HYPRE_Int
hypre_MatTCommPkgCreate ( hypre_ParCSRMatrix *A)
{
   hypre_ParCSRCommPkg	*comm_pkg;
   
   MPI_Comm             comm = hypre_ParCSRMatrixComm(A);
/*   hypre_MPI_Datatype         *recv_mpi_types;
   hypre_MPI_Datatype         *send_mpi_types;
*/
   HYPRE_Int			num_sends;
   HYPRE_Int			*send_procs;
   HYPRE_Int			*send_map_starts;
   HYPRE_Int			*send_map_elmts;
   HYPRE_Int			num_recvs;
   HYPRE_Int			*recv_procs;
   HYPRE_Int			*recv_vec_starts;
   
   HYPRE_Int  *col_map_offd = hypre_ParCSRMatrixColMapOffd(A);
   HYPRE_Int  first_col_diag = hypre_ParCSRMatrixFirstColDiag(A);
   HYPRE_Int  *col_starts = hypre_ParCSRMatrixColStarts(A);

   HYPRE_Int	ierr = 0;
   HYPRE_Int	num_rows_diag = hypre_CSRMatrixNumRows(hypre_ParCSRMatrixDiag(A));
   HYPRE_Int	num_cols_diag = hypre_CSRMatrixNumCols(hypre_ParCSRMatrixDiag(A));
   HYPRE_Int	num_cols_offd = hypre_CSRMatrixNumCols(hypre_ParCSRMatrixOffd(A));
   HYPRE_Int * row_starts = hypre_ParCSRMatrixRowStarts(A);

   hypre_MatTCommPkgCreate_core (
      comm, col_map_offd, first_col_diag, col_starts,
      num_rows_diag, num_cols_diag, num_cols_offd, row_starts,
                                  hypre_ParCSRMatrixFirstColDiag(A),
                                  hypre_ParCSRMatrixColMapOffd(A),
                                  hypre_CSRMatrixI( hypre_ParCSRMatrixDiag(A) ),
                                  hypre_CSRMatrixJ( hypre_ParCSRMatrixDiag(A) ),
                                  hypre_CSRMatrixI( hypre_ParCSRMatrixOffd(A) ),
      hypre_CSRMatrixJ( hypre_ParCSRMatrixOffd(A) ),
      1,
      &num_recvs, &recv_procs, &recv_vec_starts,
      &num_sends, &send_procs, &send_map_starts,
      &send_map_elmts
      );

   comm_pkg = hypre_CTAlloc(hypre_ParCSRCommPkg, 1);

   hypre_ParCSRCommPkgComm(comm_pkg) = comm;

   hypre_ParCSRCommPkgNumRecvs(comm_pkg) = num_recvs;
   hypre_ParCSRCommPkgRecvProcs(comm_pkg) = recv_procs;
   hypre_ParCSRCommPkgRecvVecStarts(comm_pkg) = recv_vec_starts;
   hypre_ParCSRCommPkgNumSends(comm_pkg) = num_sends;
   hypre_ParCSRCommPkgSendProcs(comm_pkg) = send_procs;
   hypre_ParCSRCommPkgSendMapStarts(comm_pkg) = send_map_starts;
   hypre_ParCSRCommPkgSendMapElmts(comm_pkg) = send_map_elmts;

   hypre_ParCSRMatrixCommPkgT(A) = comm_pkg;

   return ierr;
}
Exemple #2
0
hypre_ParCSRMatrix * hypre_ParMatmul_FC(
   hypre_ParCSRMatrix * A, hypre_ParCSRMatrix * P, HYPRE_Int * CF_marker,
   HYPRE_Int * dof_func, HYPRE_Int * dof_func_offd )
/* hypre_parMatmul_FC creates and returns the "Fine"-designated rows of the
   matrix product A*P.  A's size is (nC+nF)*(nC+nF), P's size is (nC+nF)*nC
   where nC is the number of coarse rows/columns, nF the number of fine
   rows/columns.  The size of C=A*P is (nC+nF)*nC, even though not all rows
   of C are actually computed.  If we were to construct a matrix consisting
   only of the computed rows of C, its size would be nF*nC.
   "Fine" is defined solely by the marker array, and for example could be
   a proper subset of the fine points of a multigrid hierarchy.
*/
{
   /* To compute a submatrix of C containing only the computed data, i.e.
      only "Fine" rows, we would have to do a lot of computational work,
      with a lot of communication.  The communication is because such a
      matrix would need global information that depends on which rows are
      "Fine".
   */

   MPI_Comm 	   comm = hypre_ParCSRMatrixComm(A);

   hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
   
   double          *A_diag_data = hypre_CSRMatrixData(A_diag);
   HYPRE_Int             *A_diag_i = hypre_CSRMatrixI(A_diag);
   HYPRE_Int             *A_diag_j = hypre_CSRMatrixJ(A_diag);

   hypre_CSRMatrix *A_offd = hypre_ParCSRMatrixOffd(A);
   
   double          *A_offd_data = hypre_CSRMatrixData(A_offd);
   HYPRE_Int             *A_offd_i = hypre_CSRMatrixI(A_offd);
   HYPRE_Int             *A_offd_j = hypre_CSRMatrixJ(A_offd);

   HYPRE_Int *row_starts_A = hypre_ParCSRMatrixRowStarts(A);
   HYPRE_Int	num_rows_diag_A = hypre_CSRMatrixNumRows(A_diag);
   HYPRE_Int	num_cols_diag_A = hypre_CSRMatrixNumCols(A_diag);
   HYPRE_Int	num_cols_offd_A = hypre_CSRMatrixNumCols(A_offd);
   
   hypre_CSRMatrix *P_diag = hypre_ParCSRMatrixDiag(P);
   
   double          *P_diag_data = hypre_CSRMatrixData(P_diag);
   HYPRE_Int             *P_diag_i = hypre_CSRMatrixI(P_diag);
   HYPRE_Int             *P_diag_j = hypre_CSRMatrixJ(P_diag);

   hypre_CSRMatrix *P_offd = hypre_ParCSRMatrixOffd(P);
   HYPRE_Int		   *col_map_offd_P = hypre_ParCSRMatrixColMapOffd(P);
   
   double          *P_offd_data = hypre_CSRMatrixData(P_offd);
   HYPRE_Int             *P_offd_i = hypre_CSRMatrixI(P_offd);
   HYPRE_Int             *P_offd_j = hypre_CSRMatrixJ(P_offd);

   HYPRE_Int	first_col_diag_P = hypre_ParCSRMatrixFirstColDiag(P);
   HYPRE_Int	last_col_diag_P;
   HYPRE_Int *col_starts_P = hypre_ParCSRMatrixColStarts(P);
   HYPRE_Int	num_rows_diag_P = hypre_CSRMatrixNumRows(P_diag);
   HYPRE_Int	num_cols_diag_P = hypre_CSRMatrixNumCols(P_diag);
   HYPRE_Int	num_cols_offd_P = hypre_CSRMatrixNumCols(P_offd);

   hypre_ParCSRMatrix *C;
   HYPRE_Int		      *col_map_offd_C;
   HYPRE_Int		      *map_P_to_C;

   hypre_CSRMatrix *C_diag;

   double          *C_diag_data;
   HYPRE_Int             *C_diag_i;
   HYPRE_Int             *C_diag_j;

   hypre_CSRMatrix *C_offd;

   double          *C_offd_data=NULL;
   HYPRE_Int             *C_offd_i=NULL;
   HYPRE_Int             *C_offd_j=NULL;

   HYPRE_Int              C_diag_size;
   HYPRE_Int              C_offd_size;
   HYPRE_Int		    num_cols_offd_C = 0;
   
   hypre_CSRMatrix *Ps_ext;
   
   double          *Ps_ext_data;
   HYPRE_Int             *Ps_ext_i;
   HYPRE_Int             *Ps_ext_j;

   double          *P_ext_diag_data;
   HYPRE_Int             *P_ext_diag_i;
   HYPRE_Int             *P_ext_diag_j;
   HYPRE_Int              P_ext_diag_size;

   double          *P_ext_offd_data;
   HYPRE_Int             *P_ext_offd_i;
   HYPRE_Int             *P_ext_offd_j;
   HYPRE_Int              P_ext_offd_size;

   HYPRE_Int		   *P_marker;
   HYPRE_Int		   *temp;

   HYPRE_Int              i, j;
   HYPRE_Int              i1, i2, i3;
   HYPRE_Int              jj2, jj3;
   
   HYPRE_Int              jj_count_diag, jj_count_offd;
   HYPRE_Int              jj_row_begin_diag, jj_row_begin_offd;
   HYPRE_Int              start_indexing = 0; /* start indexing for C_data at 0 */
   HYPRE_Int		    n_rows_A_global, n_cols_A_global;
   HYPRE_Int		    n_rows_P_global, n_cols_P_global;
   HYPRE_Int              allsquare = 0;
   HYPRE_Int              cnt, cnt_offd, cnt_diag;
   HYPRE_Int 		    num_procs;
   HYPRE_Int 		    value;

   double           a_entry;
   double           a_b_product;
   
   n_rows_A_global = hypre_ParCSRMatrixGlobalNumRows(A);
   n_cols_A_global = hypre_ParCSRMatrixGlobalNumCols(A);
   n_rows_P_global = hypre_ParCSRMatrixGlobalNumRows(P);
   n_cols_P_global = hypre_ParCSRMatrixGlobalNumCols(P);

   if (n_cols_A_global != n_rows_P_global || num_cols_diag_A != num_rows_diag_P)
   {
	hypre_printf(" Error! Incompatible matrix dimensions!\n");
	return NULL;
   }
   /* if (num_rows_A==num_cols_P) allsquare = 1; */

   /*-----------------------------------------------------------------------
    *  Extract P_ext, i.e. portion of P that is stored on neighbor procs
    *  and needed locally for matrix matrix product 
    *-----------------------------------------------------------------------*/

   hypre_MPI_Comm_size(comm, &num_procs);

   if (num_procs > 1)
   {
       /*---------------------------------------------------------------------
    	* If there exists no CommPkg for A, a CommPkg is generated using
    	* equally load balanced partitionings within 
	* hypre_ParCSRMatrixExtractBExt
    	*--------------------------------------------------------------------*/
   	Ps_ext = hypre_ParCSRMatrixExtractBExt(P,A,1);
   	Ps_ext_data = hypre_CSRMatrixData(Ps_ext);
   	Ps_ext_i    = hypre_CSRMatrixI(Ps_ext);
   	Ps_ext_j    = hypre_CSRMatrixJ(Ps_ext);
   }
   P_ext_diag_i = hypre_CTAlloc(HYPRE_Int, num_cols_offd_A+1);
   P_ext_offd_i = hypre_CTAlloc(HYPRE_Int, num_cols_offd_A+1);
   P_ext_diag_size = 0;
   P_ext_offd_size = 0;
   last_col_diag_P = first_col_diag_P + num_cols_diag_P -1;

   for (i=0; i < num_cols_offd_A; i++)
   {
      for (j=Ps_ext_i[i]; j < Ps_ext_i[i+1]; j++)
         if (Ps_ext_j[j] < first_col_diag_P || Ps_ext_j[j] > last_col_diag_P)
            P_ext_offd_size++;
         else
            P_ext_diag_size++;
      P_ext_diag_i[i+1] = P_ext_diag_size;
      P_ext_offd_i[i+1] = P_ext_offd_size;
   }

   if (P_ext_diag_size)
   {
      P_ext_diag_j = hypre_CTAlloc(HYPRE_Int, P_ext_diag_size);
      P_ext_diag_data = hypre_CTAlloc(double, P_ext_diag_size);
   }
   if (P_ext_offd_size)
   {
      P_ext_offd_j = hypre_CTAlloc(HYPRE_Int, P_ext_offd_size);
      P_ext_offd_data = hypre_CTAlloc(double, P_ext_offd_size);
   }

   cnt_offd = 0;
   cnt_diag = 0;
   for (i=0; i < num_cols_offd_A; i++)
   {
      for (j=Ps_ext_i[i]; j < Ps_ext_i[i+1]; j++)
         if (Ps_ext_j[j] < first_col_diag_P || Ps_ext_j[j] > last_col_diag_P)
         {
            P_ext_offd_j[cnt_offd] = Ps_ext_j[j];
            P_ext_offd_data[cnt_offd++] = Ps_ext_data[j];
         }
         else
         {
            P_ext_diag_j[cnt_diag] = Ps_ext_j[j] - first_col_diag_P;
            P_ext_diag_data[cnt_diag++] = Ps_ext_data[j];
         }
   }

   if (num_procs > 1)
   {
      hypre_CSRMatrixDestroy(Ps_ext);
      Ps_ext = NULL;
   }

   cnt = 0;
   if (P_ext_offd_size || num_cols_offd_P)
   {
      temp = hypre_CTAlloc(HYPRE_Int, P_ext_offd_size+num_cols_offd_P);
      for (i=0; i < P_ext_offd_size; i++)
         temp[i] = P_ext_offd_j[i];
      cnt = P_ext_offd_size;
      for (i=0; i < num_cols_offd_P; i++)
         temp[cnt++] = col_map_offd_P[i];
   }
   if (cnt)
   {
      qsort0(temp, 0, cnt-1);

      num_cols_offd_C = 1;
      value = temp[0];
      for (i=1; i < cnt; i++)
      {
         if (temp[i] > value)
         {
            value = temp[i];
            temp[num_cols_offd_C++] = value;
         }
      }
   }

   if (num_cols_offd_C)
        col_map_offd_C = hypre_CTAlloc(HYPRE_Int,num_cols_offd_C);

   for (i=0; i < num_cols_offd_C; i++)
      col_map_offd_C[i] = temp[i];

   if (P_ext_offd_size || num_cols_offd_P)
      hypre_TFree(temp);

   for (i=0 ; i < P_ext_offd_size; i++)
      P_ext_offd_j[i] = hypre_BinarySearch(col_map_offd_C,
                                           P_ext_offd_j[i],
                                           num_cols_offd_C);
   if (num_cols_offd_P)
   {
      map_P_to_C = hypre_CTAlloc(HYPRE_Int,num_cols_offd_P);

      cnt = 0;
      for (i=0; i < num_cols_offd_C; i++)
         if (col_map_offd_C[i] == col_map_offd_P[cnt])
         {
            map_P_to_C[cnt++] = i;
            if (cnt == num_cols_offd_P) break;
         }
   }

   /*-----------------------------------------------------------------------
   *  Allocate marker array.
    *-----------------------------------------------------------------------*/

   P_marker = hypre_CTAlloc(HYPRE_Int, num_cols_diag_P+num_cols_offd_C);

   /*-----------------------------------------------------------------------
    *  Initialize some stuff.
    *-----------------------------------------------------------------------*/

   for (i1 = 0; i1 < num_cols_diag_P+num_cols_offd_C; i1++)
   {      
      P_marker[i1] = -1;
   }


/* no changes for the marked version above this point */
   /* This function call is the first pass: */
   hypre_ParMatmul_RowSizes_Marked(
      &C_diag_i, &C_offd_i, &P_marker,
      A_diag_i, A_diag_j, A_offd_i, A_offd_j,
      P_diag_i, P_diag_j, P_offd_i, P_offd_j,
      P_ext_diag_i, P_ext_diag_j, P_ext_offd_i, P_ext_offd_j,
      map_P_to_C,
      &C_diag_size, &C_offd_size,
      num_rows_diag_A, num_cols_offd_A, allsquare,
      num_cols_diag_P, num_cols_offd_P,
      num_cols_offd_C, CF_marker, dof_func, dof_func_offd
      );

   /* The above call of hypre_ParMatmul_RowSizes_Marked computed
      two scalars: C_diag_size, C_offd_size,
      and two arrays: C_diag_i, C_offd_i
      ( P_marker is also computed, but only used internally )
   */

   /*-----------------------------------------------------------------------
    *  Allocate C_diag_data and C_diag_j arrays.
    *  Allocate C_offd_data and C_offd_j arrays.
    *-----------------------------------------------------------------------*/
 
   last_col_diag_P = first_col_diag_P + num_cols_diag_P - 1;
   C_diag_data = hypre_CTAlloc(double, C_diag_size);
   C_diag_j    = hypre_CTAlloc(HYPRE_Int, C_diag_size);
   if (C_offd_size)
   { 
   	C_offd_data = hypre_CTAlloc(double, C_offd_size);
   	C_offd_j    = hypre_CTAlloc(HYPRE_Int, C_offd_size);
   } 


   /*-----------------------------------------------------------------------
    *  Second Pass: Fill in C_diag_data and C_diag_j.
    *  Second Pass: Fill in C_offd_data and C_offd_j.
    *-----------------------------------------------------------------------*/

   /*-----------------------------------------------------------------------
    *  Initialize some stuff.
    *-----------------------------------------------------------------------*/

   jj_count_diag = start_indexing;
   jj_count_offd = start_indexing;
   for (i1 = 0; i1 < num_cols_diag_P+num_cols_offd_C; i1++)
   {      
      P_marker[i1] = -1;
   }
   
   /*-----------------------------------------------------------------------
    *  Loop over interior c-points.
    *-----------------------------------------------------------------------*/
    
   for (i1 = 0; i1 < num_rows_diag_A; i1++)
   {

      if ( CF_marker[i1] < 0 )  /* i1 is a fine row */
         /* ... This and the coarse row code are the only parts between first pass
            and near the end where
            hypre_ParMatmul_FC is different from the regular hypre_ParMatmul */
      {

         /*--------------------------------------------------------------------
          *  Create diagonal entry, C_{i1,i1} 
          *--------------------------------------------------------------------*/

         jj_row_begin_diag = jj_count_diag;
         jj_row_begin_offd = jj_count_offd;

         /*-----------------------------------------------------------------
          *  Loop over entries in row i1 of A_offd.
          *-----------------------------------------------------------------*/
         
	 if (num_cols_offd_A)
	 {
            for (jj2 = A_offd_i[i1]; jj2 < A_offd_i[i1+1]; jj2++)
            {
               i2 = A_offd_j[jj2];
               if( dof_func==NULL || dof_func[i1] == dof_func_offd[i2] )
               {  /* interpolate only like "functions" */
                  a_entry = A_offd_data[jj2];
            
                  /*-----------------------------------------------------------
                   *  Loop over entries in row i2 of P_ext.
                   *-----------------------------------------------------------*/

                  for (jj3 = P_ext_offd_i[i2]; jj3 < P_ext_offd_i[i2+1]; jj3++)
                  {
                     i3 = num_cols_diag_P+P_ext_offd_j[jj3];
                     a_b_product = a_entry * P_ext_offd_data[jj3];
                  
                     /*--------------------------------------------------------
                      *  Check P_marker to see that C_{i1,i3} has not already
                      *  been accounted for. If it has not, create a new entry.
                      *  If it has, add new contribution.
                      *--------------------------------------------------------*/
                     if (P_marker[i3] < jj_row_begin_offd)
                     {
                        P_marker[i3] = jj_count_offd;
                        C_offd_data[jj_count_offd] = a_b_product;
                        C_offd_j[jj_count_offd] = i3-num_cols_diag_P;
                        jj_count_offd++;
                     }
                     else
                        C_offd_data[P_marker[i3]] += a_b_product;
                  }
                  for (jj3 = P_ext_diag_i[i2]; jj3 < P_ext_diag_i[i2+1]; jj3++)
                  {
                     i3 = P_ext_diag_j[jj3];
                     a_b_product = a_entry * P_ext_diag_data[jj3];

                     if (P_marker[i3] < jj_row_begin_diag)
                     {
                        P_marker[i3] = jj_count_diag;
                        C_diag_data[jj_count_diag] = a_b_product;
                        C_diag_j[jj_count_diag] = i3;
                        jj_count_diag++;
                     }
                     else
                        C_diag_data[P_marker[i3]] += a_b_product;
                  }
               }
               else
               {  /* Interpolation mat should be 0 where i1 and i2 correspond to
                     different "functions".  As we haven't created an entry for
                     C(i1,i2), nothing needs to be done. */
               }

