults to cyclic.  In the second two cases, the
		 * user explicitly requested a second distribution of
		 * cyclic.  So all these four cases correspond to a
		 * second distribution of cyclic.   So we want to call
		 * _task_cgroup_cpuset_dist_cyclic.
		 *
		 * If the user explicitly specifies a second
		 * distribution of block, or if
		 * CR_CORE_DEFAULT_DIST_BLOCK is configured and the
		 * user does not explicitly specify a second
		 * distribution of cyclic, the second distribution is
		 * block, and we need to call
		 * _task_cgroup_cpuset_dist_block. In these cases,
		 * task_dist would be set to SLURM_DIST_CYCLIC_BLOCK
		 * or SLURM_DIST_BLOCK_BLOCK.
		 *
		 * You can see the equivalent code for the
		 * task/affinity plugin in
		 * src/plugins/task/affinity/dist_tasks.c, around line 384.
		 */
		switch (job->task_dist) {
		case SLURM_DIST_CYCLIC:
		case SLURM_DIST_BLOCK:
		case SLURM_DIST_CYCLIC_CYCLIC:
		case SLURM_DIST_BLOCK_CYCLIC:
			_task_cgroup_cpuset_dist_cyclic(
				topology, hwtype, req_hwtype,
				job, bind_verbose, cpuset);
			break;
		default:
			_task_cgroup_cpuset_dist_block(
				topology, hwtype, req_hwtype,
				nobj, job, bind_verbose, cpuset);
		}

		hwloc_bitmap_asprintf(&str, cpuset);

		tssize = sizeof(cpu_set_t);
		if (hwloc_cpuset_to_glibc_sched_affinity(topology,cpuset,
							 &ts,tssize) == 0) {
			fstatus = SLURM_SUCCESS;
			if ((rc = sched_setaffinity(pid,tssize,&ts))) {
				error("task/cgroup: task[%u] unable to set "
				      "taskset '%s'",taskid,str);
				fstatus = SLURM_ERROR;
			} else if (bind_verbose) {
				info("task/cgroup: task[%u] taskset '%s' is set"
				     ,taskid,str);
			}
			slurm_chkaffinity(&ts, job, rc);
		} else {
			error("task/cgroup: task[%u] unable to build "
			      "taskset '%s'",taskid,str);
			fstatus = SLURM_ERROR;
		}
		free(str);
	}

	/* Destroy hwloc objects */
	hwloc_bitmap_free(cpuset);
	hwloc_topology_destroy(topology);

	return fstatus;
#endif

}
Exemple #21
0
static void
output_console_obj (hwloc_topology_t topology, hwloc_obj_t l, FILE *output, int logical, int verbose_mode)
{
  char type[32], *attr, phys[32] = "";
  unsigned idx = logical ? l->logical_index : l->os_index;
  const char *indexprefix = logical ? " L#" :  " P#";
  if (lstopo_show_cpuset < 2) {
    int len;
    if (l->type == HWLOC_OBJ_MISC && l->name)
      fprintf(output, "%s", l->name);
    else {
      hwloc_obj_type_snprintf (type, sizeof(type), l, verbose_mode-1);
      fprintf(output, "%s", type);
    }
    if (l->depth != 0 && idx != (unsigned)-1
        && l->type != HWLOC_OBJ_PCI_DEVICE
        && (l->type != HWLOC_OBJ_BRIDGE || l->attr->bridge.upstream_type == HWLOC_OBJ_BRIDGE_HOST))
      fprintf(output, "%s%u", indexprefix, idx);
    if (logical && l->os_index != (unsigned) -1 &&
	(verbose_mode >= 2 || l->type == HWLOC_OBJ_PU || l->type == HWLOC_OBJ_NUMANODE))
      snprintf(phys, sizeof(phys), "P#%u", l->os_index);
    /* display attributes */
    len = hwloc_obj_attr_snprintf (NULL, 0, l, " ", verbose_mode-1);
    attr = malloc(len+1);
    *attr = '\0';
    hwloc_obj_attr_snprintf (attr, len+1, l, " ", verbose_mode-1);
    if (*phys || *attr) {
      const char *separator = *phys != '\0' && *attr!= '\0' ? " " : "";
      fprintf(output, " (%s%s%s)",
	      phys, separator, attr);
    }
    free(attr);
    /* display the root total_memory if not verbose (already shown)
     * and different from the local_memory (already shown) */
    if (verbose_mode == 1 && !l->parent && l->memory.total_memory > l->memory.local_memory)
      fprintf(output, " (%lu%s total)",
	      (unsigned long) hwloc_memory_size_printf_value(l->memory.total_memory, 0),
	      hwloc_memory_size_printf_unit(l->memory.total_memory, 0));
    /* append the name */
    if ((l->type == HWLOC_OBJ_OS_DEVICE || verbose_mode >= 2) && l->name && l->type != HWLOC_OBJ_MISC)
      fprintf(output, " \"%s\"", l->name);
  }
  if (!l->cpuset)
    return;
  if (lstopo_show_cpuset == 1)
    fprintf(output, " cpuset=");
  if (lstopo_show_cpuset) {
    char *cpusetstr;
    if (lstopo_show_taskset)
      hwloc_bitmap_taskset_asprintf(&cpusetstr, l->cpuset);
    else
      hwloc_bitmap_asprintf(&cpusetstr, l->cpuset);
    fprintf(output, "%s", cpusetstr);
    free(cpusetstr);
  }

  /* annotate if the PU is forbidden/offline/running */
  if (l->type == HWLOC_OBJ_PU && verbose_mode >= 2) {
    if (lstopo_pu_offline(l))
      printf(" (offline)");
    else if (lstopo_pu_forbidden(l))
      printf(" (forbidden)");
    else if (lstopo_pu_running(topology, l))
      printf(" (running)");
  }
}