            }
         }

         /*-----------------------------------------------------------------
          *  Loop over entries in row i1 of A_diag.
          *-----------------------------------------------------------------*/

         for (jj2 = A_diag_i[i1]; jj2 < A_diag_i[i1+1]; jj2++)
         {
            i2 = A_diag_j[jj2];
            if( dof_func==NULL || dof_func[i1] == dof_func[i2] )
            {  /* interpolate only like "functions" */
               a_entry = A_diag_data[jj2];
            
               /*-----------------------------------------------------------
                *  Loop over entries in row i2 of P_diag.
                *-----------------------------------------------------------*/

               for (jj3 = P_diag_i[i2]; jj3 < P_diag_i[i2+1]; jj3++)
               {
                  i3 = P_diag_j[jj3];
                  a_b_product = a_entry * P_diag_data[jj3];
                  
                  /*--------------------------------------------------------
                   *  Check P_marker to see that C_{i1,i3} has not already
                   *  been accounted for. If it has not, create a new entry.
                   *  If it has, add new contribution.
                   *--------------------------------------------------------*/

                  if (P_marker[i3] < jj_row_begin_diag)
                  {
                     P_marker[i3] = jj_count_diag;
                     C_diag_data[jj_count_diag] = a_b_product;
                     C_diag_j[jj_count_diag] = i3;
                     jj_count_diag++;
                  }
                  else
                  {
                     C_diag_data[P_marker[i3]] += a_b_product;
                  }
               }
               if (num_cols_offd_P)
	       {
                  for (jj3 = P_offd_i[i2]; jj3 < P_offd_i[i2+1]; jj3++)
                  {
                     i3 = num_cols_diag_P+map_P_to_C[P_offd_j[jj3]];
                     a_b_product = a_entry * P_offd_data[jj3];
                  
                     /*--------------------------------------------------------
                      *  Check P_marker to see that C_{i1,i3} has not already
                      *  been accounted for. If it has not, create a new entry.
                      *  If it has, add new contribution.
                      *--------------------------------------------------------*/

                     if (P_marker[i3] < jj_row_begin_offd)
                     {
                        P_marker[i3] = jj_count_offd;
                        C_offd_data[jj_count_offd] = a_b_product;
                        C_offd_j[jj_count_offd] = i3-num_cols_diag_P;
                        jj_count_offd++;
                     }
                     else
                     {
                        C_offd_data[P_marker[i3]] += a_b_product;
                     }
                  }
               }
            }
            else
            {  /* Interpolation mat should be 0 where i1 and i2 correspond to
                  different "functions".  As we haven't created an entry for
                  C(i1,i2), nothing needs to be done. */
            }
         }
      }
      else  /* i1 is a coarse row.*/
         /* Copy P coarse-row values to C.  This is useful if C is meant to
            become a replacement for P */
      {
	 if (num_cols_offd_P)
	 {
            for (jj2 = P_offd_i[i1]; jj2 < P_offd_i[i1+1]; jj2++)
            {
               C_offd_j[jj_count_offd] = P_offd_j[jj_count_offd];
               C_offd_data[jj_count_offd] = P_offd_data[jj_count_offd];
               ++jj_count_offd;
            }
         }
         for (jj2 = P_diag_i[i1]; jj2 < P_diag_i[i1+1]; jj2++)
         {
            C_diag_j[jj_count_diag] = P_diag_j[jj2];
            C_diag_data[jj_count_diag] = P_diag_data[jj2];
            ++jj_count_diag;
         }
      }
   }

   C = hypre_ParCSRMatrixCreate(
      comm, n_rows_A_global, n_cols_P_global,
      row_starts_A, col_starts_P, num_cols_offd_C, C_diag_size, C_offd_size );

   /* Note that C does not own the partitionings */
   hypre_ParCSRMatrixSetRowStartsOwner(C,0);
   hypre_ParCSRMatrixSetColStartsOwner(C,0);

   C_diag = hypre_ParCSRMatrixDiag(C);
   hypre_CSRMatrixData(C_diag) = C_diag_data; 
   hypre_CSRMatrixI(C_diag) = C_diag_i; 
   hypre_CSRMatrixJ(C_diag) = C_diag_j; 

   C_offd = hypre_ParCSRMatrixOffd(C);
   hypre_CSRMatrixI(C_offd) = C_offd_i; 
   hypre_ParCSRMatrixOffd(C) = C_offd;

   if (num_cols_offd_C)
   {
      hypre_CSRMatrixData(C_offd) = C_offd_data; 
      hypre_CSRMatrixJ(C_offd) = C_offd_j; 
      hypre_ParCSRMatrixColMapOffd(C) = col_map_offd_C;

   }

   /*-----------------------------------------------------------------------
    *  Free various arrays
    *-----------------------------------------------------------------------*/

   hypre_TFree(P_marker);   
   hypre_TFree(P_ext_diag_i);
   if (P_ext_diag_size)
   {
      hypre_TFree(P_ext_diag_j);
      hypre_TFree(P_ext_diag_data);
   }
   hypre_TFree(P_ext_offd_i);
   if (P_ext_offd_size)
   {
      hypre_TFree(P_ext_offd_j);
      hypre_TFree(P_ext_offd_data);
   }
   if (num_cols_offd_P) hypre_TFree(map_P_to_C);

   return C;
   
}
/*
  Assume that we are given a fine and coarse topology and the
  coarse degrees of freedom (DOFs) have been chosen. Assume also,
  that the global interpolation matrix dof_DOF has a prescribed
  nonzero pattern. Then, the fine degrees of freedom can be split
  into 4 groups (here "i" stands for "interior"):

  NODEidof - dofs which are interpolated only from the DOF
             in one coarse vertex
  EDGEidof - dofs which are interpolated only from the DOFs
             in one coarse edge
  FACEidof - dofs which are interpolated only from the DOFs
             in one coarse face
  ELEMidof - dofs which are interpolated only from the DOFs
             in one coarse element

  The interpolation operator dof_DOF can be build in 4 steps, by
  consequently filling-in the rows corresponding to the above groups.
  The code below uses harmonic extension to extend the interpolation
  from one group to the next.
*/
HYPRE_Int hypre_ND1AMGeInterpolation (hypre_ParCSRMatrix       * Aee,
                                hypre_ParCSRMatrix       * ELEM_idof,
                                hypre_ParCSRMatrix       * FACE_idof,
                                hypre_ParCSRMatrix       * EDGE_idof,
                                hypre_ParCSRMatrix       * ELEM_FACE,
                                hypre_ParCSRMatrix       * ELEM_EDGE,
                                HYPRE_Int                  num_OffProcRows,
                                hypre_MaxwellOffProcRow ** OffProcRows,
                                hypre_IJMatrix           * IJ_dof_DOF)
{
   HYPRE_Int ierr = 0;

   HYPRE_Int  i, j, k;
   HYPRE_Int *offproc_rnums, *swap;

   hypre_ParCSRMatrix * dof_DOF = hypre_IJMatrixObject(IJ_dof_DOF);
   hypre_ParCSRMatrix * ELEM_DOF = ELEM_EDGE;
   hypre_ParCSRMatrix * ELEM_FACEidof;
   hypre_ParCSRMatrix * ELEM_EDGEidof;
   hypre_CSRMatrix *A, *P;
   HYPRE_Int numELEM = hypre_CSRMatrixNumRows(hypre_ParCSRMatrixDiag(ELEM_EDGE));

   HYPRE_Int getrow_ierr;
   HYPRE_Int three_dimensional_problem;

   MPI_Comm comm= hypre_ParCSRMatrixComm(Aee);
   HYPRE_Int      myproc;

   hypre_MPI_Comm_rank(comm, &myproc);

#if 0
   hypre_IJMatrix * ij_dof_DOF = hypre_CTAlloc(hypre_IJMatrix, 1);
   /* Convert dof_DOF to IJ matrix, so we can use AddToValues */
   hypre_IJMatrixComm(ij_dof_DOF) = hypre_ParCSRMatrixComm(dof_DOF);
   hypre_IJMatrixRowPartitioning(ij_dof_DOF) =
      hypre_ParCSRMatrixRowStarts(dof_DOF);
   hypre_IJMatrixColPartitioning(ij_dof_DOF) =
      hypre_ParCSRMatrixColStarts(dof_DOF);
   hypre_IJMatrixObject(ij_dof_DOF) = dof_DOF;
   hypre_IJMatrixAssembleFlag(ij_dof_DOF) = 1;
#endif

  /* sort the offproc rows to get quicker comparison for later */
   if (num_OffProcRows)
   {
      offproc_rnums= hypre_TAlloc(HYPRE_Int, num_OffProcRows);
      swap         = hypre_TAlloc(HYPRE_Int, num_OffProcRows);
      for (i= 0; i< num_OffProcRows; i++)
      {
         offproc_rnums[i]=(OffProcRows[i] -> row);
         swap[i]         = i;
      }
   }

   if (num_OffProcRows > 1)
   {
      hypre_qsort2i(offproc_rnums, swap, 0, num_OffProcRows-1);
   }

   if (FACE_idof == EDGE_idof)
      three_dimensional_problem = 0;
   else
      three_dimensional_problem = 1;

   /* ELEM_FACEidof = ELEM_FACE x FACE_idof */
   if (three_dimensional_problem)
      ELEM_FACEidof = hypre_ParMatmul(ELEM_FACE, FACE_idof);

   /* ELEM_EDGEidof = ELEM_EDGE x EDGE_idof */
   ELEM_EDGEidof = hypre_ParMatmul(ELEM_EDGE, EDGE_idof);

   /* Loop over local coarse elements */
   k = hypre_ParCSRMatrixFirstRowIndex(ELEM_EDGE);
   for (i = 0; i < numELEM; i++, k++)
   {
      HYPRE_Int size1, size2;
      HYPRE_Int *col_ind0, *col_ind1, *col_ind2;

      HYPRE_Int num_DOF, *DOF0, *DOF;
      HYPRE_Int num_idof, *idof0, *idof;
      HYPRE_Int num_bdof, *bdof;

      double *boolean_data;

      /* Determine the coarse DOFs */
      hypre_ParCSRMatrixGetRow (ELEM_DOF, k, &num_DOF, &DOF0, &boolean_data);
      DOF= hypre_TAlloc(HYPRE_Int, num_DOF);
      for (j= 0; j< num_DOF; j++)
      {
         DOF[j]= DOF0[j];
      }
      hypre_ParCSRMatrixRestoreRow (ELEM_DOF, k, &num_DOF, &DOF0, &boolean_data);

      qsort0(DOF,0,num_DOF-1);

      /* Find the fine dofs interior for the current coarse element */
      hypre_ParCSRMatrixGetRow (ELEM_idof, k, &num_idof, &idof0, &boolean_data);
      idof= hypre_TAlloc(HYPRE_Int, num_idof);
      for (j= 0; j< num_idof; j++)
      {
         idof[j]= idof0[j];
      }
      hypre_ParCSRMatrixRestoreRow (ELEM_idof, k, &num_idof, &idof0, &boolean_data);

      /* Sort the interior dofs according to their global number */
      qsort0(idof,0,num_idof-1);

      /* Find the fine dofs on the boundary of the current coarse element */
      if (three_dimensional_problem)
      {
         hypre_ParCSRMatrixGetRow (ELEM_FACEidof, k, &size1, &col_ind0, &boolean_data);
         col_ind1= hypre_TAlloc(HYPRE_Int, size1);
         for (j= 0; j< size1; j++)
         {
            col_ind1[j]= col_ind0[j];
         }
         hypre_ParCSRMatrixRestoreRow (ELEM_FACEidof, k, &size1, &col_ind0, &boolean_data);
      }
      else
         size1 = 0;

      hypre_ParCSRMatrixGetRow (ELEM_EDGEidof, k, &size2, &col_ind0, &boolean_data);
      col_ind2= hypre_TAlloc(HYPRE_Int, size2);
      for (j= 0; j< size2; j++)
      {
         col_ind2[j]= col_ind0[j];
      }
      hypre_ParCSRMatrixRestoreRow (ELEM_EDGEidof, k, &size2, &col_ind0, &boolean_data);

      /* Merge and sort the boundary dofs according to their global number */
      num_bdof = size1 + size2;
      bdof = hypre_CTAlloc(HYPRE_Int, num_bdof);
      if (three_dimensional_problem)
         memcpy(bdof, col_ind1, size1*sizeof(HYPRE_Int));
      memcpy(bdof+size1, col_ind2, size2*sizeof(HYPRE_Int));

      qsort0(bdof,0,num_bdof-1);

      /* A = extract_rows(Aee, idof) */
      A = hypre_CSRMatrixCreate (num_idof, num_idof + num_bdof,
                                 num_idof * (num_idof + num_bdof));
      hypre_CSRMatrixInitialize(A);
      {
         HYPRE_Int *I = hypre_CSRMatrixI(A);
         HYPRE_Int *J = hypre_CSRMatrixJ(A);
         double *data = hypre_CSRMatrixData(A);

         HYPRE_Int *tmp_J;
         double *tmp_data;

         I[0] = 0;
         for (j = 0; j < num_idof; j++)
         {
            getrow_ierr= hypre_ParCSRMatrixGetRow (Aee, idof[j], &I[j+1], &tmp_J, &tmp_data);
            if (getrow_ierr <0)
               hypre_printf("getrow Aee off proc[%d] = \n",myproc);
            memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
            memcpy(data, tmp_data, I[j+1]*sizeof(double));
            J+= I[j+1];
            data+= I[j+1];
            hypre_ParCSRMatrixRestoreRow (Aee, idof[j], &I[j+1], &tmp_J, &tmp_data);
            I[j+1] += I[j];
         }
      }

      /* P = extract_rows(dof_DOF, idof+bdof) */
      P = hypre_CSRMatrixCreate (num_idof + num_bdof, num_DOF,
                                 (num_idof + num_bdof) * num_DOF);
      hypre_CSRMatrixInitialize(P);
      {
         HYPRE_Int *I = hypre_CSRMatrixI(P);
         HYPRE_Int *J = hypre_CSRMatrixJ(P);
         double *data = hypre_CSRMatrixData(P);
         HYPRE_Int     m;

         HYPRE_Int *tmp_J;
         double *tmp_data;
     
         I[0] = 0;
         for (j = 0; j < num_idof; j++)
         {
            getrow_ierr= hypre_ParCSRMatrixGetRow (dof_DOF, idof[j], &I[j+1], &tmp_J, &tmp_data);
            if (getrow_ierr >= 0)
            {
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               hypre_ParCSRMatrixRestoreRow (dof_DOF, idof[j], &I[j+1], &tmp_J, &tmp_data);
               I[j+1] += I[j];
            }
            else    /* row offproc */
            {
               hypre_ParCSRMatrixRestoreRow (dof_DOF, idof[j], &I[j+1], &tmp_J, &tmp_data);
              /* search for OffProcRows */
               m= 0;
               while (m < num_OffProcRows)
               {
                  if (offproc_rnums[m] == idof[j])
                  { 
                     break;
                  }
                  else
                  {
                     m++;
                  }
               }
               I[j+1]= (OffProcRows[swap[m]] -> ncols);
               tmp_J = (OffProcRows[swap[m]] -> cols);
               tmp_data= (OffProcRows[swap[m]] -> data);
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               I[j+1] += I[j];
            }

         }
         for ( ; j < num_idof + num_bdof; j++)
         {
            getrow_ierr= hypre_ParCSRMatrixGetRow (dof_DOF, bdof[j-num_idof], &I[j+1], &tmp_J, &tmp_data);
            if (getrow_ierr >= 0)
            {
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               hypre_ParCSRMatrixRestoreRow (dof_DOF, bdof[j-num_idof], &I[j+1], &tmp_J, &tmp_data);
               I[j+1] += I[j];
            }
            else    /* row offproc */
            {
               hypre_ParCSRMatrixRestoreRow (dof_DOF, bdof[j-num_idof], &I[j+1], &tmp_J, &tmp_data);
              /* search for OffProcRows */
               m= 0;
               while (m < num_OffProcRows)
               {
                  if (offproc_rnums[m] == bdof[j-num_idof])
                  {
                     break;
                  }
                  else
                  {
                     m++;
                  }
               }
               if (m>= num_OffProcRows)hypre_printf("here the mistake\n");
               I[j+1]= (OffProcRows[swap[m]] -> ncols);
               tmp_J = (OffProcRows[swap[m]] -> cols);
               tmp_data= (OffProcRows[swap[m]] -> data);
               memcpy(J, tmp_J, I[j+1]*sizeof(HYPRE_Int));
               memcpy(data, tmp_data, I[j+1]*sizeof(double));
               J+= I[j+1];
               data+= I[j+1];
               I[j+1] += I[j];
            }
         }
      }

      /* Pi = Aii^{-1} Aib Pb */
      hypre_HarmonicExtension (A, P, num_DOF, DOF,
                               num_idof, idof, num_bdof, bdof);

      /* Insert Pi in dof_DOF */
      {
         HYPRE_Int * ncols = hypre_CTAlloc(HYPRE_Int, num_idof);

         for (j = 0; j < num_idof; j++)
            ncols[j] = num_DOF;

         hypre_IJMatrixAddToValuesParCSR (IJ_dof_DOF,
                                          num_idof, ncols, idof,
                                          hypre_CSRMatrixJ(P),
                                          hypre_CSRMatrixData(P));

         hypre_TFree(ncols);
      }

      hypre_TFree(DOF);
      hypre_TFree(idof);
      if (three_dimensional_problem)
      {
         hypre_TFree(col_ind1);
      }
      hypre_TFree(col_ind2);
      hypre_TFree(bdof);

      hypre_CSRMatrixDestroy(A);
      hypre_CSRMatrixDestroy(P);
   }

#if 0
   hypre_TFree(ij_dof_DOF);
#endif

   if (three_dimensional_problem)
      hypre_ParCSRMatrixDestroy(ELEM_FACEidof);
   hypre_ParCSRMatrixDestroy(ELEM_EDGEidof);

   if (num_OffProcRows)
   {
      hypre_TFree(offproc_rnums);
      hypre_TFree(swap);
   }

   return ierr;
}
Exemple #4
0
int
hypre_BoomerAMGSetupStats( void               *amg_vdata,
                        hypre_ParCSRMatrix *A         )
{
   MPI_Comm 	      comm = hypre_ParCSRMatrixComm(A);   

   hypre_ParAMGData *amg_data = (hypre_ParAMGData*)amg_vdata;

   /*hypre_SeqAMGData *seq_data = hypre_ParAMGDataSeqData(amg_data);*/

   /* Data Structure variables */

   hypre_ParCSRMatrix **A_array;
   hypre_ParCSRMatrix **P_array;

   hypre_CSRMatrix *A_diag;
   double          *A_diag_data;
   int             *A_diag_i;

   hypre_CSRMatrix *A_offd;   
   double          *A_offd_data;
   int             *A_offd_i;

   hypre_CSRMatrix *P_diag;
   double          *P_diag_data;
   int             *P_diag_i;

   hypre_CSRMatrix *P_offd;   
   double          *P_offd_data;
   int             *P_offd_i;


   int	    numrows;

   HYPRE_BigInt	    *row_starts;

 
   int      num_levels; 
   int      coarsen_type;
   int      interp_type;
   int      measure_type;
   double   global_nonzeros;

   double  *send_buff;
   double  *gather_buff;
 
   /* Local variables */

   int       level;
   int       j;
   HYPRE_BigInt fine_size;
 
   int       min_entries;
   int       max_entries;

   int       num_procs,my_id, num_threads;


   double    min_rowsum;
   double    max_rowsum;
   double    sparse;


   int       i;
   

   HYPRE_BigInt coarse_size;
   int       entries;

   double    avg_entries;
   double    rowsum;

   double    min_weight;
   double    max_weight;

   int       global_min_e;
   int       global_max_e;
   double    global_min_rsum;
   double    global_max_rsum;
   double    global_min_wt;
   double    global_max_wt;

   double  *num_coeffs;
   double  *num_variables;
   double   total_variables; 
   double   operat_cmplxty;
   double   grid_cmplxty;

   /* amg solve params */
   int      max_iter;
   int      cycle_type;    
   int     *num_grid_sweeps;  
   int     *grid_relax_type;   
   int      relax_order;
   int    **grid_relax_points; 
   double  *relax_weight;
   double  *omega;
   double   tol;


   int one = 1;
   int minus_one = -1;
   int zero = 0;
   int smooth_type;
   int smooth_num_levels;
   int agg_num_levels;
   /*int seq_cg = 0;*/
   
   /*if (seq_data)
      seq_cg = 1;*/


   MPI_Comm_size(comm, &num_procs);   
   MPI_Comm_rank(comm,&my_id);
   num_threads = hypre_NumThreads();

   if (my_id == 0)
      printf("\nNumber of MPI processes: %d , Number of OpenMP threads: %d\n", num_procs, num_threads);
   A_array = hypre_ParAMGDataAArray(amg_data);
   P_array = hypre_ParAMGDataPArray(amg_data);
   num_levels = hypre_ParAMGDataNumLevels(amg_data);
   coarsen_type = hypre_ParAMGDataCoarsenType(amg_data);
   interp_type = hypre_ParAMGDataInterpType(amg_data);
   measure_type = hypre_ParAMGDataMeasureType(amg_data);
   smooth_type = hypre_ParAMGDataSmoothType(amg_data);
   smooth_num_levels = hypre_ParAMGDataSmoothNumLevels(amg_data);
   agg_num_levels = hypre_ParAMGDataAggNumLevels(amg_data);


   /*----------------------------------------------------------
    * Get the amg_data data
    *----------------------------------------------------------*/

   num_levels = hypre_ParAMGDataNumLevels(amg_data);
   max_iter   = hypre_ParAMGDataMaxIter(amg_data);
   cycle_type = hypre_ParAMGDataCycleType(amg_data);    
   num_grid_sweeps = hypre_ParAMGDataNumGridSweeps(amg_data);  
   grid_relax_type = hypre_ParAMGDataGridRelaxType(amg_data);
   grid_relax_points = hypre_ParAMGDataGridRelaxPoints(amg_data);
   relax_weight = hypre_ParAMGDataRelaxWeight(amg_data); 
   relax_order = hypre_ParAMGDataRelaxOrder(amg_data); 
   omega = hypre_ParAMGDataOmega(amg_data); 
   tol = hypre_ParAMGDataTol(amg_data);

   /*block_mode = hypre_ParAMGDataBlockMode(amg_data);*/

   send_buff     = hypre_CTAlloc(double, 6);
#ifdef HYPRE_NO_GLOBAL_PARTITION
   gather_buff = hypre_CTAlloc(double,6);    
#else
   gather_buff = hypre_CTAlloc(double,6*num_procs);    
#endif

   if (my_id==0)
   {
      printf("\nBoomerAMG SETUP PARAMETERS:\n\n");
      printf(" Max levels = %d\n",hypre_ParAMGDataMaxLevels(amg_data));
      printf(" Num levels = %d\n\n",num_levels);
      printf(" Strength Threshold = %f\n", 
                         hypre_ParAMGDataStrongThreshold(amg_data));
      printf(" Interpolation Truncation Factor = %f\n", 
                         hypre_ParAMGDataTruncFactor(amg_data));
      printf(" Maximum Row Sum Threshold for Dependency Weakening = %f\n\n", 
                         hypre_ParAMGDataMaxRowSum(amg_data));

      if (coarsen_type == 0)
      {
	printf(" Coarsening Type = Cleary-Luby-Jones-Plassman\n");
      }
      else if (abs(coarsen_type) == 1) 
      {
	printf(" Coarsening Type = Ruge\n");
      }
      else if (abs(coarsen_type) == 2) 
      {
	printf(" Coarsening Type = Ruge2B\n");
      }
      else if (abs(coarsen_type) == 3) 
      {
	printf(" Coarsening Type = Ruge3\n");
      }
      else if (abs(coarsen_type) == 4) 
      {
	printf(" Coarsening Type = Ruge 3c \n");
      }
      else if (abs(coarsen_type) == 5) 
      {
	printf(" Coarsening Type = Ruge relax special points \n");
      }
      else if (abs(coarsen_type) == 6) 
      {
	printf(" Coarsening Type = Falgout-CLJP \n");
      }
      else if (abs(coarsen_type) == 8) 
      {
	printf(" Coarsening Type = PMIS \n");
      }
      else if (abs(coarsen_type) == 10) 
      {
	printf(" Coarsening Type = HMIS \n");
      }
      else if (abs(coarsen_type) == 11) 
      {
	printf(" Coarsening Type = Ruge 1st pass only \n");
      }
      else if (abs(coarsen_type) == 9) 
      {
	printf(" Coarsening Type = PMIS fixed random \n");
      }
      else if (abs(coarsen_type) == 7) 
      {
	printf(" Coarsening Type = CLJP, fixed random \n");
      }
      if (coarsen_type > 0) 
      {
	printf(" Hybrid Coarsening (switch to CLJP when coarsening slows)\n");
      }
      

      if (coarsen_type)
      	printf(" measures are determined %s\n\n", 
                  (measure_type ? "globally" : "locally"));

      if (agg_num_levels)
	printf(" no. of levels of aggressive coarsening: %d\n\n", agg_num_levels);

#ifdef HYPRE_NO_GLOBAL_PARTITION
      printf( "\n No global partition option chosen.\n\n");
#endif

      if (interp_type == 0)
      {
	printf(" Interpolation = modified classical interpolation\n");
      }
      else if (interp_type == 1) 
      {
	printf(" Interpolation = LS interpolation \n");
      }
      else if (interp_type == 2) 
      {
	printf(" Interpolation = modified classical interpolation for hyperbolic PDEs\n");
      }
      else if (interp_type == 3) 
      {
	printf(" Interpolation = direct interpolation with separation of weights\n");
      }
      else if (interp_type == 4) 
      {
	printf(" Interpolation = multipass interpolation\n");
      }
      else if (interp_type == 5) 
      {
	printf(" Interpolation = multipass interpolation with separation of weights\n");
      }
      else if (interp_type == 6) 
      {
	printf(" Interpolation = extended+i interpolation\n");
      }
      else if (interp_type == 7) 
      {
	printf(" Interpolation = extended+i interpolation (only when needed)\n");
      }
      else if (interp_type == 8) 
      {
	printf(" Interpolation = standard interpolation\n");
      }
      else if (interp_type == 9) 
      {
	printf(" Interpolation = standard interpolation with separation of weights\n");
      }
      else if (interp_type == 12) 
      {
	printf(" FF interpolation \n");
      }
      else if (interp_type == 13) 
      {
	printf(" FF1 interpolation \n");
      }

      {
         printf( "\nOperator Matrix Information:\n\n");
      }
#if HYPRE_LONG_LONG
      printf("                  nonzero         entries p");
      printf("er row        row sums\n");
      printf("lev        rows   entries  sparse  min  max   ");
      printf("avg       min         max\n");
      printf("=======================================");
      printf("==================================\n");
#else      
      printf("            nonzero         entries p");
      printf("er row        row sums\n");
      printf("lev   rows  entries  sparse  min  max   ");
      printf("avg       min         max\n");
      printf("=======================================");
      printf("============================\n");
#endif
   }
  
   /*-----------------------------------------------------
    *  Enter Statistics Loop
    *-----------------------------------------------------*/

   num_coeffs = hypre_CTAlloc(double,num_levels);

   num_variables = hypre_CTAlloc(double,num_levels);

   for (level = 0; level < num_levels; level++)
   { 

      {
         A_diag = hypre_ParCSRMatrixDiag(A_array[level]);
         A_diag_data = hypre_CSRMatrixData(A_diag);
         A_diag_i = hypre_CSRMatrixI(A_diag);
         
         A_offd = hypre_ParCSRMatrixOffd(A_array[level]);   
         A_offd_data = hypre_CSRMatrixData(A_offd);
         A_offd_i = hypre_CSRMatrixI(A_offd);
         
         row_starts = hypre_ParCSRMatrixRowStarts(A_array[level]);
         
         fine_size = hypre_ParCSRMatrixGlobalNumRows(A_array[level]);
         global_nonzeros = hypre_ParCSRMatrixDNumNonzeros(A_array[level]);
         num_coeffs[level] = global_nonzeros;
         num_variables[level] = (double) fine_size;
         
         sparse = global_nonzeros /((double) fine_size * (double) fine_size);

         min_entries = 0;
         max_entries = 0;
         min_rowsum = 0.0;
         max_rowsum = 0.0;
         
         if (hypre_CSRMatrixNumRows(A_diag))
         {
            min_entries = (A_diag_i[1]-A_diag_i[0])+(A_offd_i[1]-A_offd_i[0]);
            for (j = A_diag_i[0]; j < A_diag_i[1]; j++)
               min_rowsum += A_diag_data[j];
            for (j = A_offd_i[0]; j < A_offd_i[1]; j++)
               min_rowsum += A_offd_data[j];
            
            max_rowsum = min_rowsum;
            
            for (j = 0; j < hypre_CSRMatrixNumRows(A_diag); j++)
            {
               entries = (A_diag_i[j+1]-A_diag_i[j])+(A_offd_i[j+1]-A_offd_i[j]);
               min_entries = hypre_min(entries, min_entries);
               max_entries = hypre_max(entries, max_entries);
               
               rowsum = 0.0;
               for (i = A_diag_i[j]; i < A_diag_i[j+1]; i++)
                  rowsum += A_diag_data[i];
               
               for (i = A_offd_i[j]; i < A_offd_i[j+1]; i++)
                  rowsum += A_offd_data[i];
               
               min_rowsum = hypre_min(rowsum, min_rowsum);
               max_rowsum = hypre_max(rowsum, max_rowsum);
            }
         }
         avg_entries = global_nonzeros / ((double) fine_size);
      }
      
#ifdef HYPRE_NO_GLOBAL_PARTITION       

       numrows = (int)(row_starts[1]-row_starts[0]);
       if (!numrows) /* if we don't have any rows, then don't have this count toward
                         min row sum or min num entries */
       {
          min_entries = 1000000;
          min_rowsum =  1.0e7;
       }
       
       send_buff[0] = - (double) min_entries;
       send_buff[1] = (double) max_entries;
       send_buff[2] = - min_rowsum;
       send_buff[3] = max_rowsum;

       MPI_Reduce(send_buff, gather_buff, 4, MPI_DOUBLE, MPI_MAX, 0, comm);
       
       if (my_id ==0)
       {
          global_min_e = - gather_buff[0];
          global_max_e = gather_buff[1];
          global_min_rsum = - gather_buff[2];
          global_max_rsum = gather_buff[3];
#ifdef HYPRE_LONG_LONG
          printf( "%2d %12lld %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#else          
          printf( "%2d %7d %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#endif          
          printf("  %4.1f  %10.3e  %10.3e\n", avg_entries,
                 global_min_rsum, global_max_rsum);
       }
       
#else

       send_buff[0] = (double) min_entries;
       send_buff[1] = (double) max_entries;
       send_buff[2] = min_rowsum;
       send_buff[3] = max_rowsum;
       
       MPI_Gather(send_buff,4,MPI_DOUBLE,gather_buff,4,MPI_DOUBLE,0,comm);

       if (my_id == 0)
       {
          global_min_e = 1000000;
          global_max_e = 0;
          global_min_rsum = 1.0e7;
          global_max_rsum = 0.0;
          for (j = 0; j < num_procs; j++)
          {
             numrows = row_starts[j+1]-row_starts[j];
             if (numrows)
             {
                global_min_e = hypre_min(global_min_e, (int) gather_buff[j*4]);
                global_min_rsum = hypre_min(global_min_rsum, gather_buff[j*4 +2]);
             }
             global_max_e = hypre_max(global_max_e, (int) gather_buff[j*4 +1]);
             global_max_rsum = hypre_max(global_max_rsum, gather_buff[j*4 +3]);
          }

#ifdef HYPRE_LONG_LONG
          printf( "%2d %12lld %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#else          
          printf( "%2d %7d %8.0f  %0.3f  %4d %4d",
                  level, fine_size, global_nonzeros, sparse, global_min_e, 
                  global_max_e);
#endif          
          printf("  %4.1f  %10.3e  %10.3e\n", avg_entries,
                 global_min_rsum, global_max_rsum);
       }

#endif

        
   }

       
   if (my_id == 0)
   {
      {
         printf( "\n\nInterpolation Matrix Information:\n\n");
      }
#if HYPRE_LONG_LONG
      printf("                             entries/row    min     max");
      printf("         row sums\n");
      printf("lev        rows x cols          min max  ");
      printf("   weight   weight     min       max \n");
      printf("=======================================");
      printf("======================================\n");
#else      
      printf("                 entries/row    min     max");
      printf("         row sums\n");
      printf("lev  rows cols    min max  ");
      printf("   weight   weight     min       max \n");
      printf("=======================================");
      printf("==========================\n");
#endif
   }
  
   /*-----------------------------------------------------
    *  Enter Statistics Loop
    *-----------------------------------------------------*/


   for (level = 0; level < num_levels-1; level++)
   {
    
      {
         P_diag = hypre_ParCSRMatrixDiag(P_array[level]);
         P_diag_data = hypre_CSRMatrixData(P_diag);
         P_diag_i = hypre_CSRMatrixI(P_diag);
         
         P_offd = hypre_ParCSRMatrixOffd(P_array[level]);   
         P_offd_data = hypre_CSRMatrixData(P_offd);
         P_offd_i = hypre_CSRMatrixI(P_offd);
         
         row_starts = hypre_ParCSRMatrixRowStarts(P_array[level]);
         
         fine_size = hypre_ParCSRMatrixGlobalNumRows(P_array[level]);
         coarse_size = hypre_ParCSRMatrixGlobalNumCols(P_array[level]);
         global_nonzeros = hypre_ParCSRMatrixNumNonzeros(P_array[level]);
         
         min_weight = 1.0;
         max_weight = 0.0;
         max_rowsum = 0.0;
         min_rowsum = 0.0;
         min_entries = 0;
         max_entries = 0;
         
         if (hypre_CSRMatrixNumRows(P_diag))
         {
            if (hypre_CSRMatrixNumCols(P_diag)) min_weight = P_diag_data[0];
            for (j = P_diag_i[0]; j < P_diag_i[1]; j++)
            {
               min_weight = hypre_min(min_weight, P_diag_data[j]);
               if (P_diag_data[j] != 1.0)
                  max_weight = hypre_max(max_weight, P_diag_data[j]);
               min_rowsum += P_diag_data[j];
            }
            for (j = P_offd_i[0]; j < P_offd_i[1]; j++)
            {        
               min_weight = hypre_min(min_weight, P_offd_data[j]); 
               if (P_offd_data[j] != 1.0)
                  max_weight = hypre_max(max_weight, P_offd_data[j]);     
               min_rowsum += P_offd_data[j];
            }
            
            max_rowsum = min_rowsum;
            
            min_entries = (P_diag_i[1]-P_diag_i[0])+(P_offd_i[1]-P_offd_i[0]); 
            max_entries = 0;
            
            for (j = 0; j < hypre_CSRMatrixNumRows(P_diag); j++)
            {
               entries = (P_diag_i[j+1]-P_diag_i[j])+(P_offd_i[j+1]-P_offd_i[j]);
               min_entries = hypre_min(entries, min_entries);
               max_entries = hypre_max(entries, max_entries);
               
               rowsum = 0.0;
               for (i = P_diag_i[j]; i < P_diag_i[j+1]; i++)
               {
                  min_weight = hypre_min(min_weight, P_diag_data[i]);
                  if (P_diag_data[i] != 1.0)
                     max_weight = hypre_max(max_weight, P_diag_data[i]);
                  rowsum += P_diag_data[i];
               }
               
               for (i = P_offd_i[j]; i < P_offd_i[j+1]; i++)
               {
                  min_weight = hypre_min(min_weight, P_offd_data[i]);
                  if (P_offd_data[i] != 1.0) 
                     max_weight = hypre_max(max_weight, P_offd_data[i]);
                  rowsum += P_offd_data[i];
               }
               
               min_rowsum = hypre_min(rowsum, min_rowsum);
               max_rowsum = hypre_max(rowsum, max_rowsum);
            }
         
         }
         avg_entries = ((double) global_nonzeros) / ((double) fine_size);
      }

#ifdef HYPRE_NO_GLOBAL_PARTITION

      numrows = (int)(row_starts[1]-row_starts[0]);
      if (!numrows) /* if we don't have any rows, then don't have this count toward
                       min row sum or min num entries */
      {
         min_entries = 1000000;
         min_rowsum =  1.0e7;
         min_weight = 1.0e7;
       }
       
      send_buff[0] = - (double) min_entries;
      send_buff[1] = (double) max_entries;
      send_buff[2] = - min_rowsum;
      send_buff[3] = max_rowsum;
      send_buff[4] = - min_weight;
      send_buff[5] = max_weight;

      MPI_Reduce(send_buff, gather_buff, 6, MPI_DOUBLE, MPI_MAX, 0, comm);

      if (my_id == 0)
      {
         global_min_e = - gather_buff[0];
         global_max_e = gather_buff[1];
         global_min_rsum = -gather_buff[2];
         global_max_rsum = gather_buff[3];
         global_min_wt = -gather_buff[4];
         global_max_wt = gather_buff[5];

#ifdef HYPRE_LONG_LONG
          printf( "%2d %12lld x %-12lld %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#else          
          printf( "%2d %5d x %-5d %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#endif          
         printf("  %10.3e %9.3e %9.3e %9.3e\n",
                global_min_wt, global_max_wt, 
                global_min_rsum, global_max_rsum);
      }


#else
      
      send_buff[0] = (double) min_entries;
      send_buff[1] = (double) max_entries;
      send_buff[2] = min_rowsum;
      send_buff[3] = max_rowsum;
      send_buff[4] = min_weight;
      send_buff[5] = max_weight;
      
      MPI_Gather(send_buff,6,MPI_DOUBLE,gather_buff,6,MPI_DOUBLE,0,comm);
      
      if (my_id == 0)
      {
         global_min_e = 1000000;
         global_max_e = 0;
         global_min_rsum = 1.0e7;
         global_max_rsum = 0.0;
         global_min_wt = 1.0e7;
         global_max_wt = 0.0;
         
         for (j = 0; j < num_procs; j++)
         {
            numrows = row_starts[j+1] - row_starts[j];
            if (numrows)
            {
               global_min_e = hypre_min(global_min_e, (int) gather_buff[j*6]);
               global_min_rsum = hypre_min(global_min_rsum, gather_buff[j*6+2]);
               global_min_wt = hypre_min(global_min_wt, gather_buff[j*6+4]);
            }
            global_max_e = hypre_max(global_max_e, (int) gather_buff[j*6+1]);
            global_max_rsum = hypre_max(global_max_rsum, gather_buff[j*6+3]);
            global_max_wt = hypre_max(global_max_wt, gather_buff[j*6+5]);
         }
         
#ifdef HYPRE_LONG_LONG
         printf( "%2d %12lld x %-12lld %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#else          
         printf( "%2d %5d x %-5d %3d %3d",
                 level, fine_size, coarse_size,  global_min_e, global_max_e);
#endif          
         printf("  %10.3e %9.3e %9.3e %9.3e\n",
                global_min_wt, global_max_wt, 
                global_min_rsum, global_max_rsum);
      }

#endif

   }


   total_variables = 0;
   operat_cmplxty = 0;
   for (j=0;j<hypre_ParAMGDataNumLevels(amg_data);j++)
   {
      operat_cmplxty +=  num_coeffs[j] / num_coeffs[0];
      total_variables += num_variables[j];
   }
   if (num_variables[0] != 0)
      grid_cmplxty = total_variables / num_variables[0];
 
   if (my_id == 0 )
   {
      printf("\n\n     Complexity:    grid = %f\n",grid_cmplxty);
      printf("                operator = %f\n",operat_cmplxty);
   }

   if (my_id == 0) printf("\n\n");

   if (my_id == 0)
   { 
      printf("\n\nBoomerAMG SOLVER PARAMETERS:\n\n");
      printf( "  Maximum number of cycles:         %d \n",max_iter);
      printf( "  Stopping Tolerance:               %e \n",tol); 
      printf( "  Cycle type (1 = V, 2 = W, etc.):  %d\n\n", cycle_type);
      printf( "  Relaxation Parameters:\n");
      printf( "   Visiting Grid:                     down   up  coarse\n");
      printf( "            Number of partial sweeps: %4d   %2d  %4d \n",
              num_grid_sweeps[1],
              num_grid_sweeps[2],num_grid_sweeps[3]);
      printf( "   Type 0=Jac, 3=hGS, 6=hSGS, 9=GE:   %4d   %2d  %4d \n",
              grid_relax_type[1],
              grid_relax_type[2],grid_relax_type[3]);
#if 1 /* TO DO: may not want this to print if CG in the coarse grid */
      printf( "   Point types, partial sweeps (1=C, -1=F):\n");
      if (grid_relax_points)
      {
         printf( "                  Pre-CG relaxation (down):");
         for (j = 0; j < num_grid_sweeps[1]; j++)
              printf("  %2d", grid_relax_points[1][j]);
         printf( "\n");
         printf( "                   Post-CG relaxation (up):");
         for (j = 0; j < num_grid_sweeps[2]; j++)
              printf("  %2d", grid_relax_points[2][j]);
         printf( "\n");
         printf( "                             Coarsest grid:");
         for (j = 0; j < num_grid_sweeps[3]; j++)
              printf("  %2d", grid_relax_points[3][j]);
         printf( "\n\n");
      }
      else if (relax_order == 1)
      {
         printf( "                  Pre-CG relaxation (down):");
         for (j = 0; j < num_grid_sweeps[1]; j++)
              printf("  %2d  %2d", one, minus_one);
         printf( "\n");
         printf( "                   Post-CG relaxation (up):");
         for (j = 0; j < num_grid_sweeps[2]; j++)
              printf("  %2d  %2d", minus_one, one);
         printf( "\n");
         printf( "                             Coarsest grid:");
         for (j = 0; j < num_grid_sweeps[3]; j++)
              printf("  %2d", zero);
         printf( "\n\n");
      }
      else 
      {
         printf( "                  Pre-CG relaxation (down):");
         for (j = 0; j < num_grid_sweeps[1]; j++)
              printf("  %2d", zero);
         printf( "\n");
         printf( "                   Post-CG relaxation (up):");
         for (j = 0; j < num_grid_sweeps[2]; j++)
              printf("  %2d", zero);
         printf( "\n");
         printf( "                             Coarsest grid:");
         for (j = 0; j < num_grid_sweeps[3]; j++)
              printf("  %2d", zero);
         printf( "\n\n");
      }
#endif
      if (smooth_type == 6)
         for (j=0; j < smooth_num_levels; j++)
            printf( " Schwarz Relaxation Weight %f level %d\n",
			hypre_ParAMGDataSchwarzRlxWeight(amg_data),j);
      for (j=0; j < num_levels; j++)
         if (relax_weight[j] != 1)
	       printf( " Relaxation Weight %f level %d\n",relax_weight[j],j);
      for (j=0; j < num_levels; j++)
         if (omega[j] != 1)
               printf( " Outer relaxation weight %f level %d\n",omega[j],j);
   }


   /*if (seq_cg) 
   {
      hypre_seqAMGSetupStats(amg_data,num_coeffs[0],num_variables[0], 
                             operat_cmplxty, grid_cmplxty );
   }*/
   




   hypre_TFree(num_coeffs);
   hypre_TFree(num_variables);
   hypre_TFree(send_buff);
   hypre_TFree(gather_buff);
   
   return(0);
}  
Exemple #5
0
HYPRE_Int
hypre_ParCSRMatrixToParChordMatrix(
   hypre_ParCSRMatrix *Ap,
   MPI_Comm comm,
   hypre_ParChordMatrix **pAc )
{
   HYPRE_Int * row_starts = hypre_ParCSRMatrixRowStarts(Ap);
   HYPRE_Int * col_starts = hypre_ParCSRMatrixColStarts(Ap);
   hypre_CSRMatrix * diag = hypre_ParCSRMatrixDiag(Ap);
   hypre_CSRMatrix * offd = hypre_ParCSRMatrixOffd(Ap);
   HYPRE_Int * offd_j = hypre_CSRMatrixJ(offd);
   HYPRE_Int * diag_j = hypre_CSRMatrixJ(diag);
   HYPRE_Int * col_map_offd = hypre_ParCSRMatrixColMapOffd(Ap);
   HYPRE_Int first_col_diag = hypre_ParCSRMatrixFirstColDiag(Ap);

   hypre_ParChordMatrix * Ac;
   hypre_NumbersNode * rdofs, * offd_cols_me;
   hypre_NumbersNode ** offd_cols;
   HYPRE_Int ** offd_col_array;
   HYPRE_Int * len_offd_col_array, * offd_col_array_me;
   HYPRE_Int len_offd_col_array_me;
   HYPRE_Int num_idofs, num_rdofs, j_local, j_global, row_global;
   HYPRE_Int i, j, jj, p, pto, q, qto, my_id, my_q, row, ireq;
   HYPRE_Int num_inprocessors, num_toprocessors, num_procs, len_num_rdofs_toprocessor;
   HYPRE_Int *inprocessor, *toprocessor, *pcr, *qcr, *num_inchords, *chord, *chordto;
   HYPRE_Int *inproc, *toproc, *num_rdofs_toprocessor;
   HYPRE_Int **inchord_idof, **inchord_rdof, **rdof_toprocessor;
   double **inchord_data;
   double data;
   HYPRE_Int *first_index_idof, *first_index_rdof;
   hypre_MPI_Request * request;
   hypre_MPI_Status * status;

   hypre_MPI_Comm_rank(comm, &my_id);
   hypre_MPI_Comm_size(comm, &num_procs);
   num_idofs = row_starts[my_id+1] - row_starts[my_id];
   num_rdofs = col_starts[my_id+1] - col_starts[my_id];

   hypre_ParChordMatrixCreate( pAc, comm, num_idofs, num_rdofs );
   Ac = *pAc;

/* The following block sets Inprocessor:
   On each proc. my_id, we find the columns in the offd and diag blocks
   (global no.s).  The columns are rdofs (contrary to what I wrote in
   ChordMatrix.txt).
   For each such col/rdof r, find the proc. p which owns row/idof r.
   We set the temporary array pcr[p]=1 for such p.
   An MPI all-to-all will exchange such arrays so my_id's array qcr has
   qcr[q]=1 iff, on proc. q, pcr[my_id]=1.  In other words, qcr[q]=1 if
   my_id owns a row/idof i which is the same as a col/rdof owned by q.
   Collect all such q's into in the array Inprocessor.
   While constructing pcr, we also construct pj such that for any index jj
   into offd_j,offd_data, pj[jj] is the processor which owns jj as a row (idof)
   (the number jj is local to this processor).
   */
   pcr = hypre_CTAlloc( HYPRE_Int, num_procs );
   qcr = hypre_CTAlloc( HYPRE_Int, num_procs );
   for ( p=0; p<num_procs; ++p ) pcr[p]=0;
   for ( jj=0; jj<hypre_CSRMatrixNumNonzeros(offd); ++jj ) {
      j_local = offd_j[jj];
      j_global =  col_map_offd[j_local];
      for ( p=0; p<num_procs; ++p ) {
         if ( j_global >= row_starts[p] && j_global<row_starts[p+1] ) {
            pcr[p]=1;
/* not used yet...            pj[jj] = p;*/
            break;
         }
      }
   }
   /*   jjd = jj; ...not used yet */

   /* pcr[my_id] = 1; ...for square matrices (with nonzero diag block)
      this one line  would do the job of the following nested loop.
      For non-square matrices, the data distribution is too arbitrary. */
   for ( jj=0; jj<hypre_CSRMatrixNumNonzeros(diag); ++jj ) {
      j_local = diag_j[jj];
      j_global = j_local + first_col_diag;
      for ( p=0; p<num_procs; ++p ) {
         if ( j_global >= row_starts[p] && j_global<row_starts[p+1] ) {
            pcr[p]=1;
/* not used yet...            pj[jj+jjd] = p;*/
            break;
         }
      }
   }


   /* Now pcr[p]=1 iff my_id owns a col/rdof r which proc. p owns as a row/idof */
   hypre_MPI_Alltoall( pcr, 1, HYPRE_MPI_INT, qcr, 1, HYPRE_MPI_INT, comm );
   /* Now qcr[q]==1 if my_id owns a row/idof i which is a col/rdof of proc. q
    The array of such q's is the array Inprocessor. */

   num_inprocessors = 0;
   for ( q=0; q<num_procs; ++q ) if ( qcr[q]==1 ) ++num_inprocessors;
   inprocessor = hypre_CTAlloc( HYPRE_Int, num_inprocessors );
   p = 0;
   for ( q=0; q<num_procs; ++q ) if ( qcr[q]==1 ) inprocessor[ p++ ] = q;
   num_toprocessors = 0;
   for ( q=0; q<num_procs; ++q ) if ( pcr[q]==1 ) ++num_toprocessors;
   toprocessor = hypre_CTAlloc( HYPRE_Int, num_toprocessors );
   p = 0;
   for ( q=0; q<num_procs; ++q ) if ( pcr[q]==1 ) toprocessor[ p++ ] = q;

   hypre_ParChordMatrixNumInprocessors(Ac) = num_inprocessors;
   hypre_ParChordMatrixInprocessor(Ac) = inprocessor;
   hypre_ParChordMatrixNumToprocessors(Ac) = num_toprocessors;
   hypre_ParChordMatrixToprocessor(Ac) = toprocessor;
   hypre_TFree( qcr );

   /* FirstIndexIdof[p] is the global index of proc. p's row 0 */
   /* FirstIndexRdof[p] is the global index of proc. p's col 0 */
   /* Fir FirstIndexIdof, we copy the array row_starts rather than its pointers,
      because the chord matrix will think it's free to delete FirstIndexIdof */
   /* col_starts[p] contains the global index of the first column
      in the diag block of p.  But for first_index_rdof we want the global
      index of the first column in p (whether that's in the diag or offd block).
      So it's more involved than row/idof: we also check the offd block, and
      have to do a gather to get first_index_rdof for every proc. on every proc. */
   first_index_idof = hypre_CTAlloc( HYPRE_Int, num_procs+1 );
   first_index_rdof = hypre_CTAlloc( HYPRE_Int, num_procs+1 );
   for ( p=0; p<=num_procs; ++p ) {
      first_index_idof[p] = row_starts[p];
      first_index_rdof[p] = col_starts[p];
   };
   if ( hypre_CSRMatrixNumRows(offd) > 0  && hypre_CSRMatrixNumCols(offd) > 0 )
      first_index_rdof[my_id] =
         col_starts[my_id]<col_map_offd[0] ? col_starts[my_id] : col_map_offd[0];
   hypre_MPI_Allgather( &first_index_rdof[my_id], 1, HYPRE_MPI_INT,
                  first_index_rdof, 1, HYPRE_MPI_INT, comm );

   /* Set num_inchords: num_inchords[p] is no. chords on my_id connected to p.
      Set each chord (idof,jdof,data).
      We go through each matrix element in the diag block, find what processor
      owns its column no. as a row, then update num_inchords[p], inchord_idof[p],
      inchord_rdof[p], inchord_data[p].
   */

   inchord_idof = hypre_CTAlloc( HYPRE_Int*, num_inprocessors );
   inchord_rdof = hypre_CTAlloc( HYPRE_Int*, num_inprocessors );
   inchord_data = hypre_CTAlloc( double*, num_inprocessors );
   num_inchords = hypre_CTAlloc( HYPRE_Int, num_inprocessors );
   chord = hypre_CTAlloc( HYPRE_Int, num_inprocessors );
   chordto = hypre_CTAlloc( HYPRE_Int, num_toprocessors );
   num_rdofs = 0;
   for ( q=0; q<num_inprocessors; ++q ) num_inchords[q] = 0;
   my_q = -1;
   for ( q=0; q<num_inprocessors; ++q ) if ( inprocessor[q]==my_id ) my_q = q;
   hypre_assert( my_q>=0 );

   /* diag block: first count chords (from my_id to my_id),
      then set them from diag block's CSR data structure */
   num_idofs = hypre_CSRMatrixNumRows(diag);
   rdofs = hypre_NumbersNewNode();
   for ( row=0; row<hypre_CSRMatrixNumRows(diag); ++row ) {
      for ( i=hypre_CSRMatrixI(diag)[row]; i<hypre_CSRMatrixI(diag)[row+1]; ++i ) {
         j_local = hypre_CSRMatrixJ(diag)[i];
         hypre_NumbersEnter( rdofs, j_local );
         ++num_inchords[my_q];
      }
   };
   num_rdofs = hypre_NumbersNEntered( rdofs );
   inchord_idof[my_q] = hypre_CTAlloc( HYPRE_Int, num_inchords[my_q] );
   inchord_rdof[my_q] = hypre_CTAlloc( HYPRE_Int, num_inchords[my_q] );
   inchord_data[my_q] = hypre_CTAlloc( double, num_inchords[my_q] );
   chord[0] = 0;
   for ( row=0; row<hypre_CSRMatrixNumRows(diag); ++row ) {
      for ( i=hypre_CSRMatrixI(diag)[row]; i<hypre_CSRMatrixI(diag)[row+1]; ++i ) {
         j_local = hypre_CSRMatrixJ(diag)[i];
         data = hypre_CSRMatrixData(diag)[i];
         inchord_idof[my_q][chord[0]] = row;
         /* Here We need to convert from j_local - a column local to
            the diag of this proc., to a j which is local only to this
            processor - a column (rdof) numbering scheme to be shared by the
            diag and offd blocks...  */
         j_global = j_local + hypre_ParCSRMatrixColStarts(Ap)[my_q];
         j = j_global - first_index_rdof[my_q];
         inchord_rdof[my_q][chord[0]] = j;
         inchord_data[my_q][chord[0]] = data;
         hypre_assert( chord[0] < num_inchords[my_q] );
         ++chord[0];
      }
   };
   hypre_NumbersDeleteNode(rdofs);


   /* offd block: */

   /* >>> offd_cols_me duplicates rdofs */
   offd_cols_me = hypre_NumbersNewNode();
   for ( row=0; row<hypre_CSRMatrixNumRows(offd); ++row ) {
      for ( i=hypre_CSRMatrixI(offd)[row]; i<hypre_CSRMatrixI(offd)[row+1]; ++i ) {
         j_local = hypre_CSRMatrixJ(offd)[i];
         j_global =  col_map_offd[j_local];
         hypre_NumbersEnter( offd_cols_me, j_global );
      }
   }
   offd_col_array = hypre_CTAlloc( HYPRE_Int*, num_inprocessors );
   len_offd_col_array = hypre_CTAlloc( HYPRE_Int, num_inprocessors );
   offd_col_array_me = hypre_NumbersArray( offd_cols_me );
   len_offd_col_array_me = hypre_NumbersNEntered( offd_cols_me );
   request = hypre_CTAlloc(hypre_MPI_Request, 2*num_procs );
   ireq = 0;
   for ( q=0; q<num_inprocessors; ++q )
      hypre_MPI_Irecv( &len_offd_col_array[q], 1, HYPRE_MPI_INT,
                 inprocessor[q], 0, comm, &request[ireq++] );
   for ( p=0; p<num_procs; ++p ) if ( pcr[p]==1 ) {
      hypre_MPI_Isend( &len_offd_col_array_me, 1, HYPRE_MPI_INT, p, 0, comm, &request[ireq++] );
   }
   status = hypre_CTAlloc(hypre_MPI_Status, ireq );
   hypre_MPI_Waitall( ireq, request, status );
   hypre_TFree(status);
   ireq = 0;
   for ( q=0; q<num_inprocessors; ++q )
      offd_col_array[q] = hypre_CTAlloc( HYPRE_Int, len_offd_col_array[q] );
   for ( q=0; q<num_inprocessors; ++q )
      hypre_MPI_Irecv( offd_col_array[q], len_offd_col_array[q], HYPRE_MPI_INT,
                 inprocessor[q], 0, comm, &request[ireq++] );
   for ( p=0; p<num_procs; ++p ) if ( pcr[p]==1 ) {
      hypre_MPI_Isend( offd_col_array_me, len_offd_col_array_me,
                 HYPRE_MPI_INT, p, 0, comm, &request[ireq++] );
   }
   status = hypre_CTAlloc(hypre_MPI_Status, ireq );
   hypre_MPI_Waitall( ireq, request, status );
   hypre_TFree(request);
   hypre_TFree(status);
   offd_cols = hypre_CTAlloc( hypre_NumbersNode *, num_inprocessors );
   for ( q=0; q<num_inprocessors; ++q ) {
      offd_cols[q] = hypre_NumbersNewNode();
      for ( i=0; i<len_offd_col_array[q]; ++i )
         hypre_NumbersEnter( offd_cols[q], offd_col_array[q][i] );
   }

   len_num_rdofs_toprocessor = 1 + hypre_CSRMatrixI(offd)
      [hypre_CSRMatrixNumRows(offd)];
   inproc = hypre_CTAlloc( HYPRE_Int, len_num_rdofs_toprocessor );
   toproc = hypre_CTAlloc( HYPRE_Int, len_num_rdofs_toprocessor );
   num_rdofs_toprocessor = hypre_CTAlloc( HYPRE_Int, len_num_rdofs_toprocessor );
   for ( qto=0; qto<len_num_rdofs_toprocessor; ++qto ) {
      inproc[qto] = -1;
      toproc[qto] = -1;
      num_rdofs_toprocessor[qto] = 0;
   };
   rdofs = hypre_NumbersNewNode();
   for ( row=0; row<hypre_CSRMatrixNumRows(offd); ++row ) {
      for ( i=hypre_CSRMatrixI(offd)[row]; i<hypre_CSRMatrixI(offd)[row+1]; ++i ) {
         j_local = hypre_CSRMatrixJ(offd)[i];
         j_global =  col_map_offd[j_local];
         hypre_NumbersEnter( rdofs, j_local );
         
         /* TO DO: find faster ways to do the two processor lookups below.*/
         /* Find a processor p (local index q) from the inprocessor list,
            which owns the column(rdof) whichis the same as this processor's
            row(idof) row. Update num_inchords for p.
            Save q as inproc[i] for quick recall later.  It represents
            an inprocessor (not unique) connected to a chord i.
         */
         inproc[i] = -1;
         for ( q=0; q<num_inprocessors; ++q ) if (q!=my_q) {
            p = inprocessor[q];
            if ( hypre_NumbersQuery( offd_cols[q],
                                     row+hypre_ParCSRMatrixFirstRowIndex(Ap) )
                 == 1 ) {
               /* row is one of the offd columns of p */
               ++num_inchords[q];
               inproc[i] = q;
               break;
            }
         }
         if ( inproc[i]<0 ) {
            /* For square matrices, we would have found the column in some
               other processor's offd.  But for non-square matrices it could
               exist only in some other processor's diag...*/
            /* Note that all data in a diag block is stored.  We don't check
               whether the value of a data entry is zero. */
            for ( q=0; q<num_inprocessors; ++q ) if (q!=my_q) {
               p = inprocessor[q];
               row_global = row+hypre_ParCSRMatrixFirstRowIndex(Ap);
               if ( row_global>=col_starts[p] &&
                    row_global< col_starts[p+1] ) {
                  /* row is one of the diag columns of p */
                  ++num_inchords[q];
                  inproc[i] = q;
                  break;
               }
            }  
         }
         hypre_assert( inproc[i]>=0 );

         /* Find the processor pto (local index qto) from the toprocessor list,
            which owns the row(idof) which is the  same as this processor's
            column(rdof) j_global. Update num_rdofs_toprocessor for pto.
            Save pto as toproc[i] for quick recall later. It represents
            the toprocessor connected to a chord i. */
         for ( qto=0; qto<num_toprocessors; ++qto ) {
            pto = toprocessor[qto];
            if ( j_global >= row_starts[pto] && j_global<row_starts[pto+1] ) {
               hypre_assert( qto < len_num_rdofs_toprocessor );
               ++num_rdofs_toprocessor[qto];
               /* ... an overestimate, as if two chords share an rdof, that
                  rdof will be counted twice in num_rdofs_toprocessor.
                  It can be fixed up later.*/
               toproc[i] = qto;
               break;
            }
         }
      }
   };
   num_rdofs += hypre_NumbersNEntered(rdofs);
   hypre_NumbersDeleteNode(rdofs);

   for ( q=0; q<num_inprocessors; ++q ) if (q!=my_q) {
      inchord_idof[q] = hypre_CTAlloc( HYPRE_Int, num_inchords[q] );
      inchord_rdof[q] = hypre_CTAlloc( HYPRE_Int, num_inchords[q] );
      inchord_data[q] = hypre_CTAlloc( double, num_inchords[q] );
      chord[q] = 0;
   };
Exemple #6
0
HYPRE_Int
hypre_SchwarzSetup(void               *schwarz_vdata,
                   hypre_ParCSRMatrix *A,
                   hypre_ParVector    *f,
                   hypre_ParVector    *u         )
{

   hypre_SchwarzData   *schwarz_data = schwarz_vdata;
   HYPRE_Int *dof_func;
   double *scale;
   hypre_CSRMatrix *domain_structure;
   hypre_CSRMatrix *A_boundary;
   hypre_ParVector *Vtemp;

   HYPRE_Int *pivots = NULL;

   HYPRE_Int variant = hypre_SchwarzDataVariant(schwarz_data);
   HYPRE_Int domain_type = hypre_SchwarzDataDomainType(schwarz_data);
   HYPRE_Int overlap = hypre_SchwarzDataOverlap(schwarz_data);
   HYPRE_Int num_functions = hypre_SchwarzDataNumFunctions(schwarz_data);
   double relax_weight = hypre_SchwarzDataRelaxWeight(schwarz_data);
   HYPRE_Int use_nonsymm = hypre_SchwarzDataUseNonSymm(schwarz_data);
   

   dof_func = hypre_SchwarzDataDofFunc(schwarz_data);

   Vtemp = hypre_ParVectorCreate(hypre_ParCSRMatrixComm(A),
			hypre_ParCSRMatrixGlobalNumRows(A),
			hypre_ParCSRMatrixRowStarts(A));
   hypre_ParVectorSetPartitioningOwner(Vtemp,0);
   hypre_ParVectorInitialize(Vtemp);
   hypre_SchwarzDataVtemp(schwarz_data) = Vtemp;

   if (variant > 1)
   {
      hypre_ParAMGCreateDomainDof(A,
                                  domain_type, overlap,
                                  num_functions, dof_func,
                                  &domain_structure, &pivots, use_nonsymm);

      if (variant == 2)
      {
         hypre_ParGenerateScale(A, domain_structure, relax_weight,
		&scale);
         hypre_SchwarzDataScale(schwarz_data) = scale;
      }
      else
      {
         hypre_ParGenerateHybridScale(A, domain_structure, &A_boundary, &scale);
         hypre_SchwarzDataScale(schwarz_data) = scale;
         if (hypre_CSRMatrixNumCols(hypre_ParCSRMatrixOffd(A)))
            hypre_SchwarzDataABoundary(schwarz_data) = A_boundary;
         else
            hypre_SchwarzDataABoundary(schwarz_data) = NULL;
      }
   }
   else
   {
      hypre_AMGCreateDomainDof (hypre_ParCSRMatrixDiag(A),
                                domain_type, overlap,
                                num_functions, dof_func,
                                &domain_structure, &pivots, use_nonsymm);
      if (variant == 1)
      {
         hypre_GenerateScale(domain_structure, 
		hypre_CSRMatrixNumRows(hypre_ParCSRMatrixDiag(A)),
		relax_weight, &scale);
         hypre_SchwarzDataScale(schwarz_data) = scale;
      }
   }

   hypre_SchwarzDataDomainStructure(schwarz_data) = domain_structure;
   hypre_SchwarzDataPivots(schwarz_data) = pivots;

   return hypre_error_flag;

}
Exemple #7
0
hypre_ParCSRBlockMatrix *
hypre_ParCSRBlockMatrixConvertFromParCSRMatrix(hypre_ParCSRMatrix *matrix,
                                               HYPRE_Int matrix_C_block_size )
{
   MPI_Comm comm = hypre_ParCSRMatrixComm(matrix);
   hypre_CSRMatrix *diag = hypre_ParCSRMatrixDiag(matrix);
   hypre_CSRMatrix *offd = hypre_ParCSRMatrixOffd(matrix);
   HYPRE_Int global_num_rows = hypre_ParCSRMatrixGlobalNumRows(matrix);
   HYPRE_Int global_num_cols = hypre_ParCSRMatrixGlobalNumCols(matrix);
   HYPRE_Int *row_starts = hypre_ParCSRMatrixRowStarts(matrix);
   HYPRE_Int *col_starts = hypre_ParCSRMatrixColStarts(matrix);
   HYPRE_Int num_cols_offd = hypre_CSRMatrixNumCols(offd);
   HYPRE_Int *col_map_offd = hypre_ParCSRBlockMatrixColMapOffd(matrix);
   HYPRE_Int *map_to_node=NULL, *counter=NULL, *col_in_j_map=NULL;
   HYPRE_Int *matrix_C_col_map_offd = NULL;
   
   HYPRE_Int matrix_C_num_cols_offd;
   HYPRE_Int matrix_C_num_nonzeros_offd;
   HYPRE_Int num_rows, num_nodes;
   
   HYPRE_Int *offd_i        = hypre_CSRMatrixI(offd);
   HYPRE_Int *offd_j        = hypre_CSRMatrixJ(offd);
   HYPRE_Complex * offd_data = hypre_CSRMatrixData(offd);

   hypre_ParCSRBlockMatrix *matrix_C;
   HYPRE_Int *matrix_C_row_starts;
   HYPRE_Int *matrix_C_col_starts;
   hypre_CSRBlockMatrix *matrix_C_diag;
   hypre_CSRBlockMatrix *matrix_C_offd;

   HYPRE_Int *matrix_C_offd_i=NULL, *matrix_C_offd_j = NULL;
   HYPRE_Complex *matrix_C_offd_data = NULL;
   
   HYPRE_Int num_procs, i, j, k, k_map, count, index, start_index, pos, row;
   
   hypre_MPI_Comm_size(comm,&num_procs);

#ifdef HYPRE_NO_GLOBAL_PARTITION
   matrix_C_row_starts = hypre_CTAlloc(HYPRE_Int, 2);
   matrix_C_col_starts = hypre_CTAlloc(HYPRE_Int, 2);
   for(i = 0; i < 2; i++)
   {
      matrix_C_row_starts[i] = row_starts[i]/matrix_C_block_size;
      matrix_C_col_starts[i] = col_starts[i]/matrix_C_block_size;
   }
#else
   matrix_C_row_starts = hypre_CTAlloc(HYPRE_Int, num_procs + 1);
   matrix_C_col_starts = hypre_CTAlloc(HYPRE_Int, num_procs + 1);
   for(i = 0; i < num_procs + 1; i++)
   {
      matrix_C_row_starts[i] = row_starts[i]/matrix_C_block_size;
      matrix_C_col_starts[i] = col_starts[i]/matrix_C_block_size;
   }
#endif

   /************* create the diagonal part ************/
   matrix_C_diag = hypre_CSRBlockMatrixConvertFromCSRMatrix(diag, 
                                                            matrix_C_block_size);
 
   /*******  the offd part *******************/

   /* can't use the same function for the offd part - because this isn't square
      and the offd j entries aren't global numbering (have to consider the offd
      map) - need to look at col_map_offd first */

   /* figure out the new number of offd columns (num rows is same as diag) */
   num_cols_offd = hypre_CSRMatrixNumCols(offd);
   num_rows = hypre_CSRMatrixNumRows(diag);
   num_nodes =  num_rows/matrix_C_block_size;
   
   matrix_C_offd_i = hypre_CTAlloc(HYPRE_Int, num_nodes + 1);

   matrix_C_num_cols_offd = 0;
   matrix_C_offd_i[0] = 0;
   matrix_C_num_nonzeros_offd = 0;

   if (num_cols_offd)
   {
      map_to_node = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
      matrix_C_num_cols_offd = 1;
      map_to_node[0] = col_map_offd[0]/matrix_C_block_size;
      for (i=1; i < num_cols_offd; i++)
      {
         map_to_node[i] = col_map_offd[i]/matrix_C_block_size;
         if (map_to_node[i] > map_to_node[i-1]) matrix_C_num_cols_offd++;
      }

      matrix_C_col_map_offd = hypre_CTAlloc(HYPRE_Int, matrix_C_num_cols_offd);
      col_in_j_map = hypre_CTAlloc(HYPRE_Int, num_cols_offd);

      matrix_C_col_map_offd[0] = map_to_node[0];
      col_in_j_map[0] = 0;
      count = 1;
      j = 1;
       
      /* fill in the col_map_off_d - these are global numbers.  Then we need to
         map these to j entries (these have local numbers) */
      for (i=1; i < num_cols_offd; i++)
      {
         if (map_to_node[i] > map_to_node[i-1])
         {
            matrix_C_col_map_offd[count++] = map_to_node[i];
         }
         col_in_j_map[j++] = count - 1;
      }
      
      /* now figure the nonzeros */   
      matrix_C_num_nonzeros_offd = 0;
      counter = hypre_CTAlloc(HYPRE_Int, matrix_C_num_cols_offd);
      for (i=0; i < matrix_C_num_cols_offd; i++)
         counter[i] = -1;

      for (i=0; i < num_nodes; i++) /* for each block row */
      {
         matrix_C_offd_i[i] = matrix_C_num_nonzeros_offd;
         for (j=0; j < matrix_C_block_size; j++)
         {
            row = i*matrix_C_block_size+j;
            for (k=offd_i[row]; k < offd_i[row+1]; k++) /* go through single row */
            {
               k_map = col_in_j_map[offd_j[k]]; /*nodal col - see if this has
                                                  been in this block row (i)
                                                  already*/
               
               if (counter[k_map] < i) /* not yet counted for this nodal row */
               {
                  counter[k_map] = i;
                  matrix_C_num_nonzeros_offd++;
               }
            }
         }
      }
      /* fill in final i entry */
      matrix_C_offd_i[num_nodes] = matrix_C_num_nonzeros_offd;
   }

   /* create offd matrix */
   matrix_C_offd = hypre_CSRBlockMatrixCreate(matrix_C_block_size, num_nodes,
                                              matrix_C_num_cols_offd,   
                                              matrix_C_num_nonzeros_offd);

   /* assign i */
   hypre_CSRBlockMatrixI(matrix_C_offd) = matrix_C_offd_i;
   

   /* create (and allocate j and data) */
   if (matrix_C_num_nonzeros_offd)
   {
      matrix_C_offd_j = hypre_CTAlloc(HYPRE_Int, matrix_C_num_nonzeros_offd);   
      matrix_C_offd_data =
         hypre_CTAlloc(HYPRE_Complex,
                       matrix_C_num_nonzeros_offd*matrix_C_block_size*
                       matrix_C_block_size);  
      hypre_CSRBlockMatrixJ(matrix_C_offd) = matrix_C_offd_j;
      hypre_CSRMatrixData(matrix_C_offd) = matrix_C_offd_data;
   
      for (i=0; i < matrix_C_num_cols_offd; i++)
         counter[i] = -1;

      index = 0; /*keep track of entry in matrix_C_offd_j*/
      start_index = 0;
      for (i=0; i < num_nodes; i++) /* for each block row */
      {
         
         for (j=0; j < matrix_C_block_size; j++) /* for each row in block */
         {
            row = i*matrix_C_block_size+j;
            for (k=offd_i[row]; k < offd_i[row+1]; k++) /* go through single row's cols */
            {
               k_map = col_in_j_map[offd_j[k]]; /*nodal col  for off_d */
               if (counter[k_map] < start_index) /* not yet counted for this nodal row */
               {
                  counter[k_map] = index;
                  matrix_C_offd_j[index] = k_map;
                  /*copy the data: which position (corresponds to j array) + which row + which col */                
                  pos =  (index * matrix_C_block_size * matrix_C_block_size) + (j * matrix_C_block_size) + 
                     col_map_offd[offd_j[k]]%matrix_C_block_size;
                  matrix_C_offd_data[pos] = offd_data[k];
                  index ++;
               }
               else  /* this col has already been listed for this row */
               {

                  /*copy the data: which position (corresponds to j array) + which row + which col */                
                  pos =  (counter[k_map]* matrix_C_block_size * matrix_C_block_size) + (j * matrix_C_block_size) + 
                     col_map_offd[offd_j[k]]%matrix_C_block_size;
                  matrix_C_offd_data[pos] = offd_data[k];
               }
            }
         }
         start_index = index; /* first index for current nodal row */
      }
   }

   /* *********create the new matrix  *************/
   matrix_C = hypre_ParCSRBlockMatrixCreate(comm, matrix_C_block_size, 
                                            global_num_rows/matrix_C_block_size, 
                                            global_num_cols/matrix_C_block_size, matrix_C_row_starts, 
                                            matrix_C_col_starts, matrix_C_num_cols_offd, 
                                            hypre_CSRBlockMatrixNumNonzeros(matrix_C_diag), 
                                            matrix_C_num_nonzeros_offd);

   /* use the diag and off diag matrices we have already created */
   hypre_CSRBlockMatrixDestroy(hypre_ParCSRMatrixDiag(matrix_C));
   hypre_ParCSRBlockMatrixDiag(matrix_C) = matrix_C_diag;
   hypre_CSRBlockMatrixDestroy(hypre_ParCSRMatrixOffd(matrix_C));
   hypre_ParCSRBlockMatrixOffd(matrix_C) = matrix_C_offd;

   hypre_ParCSRMatrixColMapOffd(matrix_C) = matrix_C_col_map_offd;

   /* *********don't bother to copy the comm_pkg *************/
   
   hypre_ParCSRBlockMatrixCommPkg(matrix_C) = NULL;
 
   /* CLEAN UP !!!! */
   hypre_TFree(map_to_node);
   hypre_TFree(col_in_j_map);
   hypre_TFree(counter);

   return matrix_C;
}
Exemple #8
0
HYPRE_Int
hypre_BoomerAMGCreateScalarCFS(hypre_ParCSRMatrix    *SN,
                       HYPRE_Int                   *CFN_marker,
                       HYPRE_Int                   *col_offd_SN_to_AN,
                       HYPRE_Int                    num_functions,
                       HYPRE_Int                    nodal,
                       HYPRE_Int                    data,
                       HYPRE_Int                  **dof_func_ptr,
                       HYPRE_Int                  **CF_marker_ptr,
                       HYPRE_Int                  **col_offd_S_to_A_ptr,
                       hypre_ParCSRMatrix   **S_ptr)
{
   MPI_Comm	       comm = hypre_ParCSRMatrixComm(SN);
   hypre_ParCSRMatrix *S;
   hypre_CSRMatrix    *S_diag;
   HYPRE_Int		      *S_diag_i;
   HYPRE_Int		      *S_diag_j;
   double	      *S_diag_data;
   hypre_CSRMatrix    *S_offd;
   HYPRE_Int		      *S_offd_i;
   HYPRE_Int		      *S_offd_j;
   double	      *S_offd_data;
   HYPRE_Int		      *row_starts_S;
   HYPRE_Int		      *col_starts_S;
   HYPRE_Int		      *row_starts_SN = hypre_ParCSRMatrixRowStarts(SN);
   HYPRE_Int		      *col_starts_SN = hypre_ParCSRMatrixColStarts(SN);
   hypre_CSRMatrix    *SN_diag = hypre_ParCSRMatrixDiag(SN);
   HYPRE_Int		      *SN_diag_i = hypre_CSRMatrixI(SN_diag);
   HYPRE_Int		      *SN_diag_j = hypre_CSRMatrixJ(SN_diag);
   double	      *SN_diag_data;
   hypre_CSRMatrix    *SN_offd = hypre_ParCSRMatrixOffd(SN);
   HYPRE_Int		      *SN_offd_i = hypre_CSRMatrixI(SN_offd);
   HYPRE_Int		      *SN_offd_j = hypre_CSRMatrixJ(SN_offd);
   double	      *SN_offd_data;
   HYPRE_Int		      *CF_marker;
   HYPRE_Int		      *col_map_offd_SN = hypre_ParCSRMatrixColMapOffd(SN);
   HYPRE_Int		      *col_map_offd_S;
   HYPRE_Int		      *dof_func;
   HYPRE_Int		       num_nodes = hypre_CSRMatrixNumRows(SN_diag);
   HYPRE_Int		       num_variables;
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(SN);
   HYPRE_Int		       num_sends;
   HYPRE_Int		       num_recvs;
   HYPRE_Int		      *send_procs;
   HYPRE_Int		      *send_map_starts;
   HYPRE_Int		      *send_map_elmts;
   HYPRE_Int		      *recv_procs;
   HYPRE_Int		      *recv_vec_starts;
   hypre_ParCSRCommPkg *comm_pkg_S;
   HYPRE_Int		      *send_procs_S;
   HYPRE_Int		      *send_map_starts_S;
   HYPRE_Int		      *send_map_elmts_S;
   HYPRE_Int		      *recv_procs_S;
   HYPRE_Int		      *recv_vec_starts_S;
   HYPRE_Int		      *col_offd_S_to_A = NULL;
   
   HYPRE_Int		       num_coarse_nodes;
   HYPRE_Int		       i,j,k,k1,jj,cnt;
   HYPRE_Int		       row, start, end;
   HYPRE_Int		       num_procs;
   HYPRE_Int		       num_cols_offd_SN = hypre_CSRMatrixNumCols(SN_offd);
   HYPRE_Int		       num_cols_offd_S;
   HYPRE_Int		       SN_num_nonzeros_diag;
   HYPRE_Int		       SN_num_nonzeros_offd;
   HYPRE_Int		       S_num_nonzeros_diag;
   HYPRE_Int		       S_num_nonzeros_offd;
   HYPRE_Int		       global_num_vars;
   HYPRE_Int		       global_num_cols;
   HYPRE_Int		       global_num_nodes;
   HYPRE_Int		       ierr = 0;
 
   hypre_MPI_Comm_size(comm, &num_procs);
 
   num_variables = num_functions*num_nodes;
   CF_marker = hypre_CTAlloc(HYPRE_Int, num_variables);

   if (nodal < 0)
   {
      cnt = 0;
      num_coarse_nodes = 0;
      for (i=0; i < num_nodes; i++)
      {
	 if (CFN_marker[i] == 1) num_coarse_nodes++;
         for (j=0; j < num_functions; j++)
	    CF_marker[cnt++] = CFN_marker[i];
      }

      dof_func = hypre_CTAlloc(HYPRE_Int,num_coarse_nodes*num_functions);
      cnt = 0;
      for (i=0; i < num_nodes; i++)
      {
	 if (CFN_marker[i] == 1)
	 {
	    for (k=0; k < num_functions; k++)
	       dof_func[cnt++] = k;
	 }
      }
      *dof_func_ptr = dof_func;
   }
   else
   {
      cnt = 0;
      for (i=0; i < num_nodes; i++)
         for (j=0; j < num_functions; j++)
	    CF_marker[cnt++] = CFN_marker[i];
   }

   *CF_marker_ptr = CF_marker;


#ifdef HYPRE_NO_GLOBAL_PARTITION
   row_starts_S = hypre_CTAlloc(HYPRE_Int,2);
   for (i=0; i < 2; i++)
      row_starts_S[i] = num_functions*row_starts_SN[i];

   if (row_starts_SN != col_starts_SN)
   {
      col_starts_S = hypre_CTAlloc(HYPRE_Int,2);
      for (i=0; i < 2; i++)
         col_starts_S[i] = num_functions*col_starts_SN[i];
   }
   else
   {
      col_starts_S = row_starts_S;
   }
#else
   row_starts_S = hypre_CTAlloc(HYPRE_Int,num_procs+1);
   for (i=0; i < num_procs+1; i++)
      row_starts_S[i] = num_functions*row_starts_SN[i];

   if (row_starts_SN != col_starts_SN)
   {
      col_starts_S = hypre_CTAlloc(HYPRE_Int,num_procs+1);
      for (i=0; i < num_procs+1; i++)
         col_starts_S[i] = num_functions*col_starts_SN[i];
   }
   else
   {
      col_starts_S = row_starts_S;
   }
#endif


   SN_num_nonzeros_diag = SN_diag_i[num_nodes];
   SN_num_nonzeros_offd = SN_offd_i[num_nodes];
 
   global_num_nodes = hypre_ParCSRMatrixGlobalNumRows(SN);
   global_num_cols = hypre_ParCSRMatrixGlobalNumCols(SN)*num_functions;
 
   global_num_vars = global_num_nodes*num_functions;
   S_num_nonzeros_diag = num_functions*SN_num_nonzeros_diag;
   S_num_nonzeros_offd = num_functions*SN_num_nonzeros_offd;
   num_cols_offd_S = num_functions*num_cols_offd_SN;
   S = hypre_ParCSRMatrixCreate(comm, global_num_vars, global_num_cols,
		row_starts_S, col_starts_S, num_cols_offd_S,
		S_num_nonzeros_diag, S_num_nonzeros_offd);

   S_diag = hypre_ParCSRMatrixDiag(S);
   S_offd = hypre_ParCSRMatrixOffd(S);
   S_diag_i = hypre_CTAlloc(HYPRE_Int, num_variables+1);
   S_offd_i = hypre_CTAlloc(HYPRE_Int, num_variables+1);
   S_diag_j = hypre_CTAlloc(HYPRE_Int, S_num_nonzeros_diag);
   hypre_CSRMatrixI(S_diag) = S_diag_i;
   hypre_CSRMatrixJ(S_diag) = S_diag_j;
   if (data) 
   {
      SN_diag_data = hypre_CSRMatrixData(SN_diag);
      S_diag_data = hypre_CTAlloc(double, S_num_nonzeros_diag);
      hypre_CSRMatrixData(S_diag) = S_diag_data;
      if (num_cols_offd_S)
      {
         SN_offd_data = hypre_CSRMatrixData(SN_offd);
         S_offd_data = hypre_CTAlloc(double, S_num_nonzeros_offd);
         hypre_CSRMatrixData(S_offd) = S_offd_data;
      }

   }
   hypre_CSRMatrixI(S_offd) = S_offd_i;

   if (comm_pkg)
   {
      comm_pkg_S = hypre_CTAlloc(hypre_ParCSRCommPkg,1);
      hypre_ParCSRCommPkgComm(comm_pkg_S) = comm;
      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      hypre_ParCSRCommPkgNumSends(comm_pkg_S) = num_sends;
      num_recvs = hypre_ParCSRCommPkgNumRecvs(comm_pkg);
      hypre_ParCSRCommPkgNumRecvs(comm_pkg_S) = num_recvs;
      send_procs = hypre_ParCSRCommPkgSendProcs(comm_pkg);
      send_map_starts = hypre_ParCSRCommPkgSendMapStarts(comm_pkg);
      send_map_elmts = hypre_ParCSRCommPkgSendMapElmts(comm_pkg);
      recv_procs = hypre_ParCSRCommPkgRecvProcs(comm_pkg);
      recv_vec_starts = hypre_ParCSRCommPkgRecvVecStarts(comm_pkg);
      send_procs_S = NULL;
      send_map_elmts_S = NULL;
      if (num_sends) 
      {
         send_procs_S = hypre_CTAlloc(HYPRE_Int,num_sends);
         send_map_elmts_S = hypre_CTAlloc(HYPRE_Int,
		num_functions*send_map_starts[num_sends]);
      }
      send_map_starts_S = hypre_CTAlloc(HYPRE_Int,num_sends+1);
      recv_vec_starts_S = hypre_CTAlloc(HYPRE_Int,num_recvs+1);
      recv_procs_S = NULL;
      if (num_recvs) recv_procs_S = hypre_CTAlloc(HYPRE_Int,num_recvs);
      send_map_starts_S[0] = 0;
      for (i=0; i < num_sends; i++)
      {
         send_procs_S[i] = send_procs[i];
         send_map_starts_S[i+1] = num_functions*send_map_starts[i+1];
      }
      recv_vec_starts_S[0] = 0;
      for (i=0; i < num_recvs; i++)
      {
         recv_procs_S[i] = recv_procs[i];
         recv_vec_starts_S[i+1] = num_functions*recv_vec_starts[i+1];
      }

      cnt = 0;
      for (i=0; i < send_map_starts[num_sends]; i++)
      {
	 k1 = num_functions*send_map_elmts[i];
         for (j=0; j < num_functions; j++)
         {
	    send_map_elmts_S[cnt++] = k1+j;
         }
      }
      hypre_ParCSRCommPkgSendProcs(comm_pkg_S) = send_procs_S;
      hypre_ParCSRCommPkgSendMapStarts(comm_pkg_S) = send_map_starts_S;
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg_S) = send_map_elmts_S;
      hypre_ParCSRCommPkgRecvProcs(comm_pkg_S) = recv_procs_S;
      hypre_ParCSRCommPkgRecvVecStarts(comm_pkg_S) = recv_vec_starts_S;
      hypre_ParCSRMatrixCommPkg(S) = comm_pkg_S;
   }

   if (num_cols_offd_S)
   {
      S_offd_j = hypre_CTAlloc(HYPRE_Int, S_num_nonzeros_offd);
      hypre_CSRMatrixJ(S_offd) = S_offd_j;

      col_map_offd_S = hypre_CTAlloc(HYPRE_Int, num_cols_offd_S);

      cnt = 0;
      for (i=0; i < num_cols_offd_SN; i++)
      {
         k1 = col_map_offd_SN[i]*num_functions;
         for (j=0; j < num_functions; j++)
            col_map_offd_S[cnt++] = k1+j;
      }
      hypre_ParCSRMatrixColMapOffd(S) = col_map_offd_S;
   }
   
   if (col_offd_SN_to_AN)
   {
      col_offd_S_to_A = hypre_CTAlloc(HYPRE_Int, num_cols_offd_S);

      cnt = 0;
      for (i=0; i < num_cols_offd_SN; i++)
      {
         k1 = col_offd_SN_to_AN[i]*num_functions;
         for (j=0; j < num_functions; j++)
            col_offd_S_to_A[cnt++] = k1+j;
      }
      *col_offd_S_to_A_ptr = col_offd_S_to_A;
   }
   


   cnt = 0;
   row = 0;
   for (i=0; i < num_nodes; i++)
   {
      row++;
      start = cnt;
      for (j=SN_diag_i[i]; j < SN_diag_i[i+1]; j++)
      {
         jj = SN_diag_j[j];
	 if (data) S_diag_data[cnt] = SN_diag_data[j];
	 S_diag_j[cnt++] = jj*num_functions;
      }
      end = cnt;
      S_diag_i[row] = cnt;
      for (k1=1; k1 < num_functions; k1++)
      {
         row++;
	 for (k=start; k < end; k++)
	 {
	    if (data) S_diag_data[cnt] = S_diag_data[k];
	    S_diag_j[cnt++] = S_diag_j[k]+k1;
	 }
         S_diag_i[row] = cnt;
      }
   } 

   cnt = 0;
   row = 0;
   for (i=0; i < num_nodes; i++)
   {
      row++;
      start = cnt;
      for (j=SN_offd_i[i]; j < SN_offd_i[i+1]; j++)
      {
         jj = SN_offd_j[j];
	 if (data) S_offd_data[cnt] = SN_offd_data[j];
	 S_offd_j[cnt++] = jj*num_functions;
      }
      end = cnt;
      S_offd_i[row] = cnt;
      for (k1=1; k1 < num_functions; k1++)
      {
         row++;
	 for (k=start; k < end; k++)
	 {
	    if (data) S_offd_data[cnt] = S_offd_data[k];
	    S_offd_j[cnt++] = S_offd_j[k]+k1;
	 }
         S_offd_i[row] = cnt;
      }
   } 

   *S_ptr = S; 

   return (ierr);
}
Exemple #9
0
void hypre_ParCSRMatrixSplit(hypre_ParCSRMatrix *A,
                             HYPRE_Int nr, HYPRE_Int nc,
                             hypre_ParCSRMatrix **blocks,
                             int interleaved_rows, int interleaved_cols)
{
    HYPRE_Int i, j, k;

    MPI_Comm comm = hypre_ParCSRMatrixComm(A);

    hypre_CSRMatrix *Adiag = hypre_ParCSRMatrixDiag(A);
    hypre_CSRMatrix *Aoffd = hypre_ParCSRMatrixOffd(A);

    HYPRE_Int global_rows = hypre_ParCSRMatrixGlobalNumRows(A);
    HYPRE_Int global_cols = hypre_ParCSRMatrixGlobalNumCols(A);

    HYPRE_Int local_rows = hypre_CSRMatrixNumRows(Adiag);
    HYPRE_Int local_cols = hypre_CSRMatrixNumCols(Adiag);
    HYPRE_Int offd_cols = hypre_CSRMatrixNumCols(Aoffd);

    hypre_assert(local_rows % nr == 0 && local_cols % nc == 0);
    hypre_assert(global_rows % nr == 0 && global_cols % nc == 0);

    HYPRE_Int block_rows = local_rows / nr;
    HYPRE_Int block_cols = local_cols / nc;
    HYPRE_Int num_blocks = nr * nc;

    /* mark local rows and columns with block number */
    HYPRE_Int *row_block_num = hypre_TAlloc(HYPRE_Int, local_rows);
    HYPRE_Int *col_block_num = hypre_TAlloc(HYPRE_Int, local_cols);

    for (i = 0; i < local_rows; i++)
    {
        row_block_num[i] = interleaved_rows ? (i % nr) : (i / block_rows);
    }
    for (i = 0; i < local_cols; i++)
    {
        col_block_num[i] = interleaved_cols ? (i % nc) : (i / block_cols);
    }

    /* determine the block numbers for offd columns */
    HYPRE_Int* offd_col_block_num = hypre_TAlloc(HYPRE_Int, offd_cols);
    hypre_ParCSRCommHandle *comm_handle;
    HYPRE_Int *int_buf_data;
    {
        /* make sure A has a communication package */
        hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(A);
        if (!comm_pkg)
        {
            hypre_MatvecCommPkgCreate(A);
            comm_pkg = hypre_ParCSRMatrixCommPkg(A);
        }

        /* calculate the final global column numbers for each block */
        HYPRE_Int *count = hypre_CTAlloc(HYPRE_Int, nc);
        HYPRE_Int *block_global_col = hypre_TAlloc(HYPRE_Int, local_cols);
        HYPRE_Int first_col = hypre_ParCSRMatrixFirstColDiag(A) / nc;
        for (i = 0; i < local_cols; i++)
        {
            block_global_col[i] = first_col + count[col_block_num[i]]++;
        }
        hypre_TFree(count);

        /* use a Matvec communication pattern to determine offd_col_block_num */
        HYPRE_Int num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
        int_buf_data = hypre_CTAlloc(HYPRE_Int,
                                     hypre_ParCSRCommPkgSendMapStart(comm_pkg,
                                             num_sends));
        HYPRE_Int start, index = 0;
        for (i = 0; i < num_sends; i++)
        {
            start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
            for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
            {
                k = hypre_ParCSRCommPkgSendMapElmt(comm_pkg, j);
                int_buf_data[index++] = col_block_num[k] + nc*block_global_col[k];
            }
        }
        hypre_TFree(block_global_col);

        comm_handle = hypre_ParCSRCommHandleCreate(11, comm_pkg, int_buf_data,
                      offd_col_block_num);
    }

    /* create the block matrices */
    HYPRE_Int num_procs = 1;
    if (!hypre_ParCSRMatrixAssumedPartition(A))
    {
        hypre_MPI_Comm_size(comm, &num_procs);
    }

    HYPRE_Int *row_starts = hypre_TAlloc(HYPRE_Int, num_procs+1);
    HYPRE_Int *col_starts = hypre_TAlloc(HYPRE_Int, num_procs+1);
    for (i = 0; i <= num_procs; i++)
    {
        row_starts[i] = hypre_ParCSRMatrixRowStarts(A)[i] / nr;
        col_starts[i] = hypre_ParCSRMatrixColStarts(A)[i] / nc;
    }

    for (i = 0; i < num_blocks; i++)
    {
        blocks[i] = hypre_ParCSRMatrixCreate(comm,
                                             global_rows/nr, global_cols/nc,
                                             row_starts, col_starts, 0, 0, 0);
    }

    /* split diag part */
    hypre_CSRMatrix **csr_blocks = hypre_TAlloc(hypre_CSRMatrix*, nr*nc);
    hypre_CSRMatrixSplit(Adiag, nr, nc, row_block_num, col_block_num,
                         csr_blocks);

    for (i = 0; i < num_blocks; i++)
    {
        hypre_TFree(hypre_ParCSRMatrixDiag(blocks[i]));
        hypre_ParCSRMatrixDiag(blocks[i]) = csr_blocks[i];
    }

    /* finish communication, receive offd_col_block_num */
    hypre_ParCSRCommHandleDestroy(comm_handle);
    hypre_TFree(int_buf_data);

    /* decode global offd column numbers */
    HYPRE_Int* offd_global_col = hypre_TAlloc(HYPRE_Int, offd_cols);
    for (i = 0; i < offd_cols; i++)
    {
        offd_global_col[i] = offd_col_block_num[i] / nc;
        offd_col_block_num[i] %= nc;
    }

    /* split offd part */
    hypre_CSRMatrixSplit(Aoffd, nr, nc, row_block_num, offd_col_block_num,
                         csr_blocks);

    for (i = 0; i < num_blocks; i++)
    {
        hypre_TFree(hypre_ParCSRMatrixOffd(blocks[i]));
        hypre_ParCSRMatrixOffd(blocks[i]) = csr_blocks[i];
    }

    hypre_TFree(csr_blocks);
    hypre_TFree(col_block_num);
    hypre_TFree(row_block_num);

    /* update block col-maps */
    for (int bi = 0; bi < nr; bi++)
    {
        for (int bj = 0; bj < nc; bj++)
        {
            hypre_ParCSRMatrix *block = blocks[bi*nc + bj];
            hypre_CSRMatrix *block_offd = hypre_ParCSRMatrixOffd(block);
            HYPRE_Int block_offd_cols = hypre_CSRMatrixNumCols(block_offd);

            HYPRE_Int *block_col_map = hypre_TAlloc(HYPRE_Int, block_offd_cols);
            for (i = j = 0; i < offd_cols; i++)
            {
                HYPRE_Int bn = offd_col_block_num[i];
                if (bn == bj) {
                    block_col_map[j++] = offd_global_col[i];
                }
            }
            hypre_assert(j == block_offd_cols);

            hypre_ParCSRMatrixColMapOffd(block) = block_col_map;
        }
    }

    hypre_TFree(offd_global_col);
    hypre_TFree(offd_col_block_num);

    /* finish the new matrices, make them own all the stuff */
    for (i = 0; i < num_blocks; i++)
    {
        hypre_ParCSRMatrixSetNumNonzeros(blocks[i]);
        hypre_MatvecCommPkgCreate(blocks[i]);

        hypre_ParCSRMatrixOwnsData(blocks[i]) = 1;

        /* only the first block will own the row/col_starts */
        hypre_ParCSRMatrixOwnsRowStarts(blocks[i]) = !i;
        hypre_ParCSRMatrixOwnsColStarts(blocks[i]) = !i;
    }
}
Exemple #10
0
/******************************************************************************
 *
 * hypre_IJMatrixInsertRowPETSc
 *
 * inserts a row into an IJMatrix, 
 * if diag_i and offd_i are known, those values are inserted directly
 * into the ParCSRMatrix,
 * if they are not known, an auxiliary structure, AuxParCSRMatrix is used
 *
 *****************************************************************************/
HYPRE_Int
hypre_IJMatrixInsertRowPETSc(hypre_IJMatrix *matrix,
		              HYPRE_Int	      n,
		              HYPRE_Int	      row,
		              HYPRE_Int	     *indices,
		              double         *coeffs)
{
   HYPRE_Int ierr = 0;
   hypre_ParCSRMatrix *par_matrix;
   hypre_AuxParCSRMatrix *aux_matrix;
   HYPRE_Int *row_starts;
   HYPRE_Int *col_starts;
   MPI_Comm comm = hypre_IJMatrixContext(matrix);
   HYPRE_Int num_procs, my_id;
   HYPRE_Int row_local;
   HYPRE_Int col_0, col_n;
   HYPRE_Int i, temp;
   HYPRE_Int *indx_diag, *indx_offd;
   HYPRE_Int **aux_j;
   HYPRE_Int *local_j;
   double **aux_data;
   double *local_data;
   HYPRE_Int diag_space, offd_space;
   HYPRE_Int *row_length, *row_space;
   HYPRE_Int need_aux;
   HYPRE_Int indx_0;
   HYPRE_Int diag_indx, offd_indx;

   hypre_CSRMatrix *diag;
   HYPRE_Int *diag_i;
   HYPRE_Int *diag_j;
   double *diag_data;

   hypre_CSRMatrix *offd;
   HYPRE_Int *offd_i;
   HYPRE_Int *offd_j;
   double *offd_data;

   hypre_MPI_Comm_size(comm, &num_procs);
   hypre_MPI_Comm_rank(comm, &my_id);
   par_matrix = hypre_IJMatrixLocalStorage( matrix );
   aux_matrix = hypre_IJMatrixTranslator(matrix);
   row_space = hypre_AuxParCSRMatrixRowSpace(aux_matrix);
   row_length = hypre_AuxParCSRMatrixRowLength(aux_matrix);
   col_n = hypre_ParCSRMatrixFirstColDiag(par_matrix);
   row_starts = hypre_ParCSRMatrixRowStarts(par_matrix);
   col_starts = hypre_ParCSRMatrixColStarts(par_matrix);
   col_0 = col_starts[my_id];
   col_n = col_starts[my_id+1]-1;
   need_aux = hypre_AuxParCSRMatrixNeedAux(aux_matrix);

   if (row >= row_starts[my_id] && row < row_starts[my_id+1])
   {
      if (need_aux)
      {
         row_local = row - row_starts[my_id]; /* compute local row number */
         aux_j = hypre_AuxParCSRMatrixAuxJ(aux_matrix);
         aux_data = hypre_AuxParCSRMatrixAuxData(aux_matrix);
         local_j = aux_j[row_local];
         local_data = aux_data[row_local];
            
         row_length[row_local] = n;
         
         if ( row_space[row_local] < n)
         {
   	    hypre_TFree(local_j);
   	    hypre_TFree(local_data);
   	    local_j = hypre_CTAlloc(HYPRE_Int,n);
   	    local_data = hypre_CTAlloc(double,n);
            row_space[row_local] = n;
         }
         
         for (i=0; i < n; i++)
         {
   	    local_j[i] = indices[i];
   	    local_data[i] = coeffs[i];
         }
   
   /* make sure first element is diagonal element, if not, find it and
      exchange it with first element */
         if (local_j[0] != row_local)
         {
            for (i=1; i < n; i++)
     	    {
   	       if (local_j[i] == row_local)
   	       {
   		   local_j[i] = local_j[0];
   		   local_j[0] = row_local;
   		   temp = local_data[0];
   		   local_data[0] = local_data[i];
   		   local_data[i] = temp;
   		   break;
   	       }
     	    }
         }
      /* sort data according to column indices, except for first element */

         qsort1(local_j,local_data,1,n-1);
 
      }
      else /* insert immediately into data into ParCSRMatrix structure */
      {
Exemple #11
0
/*
  Function:  hypre_ParCSRMatrixEliminateAAe

                    (input)                  (output)

                / A_ii | A_ib \          / A_ii |  0   \
            A = | -----+----- |   --->   | -----+----- |
                \ A_bi | A_bb /          \   0  |  I   /


                                         /   0  |   A_ib   \
                                    Ae = | -----+--------- |
                                         \ A_bi | A_bb - I /

*/
void hypre_ParCSRMatrixEliminateAAe(hypre_ParCSRMatrix *A,
                                    hypre_ParCSRMatrix **Ae,
                                    HYPRE_Int num_rowscols_to_elim,
                                    HYPRE_Int *rowscols_to_elim)
{
    HYPRE_Int i, j, k;

    hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);
    hypre_CSRMatrix *A_offd = hypre_ParCSRMatrixOffd(A);
    HYPRE_Int A_diag_nrows  = hypre_CSRMatrixNumRows(A_diag);
    HYPRE_Int A_offd_ncols  = hypre_CSRMatrixNumCols(A_offd);

    *Ae = hypre_ParCSRMatrixCreate(hypre_ParCSRMatrixComm(A),
                                   hypre_ParCSRMatrixGlobalNumRows(A),
                                   hypre_ParCSRMatrixGlobalNumCols(A),
                                   hypre_ParCSRMatrixRowStarts(A),
                                   hypre_ParCSRMatrixColStarts(A),
                                   0, 0, 0);

    hypre_ParCSRMatrixSetRowStartsOwner(*Ae, 0);
    hypre_ParCSRMatrixSetColStartsOwner(*Ae, 0);

    hypre_CSRMatrix *Ae_diag = hypre_ParCSRMatrixDiag(*Ae);
    hypre_CSRMatrix *Ae_offd = hypre_ParCSRMatrixOffd(*Ae);
    HYPRE_Int Ae_offd_ncols;

    HYPRE_Int  num_offd_cols_to_elim;
    HYPRE_Int  *offd_cols_to_elim;

    HYPRE_Int  *A_col_map_offd = hypre_ParCSRMatrixColMapOffd(A);
    HYPRE_Int  *Ae_col_map_offd;

    HYPRE_Int  *col_mark;
    HYPRE_Int  *col_remap;

    /* figure out which offd cols should be eliminated */
    {
        hypre_ParCSRCommHandle *comm_handle;
        hypre_ParCSRCommPkg *comm_pkg;
        HYPRE_Int num_sends, *int_buf_data;
        HYPRE_Int index, start;

        HYPRE_Int *eliminate_row = hypre_CTAlloc(HYPRE_Int, A_diag_nrows);
        HYPRE_Int *eliminate_col = hypre_CTAlloc(HYPRE_Int, A_offd_ncols);

        /* make sure A has a communication package */
        comm_pkg = hypre_ParCSRMatrixCommPkg(A);
        if (!comm_pkg)
        {
            hypre_MatvecCommPkgCreate(A);
            comm_pkg = hypre_ParCSRMatrixCommPkg(A);
        }

        /* which of the local rows are to be eliminated */
        for (i = 0; i < A_diag_nrows; i++)
        {
            eliminate_row[i] = 0;
        }
        for (i = 0; i < num_rowscols_to_elim; i++)
        {
            eliminate_row[rowscols_to_elim[i]] = 1;
        }

        /* use a Matvec communication pattern to find (in eliminate_col)
           which of the local offd columns are to be eliminated */
        num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
        int_buf_data = hypre_CTAlloc(HYPRE_Int,
                                     hypre_ParCSRCommPkgSendMapStart(comm_pkg,
                                             num_sends));
        index = 0;
        for (i = 0; i < num_sends; i++)
        {
            start = hypre_ParCSRCommPkgSendMapStart(comm_pkg, i);
            for (j = start; j < hypre_ParCSRCommPkgSendMapStart(comm_pkg, i+1); j++)
            {
                k = hypre_ParCSRCommPkgSendMapElmt(comm_pkg, j);
                int_buf_data[index++] = eliminate_row[k];
            }
        }
        comm_handle = hypre_ParCSRCommHandleCreate(11, comm_pkg,
                      int_buf_data, eliminate_col);

        /* eliminate diagonal part, overlapping it with communication */
        hypre_CSRMatrixElimCreate(A_diag, Ae_diag,
                                  num_rowscols_to_elim, rowscols_to_elim,
                                  num_rowscols_to_elim, rowscols_to_elim,
                                  NULL);

        hypre_CSRMatrixEliminateRowsCols(A_diag, Ae_diag,
                                         num_rowscols_to_elim, rowscols_to_elim,
                                         num_rowscols_to_elim, rowscols_to_elim,
                                         1, NULL);
        hypre_CSRMatrixReorder(Ae_diag);

        /* finish the communication */
        hypre_ParCSRCommHandleDestroy(comm_handle);

        /* received eliminate_col[], count offd columns to eliminate */
        num_offd_cols_to_elim = 0;
        for (i = 0; i < A_offd_ncols; i++)
        {
            if (eliminate_col[i]) {
                num_offd_cols_to_elim++;
            }
        }

        offd_cols_to_elim = hypre_CTAlloc(HYPRE_Int, num_offd_cols_to_elim);

        /* get a list of offd column indices and coefs */
        num_offd_cols_to_elim = 0;
        for (i = 0; i < A_offd_ncols; i++)
        {
            if (eliminate_col[i])
            {
                offd_cols_to_elim[num_offd_cols_to_elim++] = i;
            }
        }

        hypre_TFree(int_buf_data);
        hypre_TFree(eliminate_row);
        hypre_TFree(eliminate_col);
    }

    /* eliminate the off-diagonal part */
    col_mark = hypre_CTAlloc(HYPRE_Int, A_offd_ncols);
    col_remap = hypre_CTAlloc(HYPRE_Int, A_offd_ncols);

    hypre_CSRMatrixElimCreate(A_offd, Ae_offd,
                              num_rowscols_to_elim, rowscols_to_elim,
                              num_offd_cols_to_elim, offd_cols_to_elim,
                              col_mark);

    for (i = k = 0; i < A_offd_ncols; i++)
    {
        if (col_mark[i]) {
            col_remap[i] = k++;
        }
    }

    hypre_CSRMatrixEliminateRowsCols(A_offd, Ae_offd,
                                     num_rowscols_to_elim, rowscols_to_elim,
                                     num_offd_cols_to_elim, offd_cols_to_elim,
                                     0, col_remap);

    /* create col_map_offd for Ae */
    Ae_offd_ncols = 0;
    for (i = 0; i < A_offd_ncols; i++)
    {
        if (col_mark[i]) {
            Ae_offd_ncols++;
        }
    }

    Ae_col_map_offd  = hypre_CTAlloc(HYPRE_Int, Ae_offd_ncols);

    Ae_offd_ncols = 0;
    for (i = 0; i < A_offd_ncols; i++)
    {
        if (col_mark[i])
        {
            Ae_col_map_offd[Ae_offd_ncols++] = A_col_map_offd[i];
        }
    }

    hypre_ParCSRMatrixColMapOffd(*Ae) = Ae_col_map_offd;
    hypre_CSRMatrixNumCols(Ae_offd) = Ae_offd_ncols;

    hypre_TFree(col_remap);
    hypre_TFree(col_mark);
    hypre_TFree(offd_cols_to_elim);

    hypre_ParCSRMatrixSetNumNonzeros(*Ae);
    hypre_MatvecCommPkgCreate(*Ae);
}
Exemple #12
0
hypre_ParCSRMatrix *hypre_ParCSRAAt( hypre_ParCSRMatrix  *A )
{
    MPI_Comm         comm = hypre_ParCSRMatrixComm(A);

    hypre_CSRMatrix *A_diag = hypre_ParCSRMatrixDiag(A);

    HYPRE_Complex   *A_diag_data = hypre_CSRMatrixData(A_diag);
    HYPRE_Int       *A_diag_i = hypre_CSRMatrixI(A_diag);
    HYPRE_Int       *A_diag_j = hypre_CSRMatrixJ(A_diag);

    hypre_CSRMatrix *A_offd = hypre_ParCSRMatrixOffd(A);

    HYPRE_Complex   *A_offd_data = hypre_CSRMatrixData(A_offd);
    HYPRE_Int       *A_offd_i = hypre_CSRMatrixI(A_offd);
    HYPRE_Int       *A_offd_j = hypre_CSRMatrixJ(A_offd);
    HYPRE_Int       *A_col_map_offd = hypre_ParCSRMatrixColMapOffd(A);
    HYPRE_Int       *A_ext_row_map;

    HYPRE_Int       *row_starts_A = hypre_ParCSRMatrixRowStarts(A);
    HYPRE_Int        num_rows_diag_A = hypre_CSRMatrixNumRows(A_diag);
    HYPRE_Int        num_cols_offd_A = hypre_CSRMatrixNumCols(A_offd);

    hypre_ParCSRMatrix *C;
    HYPRE_Int          *col_map_offd_C;

    hypre_CSRMatrix *C_diag;

    HYPRE_Complex   *C_diag_data;
    HYPRE_Int       *C_diag_i;
    HYPRE_Int       *C_diag_j;

    hypre_CSRMatrix *C_offd;

    HYPRE_Complex   *C_offd_data=NULL;
    HYPRE_Int       *C_offd_i=NULL;
    HYPRE_Int       *C_offd_j=NULL;
    HYPRE_Int       *new_C_offd_j;

    HYPRE_Int        C_diag_size;
    HYPRE_Int        C_offd_size;
    HYPRE_Int        last_col_diag_C;
    HYPRE_Int        num_cols_offd_C;

    hypre_CSRMatrix *A_ext;

    HYPRE_Complex   *A_ext_data;
    HYPRE_Int       *A_ext_i;
    HYPRE_Int       *A_ext_j;
    HYPRE_Int        num_rows_A_ext=0;

    HYPRE_Int        first_row_index_A = hypre_ParCSRMatrixFirstRowIndex(A);
    HYPRE_Int        first_col_diag_A = hypre_ParCSRMatrixFirstColDiag(A);
    HYPRE_Int       *B_marker;

    HYPRE_Int        i;
    HYPRE_Int        i1, i2, i3;
    HYPRE_Int        jj2, jj3;

    HYPRE_Int        jj_count_diag, jj_count_offd;
    HYPRE_Int        jj_row_begin_diag, jj_row_begin_offd;
    HYPRE_Int        start_indexing = 0; /* start indexing for C_data at 0 */
    HYPRE_Int        count;
    HYPRE_Int        n_rows_A, n_cols_A;

    HYPRE_Complex    a_entry;
    HYPRE_Complex    a_b_product;

    HYPRE_Complex    zero = 0.0;

    n_rows_A = hypre_ParCSRMatrixGlobalNumRows(A);
    n_cols_A = hypre_ParCSRMatrixGlobalNumCols(A);

    if (n_cols_A != n_rows_A)
    {
        hypre_printf(" Error! Incompatible matrix dimensions!\n");
        return NULL;
    }
    /*-----------------------------------------------------------------------
     *  Extract A_ext, i.e. portion of A that is stored on neighbor procs
     *  and needed locally for A^T in the matrix matrix product A*A^T
     *-----------------------------------------------------------------------*/

    if (num_rows_diag_A != n_rows_A)
    {
        /*---------------------------------------------------------------------
         * If there exists no CommPkg for A, a CommPkg is generated using
         * equally load balanced partitionings
         *--------------------------------------------------------------------*/
        if (!hypre_ParCSRMatrixCommPkg(A))
        {
            hypre_MatTCommPkgCreate(A);
        }

        A_ext = hypre_ParCSRMatrixExtractAExt( A, 1, &A_ext_row_map );
        A_ext_data = hypre_CSRMatrixData(A_ext);
        A_ext_i    = hypre_CSRMatrixI(A_ext);
        A_ext_j    = hypre_CSRMatrixJ(A_ext);
        num_rows_A_ext = hypre_CSRMatrixNumRows(A_ext);
    }
    /*-----------------------------------------------------------------------
     *  Allocate marker array.
     *-----------------------------------------------------------------------*/

    B_marker = hypre_CTAlloc(HYPRE_Int, num_rows_diag_A+num_rows_A_ext );

    /*-----------------------------------------------------------------------
     *  Initialize some stuff.
     *-----------------------------------------------------------------------*/

    for ( i1=0; i1<num_rows_diag_A+num_rows_A_ext; ++i1 )
    {
        B_marker[i1] = -1;
    }


    hypre_ParAat_RowSizes(
        &C_diag_i, &C_offd_i, B_marker,
        A_diag_i, A_diag_j,
        A_offd_i, A_offd_j, A_col_map_offd,
        A_ext_i, A_ext_j, A_ext_row_map,
        &C_diag_size, &C_offd_size,
        num_rows_diag_A, num_cols_offd_A,
        num_rows_A_ext,
        first_col_diag_A, first_row_index_A
    );

#if 0
    /* debugging output: */
    hypre_printf("A_ext_row_map (%i):",num_rows_A_ext);
    for ( i1=0; i1<num_rows_A_ext; ++i1 ) hypre_printf(" %i",A_ext_row_map[i1] );
    hypre_printf("\nC_diag_i (%i):",C_diag_size);
    for ( i1=0; i1<=num_rows_diag_A; ++i1 ) hypre_printf(" %i",C_diag_i[i1] );
    hypre_printf("\nC_offd_i (%i):",C_offd_size);
    for ( i1=0; i1<=num_rows_diag_A; ++i1 ) hypre_printf(" %i",C_offd_i[i1] );
    hypre_printf("\n");
#endif

    /*-----------------------------------------------------------------------
     *  Allocate C_diag_data and C_diag_j arrays.
     *  Allocate C_offd_data and C_offd_j arrays.
     *-----------------------------------------------------------------------*/

    last_col_diag_C = first_row_index_A + num_rows_diag_A - 1;
    C_diag_data = hypre_CTAlloc(HYPRE_Complex, C_diag_size);
    C_diag_j    = hypre_CTAlloc(HYPRE_Int, C_diag_size);
    if (C_offd_size)
    {
        C_offd_data = hypre_CTAlloc(HYPRE_Complex, C_offd_size);
        C_offd_j    = hypre_CTAlloc(HYPRE_Int, C_offd_size);
    }

    /*-----------------------------------------------------------------------
     *  Second Pass: Fill in C_diag_data and C_diag_j.
     *  Second Pass: Fill in C_offd_data and C_offd_j.
     *-----------------------------------------------------------------------*/

    /*-----------------------------------------------------------------------
     *  Initialize some stuff.
     *-----------------------------------------------------------------------*/

    jj_count_diag = start_indexing;
    jj_count_offd = start_indexing;
    for ( i1=0; i1<num_rows_diag_A+num_rows_A_ext; ++i1 )
    {
        B_marker[i1] = -1;
    }

    /*-----------------------------------------------------------------------
     *  Loop over interior c-points.
     *-----------------------------------------------------------------------*/

    for (i1 = 0; i1 < num_rows_diag_A; i1++)
    {

        /*--------------------------------------------------------------------
         *  Create diagonal entry, C_{i1,i1}
         *--------------------------------------------------------------------*/

        B_marker[i1] = jj_count_diag;
        jj_row_begin_diag = jj_count_diag;
        jj_row_begin_offd = jj_count_offd;
        C_diag_data[jj_count_diag] = zero;
        C_diag_j[jj_count_diag] = i1;
        jj_count_diag++;

        /*-----------------------------------------------------------------
         *  Loop over entries in row i1 of A_offd.
         *-----------------------------------------------------------------*/

        /* There are 3 CSRMatrix or CSRBooleanMatrix objects here:
           ext*ext, ext*diag, and ext*offd belong to another processor.
           diag*offd and offd*diag don't count - never share a column by definition.
           So we have to do 4 cases:
           diag*ext, offd*ext, diag*diag, and offd*offd.
        */

        for (jj2 = A_diag_i[i1]; jj2 < A_diag_i[i1+1]; jj2++)
        {
            i2 = A_diag_j[jj2];
            a_entry = A_diag_data[jj2];

            /* diag*ext */
            /*-----------------------------------------------------------
             *  Loop over entries (columns) i3 in row i2 of (A_ext)^T
             *  That is, rows i3 having a column i2 of A_ext.
             *  For now, for each row i3 of A_ext we crudely check _all_
             *  columns to see whether one matches i2.
             *  For each entry (i2,i3) of (A_ext)^T, add A(i1,i2)*A(i3,i2)
             *  to C(i1,i3) .  This contributes to both the diag and offd
             *  blocks of C.
             *-----------------------------------------------------------*/

            for ( i3=0; i3<num_rows_A_ext; i3++ ) {
                for ( jj3=A_ext_i[i3]; jj3<A_ext_i[i3+1]; jj3++ ) {
                    if ( A_ext_j[jj3]==i2+first_col_diag_A ) {
                        /* row i3, column i2 of A_ext; or,
                           row i2, column i3 of (A_ext)^T */

                        a_b_product = a_entry * A_ext_data[jj3];

                        /*--------------------------------------------------------
                         *  Check B_marker to see that C_{i1,i3} has not already
                         *  been accounted for. If it has not, create a new entry.
                         *  If it has, add new contribution.
                         *--------------------------------------------------------*/

                        if ( A_ext_row_map[i3] < first_row_index_A ||
                                A_ext_row_map[i3] > last_col_diag_C ) { /* offd */
                            if (B_marker[i3+num_rows_diag_A] < jj_row_begin_offd) {
                                B_marker[i3+num_rows_diag_A] = jj_count_offd;
                                C_offd_data[jj_count_offd] = a_b_product;
                                C_offd_j[jj_count_offd] = i3;
                                jj_count_offd++;
                            }
                            else
                                C_offd_data[B_marker[i3+num_rows_diag_A]] += a_b_product;
                        }
                        else {                                              /* diag */
                            if (B_marker[i3+num_rows_diag_A] < jj_row_begin_diag) {
                                B_marker[i3+num_rows_diag_A] = jj_count_diag;
                                C_diag_data[jj_count_diag] = a_b_product;
                                C_diag_j[jj_count_diag] = i3-first_col_diag_A;
                                jj_count_diag++;
                            }
                            else
                                C_diag_data[B_marker[i3+num_rows_diag_A]] += a_b_product;
                        }
                    }
                }
            }
        }

        if (num_cols_offd_A)
        {
            for (jj2 = A_offd_i[i1]; jj2 < A_offd_i[i1+1]; jj2++)
            {
                i2 = A_offd_j[jj2];
                a_entry = A_offd_data[jj2];

                /* offd * ext */
                /*-----------------------------------------------------------
                 *  Loop over entries (columns) i3 in row i2 of (A_ext)^T
                 *  That is, rows i3 having a column i2 of A_ext.
                 *  For now, for each row i3 of A_ext we crudely check _all_
                 *  columns to see whether one matches i2.
                 *  For each entry (i2,i3) of (A_ext)^T, add A(i1,i2)*A(i3,i2)
                 *  to C(i1,i3) .  This contributes to both the diag and offd
                 *  blocks of C.
                 *-----------------------------------------------------------*/

                for ( i3=0; i3<num_rows_A_ext; i3++ ) {
                    for ( jj3=A_ext_i[i3]; jj3<A_ext_i[i3+1]; jj3++ ) {
                        if ( A_ext_j[jj3]==A_col_map_offd[i2] ) {
                            /* row i3, column i2 of A_ext; or,
                               row i2, column i3 of (A_ext)^T */

                            a_b_product = a_entry * A_ext_data[jj3];

                            /*--------------------------------------------------------
                             *  Check B_marker to see that C_{i1,i3} has not already
                             *  been accounted for. If it has not, create a new entry.
                             *  If it has, add new contribution.
                             *--------------------------------------------------------*/

                            if ( A_ext_row_map[i3] < first_row_index_A ||
                                    A_ext_row_map[i3] > last_col_diag_C ) { /* offd */
                                if (B_marker[i3+num_rows_diag_A] < jj_row_begin_offd) {
                                    B_marker[i3+num_rows_diag_A] = jj_count_offd;
                                    C_offd_data[jj_count_offd] = a_b_product;
                                    C_offd_j[jj_count_offd] = i3;
                                    jj_count_offd++;
                                }
                                else
                                    C_offd_data[B_marker[i3+num_rows_diag_A]] += a_b_product;
                            }
                            else {                                              /* diag */
                                if (B_marker[i3+num_rows_diag_A] < jj_row_begin_diag) {
                                    B_marker[i3+num_rows_diag_A] = jj_count_diag;
                                    C_diag_data[jj_count_diag] = a_b_product;
                                    C_diag_j[jj_count_diag] = i3-first_row_index_A;
                                    jj_count_diag++;
                                }
                                else
                                    C_diag_data[B_marker[i3+num_rows_diag_A]] += a_b_product;
                            }
                        }
                    }
                }
            }
        }

        /* diag * diag */
        /*-----------------------------------------------------------------
         *  Loop over entries (columns) i2 in row i1 of A_diag.
         *  For each such column we will find the contributions of the
         *  corresponding rows i2 of A^T to C=A*A^T .  Now we only look
         *  at the local part of A^T - with columns (rows of A) living
         *  on this processor.
         *-----------------------------------------------------------------*/

        for (jj2 = A_diag_i[i1]; jj2 < A_diag_i[i1+1]; jj2++)
        {
            i2 = A_diag_j[jj2];
            a_entry = A_diag_data[jj2];

            /*-----------------------------------------------------------
             *  Loop over entries (columns) i3 in row i2 of A^T
             *  That is, rows i3 having a column i2 of A (local part).
             *  For now, for each row i3 of A we crudely check _all_
             *  columns to see whether one matches i2.
             *  This i3-loop is for the diagonal block of A.
             *  It contributes to the diagonal block of C.
             *  For each entry (i2,i3) of A^T,  add A(i1,i2)*A(i3,i2)
             *  to C(i1,i3)
             *-----------------------------------------------------------*/
            for ( i3=0; i3<num_rows_diag_A; i3++ ) {
                for ( jj3=A_diag_i[i3]; jj3<A_diag_i[i3+1]; jj3++ ) {
                    if ( A_diag_j[jj3]==i2 ) {
                        /* row i3, column i2 of A; or,
                           row i2, column i3 of A^T */
                        a_b_product = a_entry * A_diag_data[jj3];

                        /*--------------------------------------------------------
                         *  Check B_marker to see that C_{i1,i3} has not already
                         *  been accounted for. If it has not, mark it and increment
                         *  counter.
                         *--------------------------------------------------------*/
                        if (B_marker[i3] < jj_row_begin_diag)
                        {
                            B_marker[i3] = jj_count_diag;
                            C_diag_data[jj_count_diag] = a_b_product;
                            C_diag_j[jj_count_diag] = i3;
                            jj_count_diag++;
                        }
                        else
                        {
                            C_diag_data[B_marker[i3]] += a_b_product;
                        }
                    }
                }
            } /* end of i3 loop */
        } /* end of third i2 loop */

        /* offd * offd */
        /*-----------------------------------------------------------
         *  Loop over offd columns i2 of A in A*A^T.  Then
         *  loop over offd entries (columns) i3 in row i2 of A^T
         *  That is, rows i3 having a column i2 of A (local part).
         *  For now, for each row i3 of A we crudely check _all_
         *  columns to see whether one matches i2.
         *  This i3-loop is for the off-diagonal block of A.
         *  It contributes to the diag block of C.
         *  For each entry (i2,i3) of A^T, add A*A^T to C
         *-----------------------------------------------------------*/
        if (num_cols_offd_A) {

            for (jj2 = A_offd_i[i1]; jj2 < A_offd_i[i1+1]; jj2++)
            {
                i2 = A_offd_j[jj2];
                a_entry = A_offd_data[jj2];

                for ( i3=0; i3<num_rows_diag_A; i3++ ) {
                    /* ... note that num_rows_diag_A == num_rows_offd_A */
                    for ( jj3=A_offd_i[i3]; jj3<A_offd_i[i3+1]; jj3++ ) {
                        if ( A_offd_j[jj3]==i2 ) {
                            /* row i3, column i2 of A; or,
                               row i2, column i3 of A^T */
                            a_b_product = a_entry * A_offd_data[jj3];

                            /*--------------------------------------------------------
                             *  Check B_marker to see that C_{i1,i3} has not already
                             *  been accounted for. If it has not, create a new entry.
                             *  If it has, add new contribution
                             *--------------------------------------------------------*/

                            if (B_marker[i3] < jj_row_begin_diag)
                            {
                                B_marker[i3] = jj_count_diag;
                                C_diag_data[jj_count_diag] = a_b_product;
                                C_diag_j[jj_count_diag] = i3;
                                jj_count_diag++;
                            }
                            else
                            {
                                C_diag_data[B_marker[i3]] += a_b_product;
                            }
                        }
                    }
                }  /* end of last i3 loop */
            }     /* end of if (num_cols_offd_A) */

        }        /* end of fourth and last i2 loop */
#if 0          /* debugging printout */
        hypre_printf("end of i1 loop: i1=%i jj_count_diag=%i\n", i1, jj_count_diag );
        hypre_printf("  C_diag_j=");
        for ( jj3=0; jj3<jj_count_diag; ++jj3) hypre_printf("%i ",C_diag_j[jj3]);
        hypre_printf("  C_diag_data=");
        for ( jj3=0; jj3<jj_count_diag; ++jj3) hypre_printf("%f ",C_diag_data[jj3]);
        hypre_printf("\n");
        hypre_printf("  C_offd_j=");
        for ( jj3=0; jj3<jj_count_offd; ++jj3) hypre_printf("%i ",C_offd_j[jj3]);
        hypre_printf("  C_offd_data=");
        for ( jj3=0; jj3<jj_count_offd; ++jj3) hypre_printf("%f ",C_offd_data[jj3]);
        hypre_printf("\n");
        hypre_printf( "  B_marker =" );
        for ( it=0; it<num_rows_diag_A+num_rows_A_ext; ++it )
            hypre_printf(" %i", B_marker[it] );
        hypre_printf( "\n" );
#endif
    }           /* end of i1 loop */

    /*-----------------------------------------------------------------------
     *  Delete 0-columns in C_offd, i.e. generate col_map_offd and reset
     *  C_offd_j.  Note that (with the indexing we have coming into this
     *  block) col_map_offd_C[i3]==A_ext_row_map[i3].
     *-----------------------------------------------------------------------*/

    for ( i=0; i<num_rows_diag_A+num_rows_A_ext; ++i )
        B_marker[i] = -1;
    for ( i=0; i<C_offd_size; i++ )
        B_marker[ C_offd_j[i] ] = -2;

    count = 0;
    for (i=0; i < num_rows_diag_A + num_rows_A_ext; i++) {
        if (B_marker[i] == -2) {
            B_marker[i] = count;
            count++;
        }
    }
    num_cols_offd_C = count;

    if (num_cols_offd_C) {
        col_map_offd_C = hypre_CTAlloc(HYPRE_Int,num_cols_offd_C);
        new_C_offd_j = hypre_CTAlloc(HYPRE_Int,C_offd_size);
        /* ... a bit big, but num_cols_offd_C is too small.  It might be worth
           computing the correct size, which is sum( no. columns in row i, over all rows i )
        */

        for (i=0; i < C_offd_size; i++) {
            new_C_offd_j[i] = B_marker[C_offd_j[i]];
            col_map_offd_C[ new_C_offd_j[i] ] = A_ext_row_map[ C_offd_j[i] ];
        }

        hypre_TFree(C_offd_j);
        C_offd_j = new_C_offd_j;

    }

    /*----------------------------------------------------------------
     * Create C
     *----------------------------------------------------------------*/

    C = hypre_ParCSRMatrixCreate(comm, n_rows_A, n_rows_A, row_starts_A,
                                 row_starts_A, num_cols_offd_C,
                                 C_diag_size, C_offd_size);

    /* Note that C does not own the partitionings */
    hypre_ParCSRMatrixSetRowStartsOwner(C,0);
    hypre_ParCSRMatrixSetColStartsOwner(C,0);

    C_diag = hypre_ParCSRMatrixDiag(C);
    hypre_CSRMatrixData(C_diag) = C_diag_data;
    hypre_CSRMatrixI(C_diag) = C_diag_i;
    hypre_CSRMatrixJ(C_diag) = C_diag_j;

    if (num_cols_offd_C)
    {
        C_offd = hypre_ParCSRMatrixOffd(C);
        hypre_CSRMatrixData(C_offd) = C_offd_data;
        hypre_CSRMatrixI(C_offd) = C_offd_i;
        hypre_CSRMatrixJ(C_offd) = C_offd_j;
        hypre_ParCSRMatrixOffd(C) = C_offd;
        hypre_ParCSRMatrixColMapOffd(C) = col_map_offd_C;

    }
    else
        hypre_TFree(C_offd_i);

    /*-----------------------------------------------------------------------
     *  Free B_ext and marker array.
     *-----------------------------------------------------------------------*/

    if (num_cols_offd_A)
    {
        hypre_CSRMatrixDestroy(A_ext);
        A_ext = NULL;
    }
    hypre_TFree(B_marker);
    if ( num_rows_diag_A != n_rows_A )
        hypre_TFree(A_ext_row_map);

    return C;

}
HYPRE_Int
main( HYPRE_Int   argc,
      char *argv[] )
{
   hypre_CSRMatrix     *matrix;
   hypre_CSRMatrix     *matrix1;
   hypre_ParCSRMatrix  *par_matrix;
   hypre_Vector        *x_local;
   hypre_Vector        *y_local;
   hypre_Vector        *y2_local;
   hypre_ParVector     *x;
   hypre_ParVector     *x2;
   hypre_ParVector     *y;
   hypre_ParVector     *y2;

   HYPRE_Int          vecstride_x, idxstride_x, vecstride_y, idxstride_y;
   HYPRE_Int          num_procs, my_id;
   HYPRE_Int		local_size;
   HYPRE_Int          num_vectors;
   HYPRE_Int		global_num_rows, global_num_cols;
   HYPRE_Int		first_index;
   HYPRE_Int 		i, j, ierr=0;
   double 	*data, *data2;
   HYPRE_Int 		*row_starts, *col_starts;
   char		file_name[80];
   /* Initialize MPI */
   hypre_MPI_Init(&argc, &argv);

   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &num_procs);
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &my_id);

   hypre_printf(" my_id: %d num_procs: %d\n", my_id, num_procs);
 
   if (my_id == 0) 
   {
	matrix = hypre_CSRMatrixRead("input");
   	hypre_printf(" read input\n");
   }
   row_starts = NULL;
   col_starts = NULL; 
   par_matrix = hypre_CSRMatrixToParCSRMatrix(hypre_MPI_COMM_WORLD, matrix, 
		row_starts, col_starts);
   hypre_printf(" converted\n");

   matrix1 = hypre_ParCSRMatrixToCSRMatrixAll(par_matrix);

   hypre_sprintf(file_name,"matrix1.%d",my_id);

   if (matrix1) hypre_CSRMatrixPrint(matrix1, file_name);

   hypre_ParCSRMatrixPrint(par_matrix,"matrix");
   hypre_ParCSRMatrixPrintIJ(par_matrix,0,0,"matrixIJ");

   par_matrix = hypre_ParCSRMatrixRead(hypre_MPI_COMM_WORLD,"matrix");

   global_num_cols = hypre_ParCSRMatrixGlobalNumCols(par_matrix);
   hypre_printf(" global_num_cols %d\n", global_num_cols);
   global_num_rows = hypre_ParCSRMatrixGlobalNumRows(par_matrix);
 
   col_starts = hypre_ParCSRMatrixColStarts(par_matrix);
   first_index = col_starts[my_id];
   local_size = col_starts[my_id+1] - first_index;

   num_vectors = 3;

   x = hypre_ParMultiVectorCreate( hypre_MPI_COMM_WORLD, global_num_cols,
                                         col_starts, num_vectors );
   hypre_ParVectorSetPartitioningOwner(x,0);
   hypre_ParVectorInitialize(x);
   x_local = hypre_ParVectorLocalVector(x);
   data = hypre_VectorData(x_local);
   vecstride_x = hypre_VectorVectorStride(x_local);
   idxstride_x = hypre_VectorIndexStride(x_local);
   for ( j=0; j<num_vectors; ++j )
      for (i=0; i < local_size; i++)
         data[i*idxstride_x + j*vecstride_x] = first_index+i+1 + 100*j;

   x2 = hypre_ParMultiVectorCreate( hypre_MPI_COMM_WORLD, global_num_cols,
                                    col_starts, num_vectors );
   hypre_ParVectorSetPartitioningOwner(x2,0);
   hypre_ParVectorInitialize(x2);
   hypre_ParVectorSetConstantValues(x2,2.0);

   row_starts = hypre_ParCSRMatrixRowStarts(par_matrix);
   first_index = row_starts[my_id];
   local_size = row_starts[my_id+1] - first_index;
   y = hypre_ParMultiVectorCreate( hypre_MPI_COMM_WORLD, global_num_rows,
                                   row_starts, num_vectors );
   hypre_ParVectorSetPartitioningOwner(y,0);
   hypre_ParVectorInitialize(y);
   y_local = hypre_ParVectorLocalVector(y);

   y2 = hypre_ParMultiVectorCreate( hypre_MPI_COMM_WORLD, global_num_rows,
                                    row_starts, num_vectors );
   hypre_ParVectorSetPartitioningOwner(y2,0);
   hypre_ParVectorInitialize(y2);
   y2_local = hypre_ParVectorLocalVector(y2);
   data2 = hypre_VectorData(y2_local);
   vecstride_y = hypre_VectorVectorStride(y2_local);
   idxstride_y = hypre_VectorIndexStride(y2_local);
 
   for ( j=0; j<num_vectors; ++j )
      for (i=0; i < local_size; i++)
         data2[i*idxstride_y+j*vecstride_y] = first_index+i+1 + 100*j;

   hypre_ParVectorSetConstantValues(y,1.0);
   hypre_printf(" initialized vectors, first_index=%i\n", first_index);

   hypre_ParVectorPrint(x, "vectorx");
   hypre_ParVectorPrint(y, "vectory");

   hypre_MatvecCommPkgCreate(par_matrix);

   hypre_ParCSRMatrixMatvec ( 1.0, par_matrix, x, 1.0, y);
   hypre_printf(" did matvec\n");

   hypre_ParVectorPrint(y, "result");

   ierr = hypre_ParCSRMatrixMatvecT ( 1.0, par_matrix, y2, 1.0, x2);
   hypre_printf(" did matvecT %d\n", ierr);

   hypre_ParVectorPrint(x2, "transp"); 

   hypre_ParCSRMatrixDestroy(par_matrix);
   hypre_ParVectorDestroy(x);
   hypre_ParVectorDestroy(x2);
   hypre_ParVectorDestroy(y);
   hypre_ParVectorDestroy(y2);
   if (my_id == 0) hypre_CSRMatrixDestroy(matrix);
   if (matrix1) hypre_CSRMatrixDestroy(matrix1);

   /* Finalize MPI */
   hypre_MPI_Finalize();

   return 0;
}
Exemple #14
0
HYPRE_Int main( HYPRE_Int   argc, char *argv[] )
{
   hypre_ParCSRMatrix      *par_matrix, *g_matrix, **submatrices;
   hypre_CSRMatrix         *A_diag, *A_offd;
   hypre_CSRBlockMatrix    *diag;
   hypre_CSRBlockMatrix    *offd;
   hypre_ParCSRBlockMatrix *par_blk_matrix, *par_blk_matrixT, *rap_matrix;
   hypre_Vector        *x_local;
   hypre_Vector        *y_local;
   hypre_ParVector     *x;
   hypre_ParVector     *y;
   HYPRE_Solver        gmres_solver, precon;
   HYPRE_Int                 *diag_i, *diag_j, *offd_i, *offd_j;
   HYPRE_Int                 *diag_i2, *diag_j2, *offd_i2, *offd_j2;
   double              *diag_d, *diag_d2, *offd_d, *offd_d2;
   HYPRE_Int		       mypid, local_size, nprocs;
   HYPRE_Int		       global_num_rows, global_num_cols, num_cols_offd;
   HYPRE_Int		       num_nonzeros_diag, num_nonzeros_offd, *colMap;
   HYPRE_Int 		       ii, jj, kk, row, col, nnz, *indices, *colMap2;
   double 	       *data, ddata, *y_data;
   HYPRE_Int 		       *row_starts, *col_starts, *rstarts, *cstarts;
   HYPRE_Int 		       *row_starts2, *col_starts2;
   HYPRE_Int                 block_size=2, bnnz=4, *index_set;
   FILE                *fp;

   /* --------------------------------------------- */
   /* Initialize MPI                                */
   /* --------------------------------------------- */

   hypre_MPI_Init(&argc, &argv);
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &mypid);
   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &nprocs);

   /* build and fetch matrix */
   MyBuildParLaplacian9pt((HYPRE_ParCSRMatrix *) &par_matrix);
   global_num_rows = hypre_ParCSRMatrixGlobalNumRows(par_matrix);
   global_num_cols = hypre_ParCSRMatrixGlobalNumCols(par_matrix);
   row_starts = hypre_ParCSRMatrixRowStarts(par_matrix);
   col_starts = hypre_ParCSRMatrixColStarts(par_matrix);
   A_diag = hypre_ParCSRMatrixDiag(par_matrix);
   A_offd = hypre_ParCSRMatrixOffd(par_matrix);
   num_cols_offd     = hypre_CSRMatrixNumCols(A_offd);
   num_nonzeros_diag = hypre_CSRMatrixNumNonzeros(A_diag);
   num_nonzeros_offd = hypre_CSRMatrixNumNonzeros(A_offd);

   /* --------------------------------------------- */
   /* build vector and apply matvec                 */
   /* --------------------------------------------- */

   x = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_num_cols,col_starts);
   hypre_ParVectorSetPartitioningOwner(x,0);
   hypre_ParVectorInitialize(x);
   x_local = hypre_ParVectorLocalVector(x);
   data    = hypre_VectorData(x_local);
   local_size = col_starts[mypid+1] - col_starts[mypid];
   for (ii = 0; ii < local_size; ii++) data[ii] = 1.0;
   y = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD,global_num_rows,row_starts);
   hypre_ParVectorSetPartitioningOwner(y,0);
   hypre_ParVectorInitialize(y);
   hypre_ParCSRMatrixMatvec (1.0, par_matrix, x, 0.0, y);
   ddata = hypre_ParVectorInnerProd(y, y);
   if (mypid == 0) hypre_printf("y inner product = %e\n", ddata);
   hypre_ParVectorDestroy(x);
   hypre_ParVectorDestroy(y);

   /* --------------------------------------------- */
   /* build block matrix                            */
   /* --------------------------------------------- */

   rstarts = hypre_CTAlloc(HYPRE_Int, nprocs+1);
   for (ii = 0; ii <= nprocs; ii++) rstarts[ii] = row_starts[ii];
   cstarts = hypre_CTAlloc(HYPRE_Int, nprocs+1);
   for (ii = 0; ii <= nprocs; ii++) cstarts[ii] = col_starts[ii];

   par_blk_matrix = hypre_ParCSRBlockMatrixCreate(hypre_MPI_COMM_WORLD,block_size,
                          global_num_rows, global_num_cols, rstarts,
                          cstarts, num_cols_offd, num_nonzeros_diag,
                          num_nonzeros_offd);
   colMap  = hypre_ParCSRMatrixColMapOffd(par_matrix);
   if (num_cols_offd > 0) colMap2 = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
   else                   colMap2 = NULL;
   for (ii = 0; ii < num_cols_offd; ii++) colMap2[ii] = colMap[ii];
   hypre_ParCSRBlockMatrixColMapOffd(par_blk_matrix) = colMap2;
   diag_i = hypre_CSRMatrixI(hypre_ParCSRMatrixDiag(par_matrix));
   diag_j = hypre_CSRMatrixJ(hypre_ParCSRMatrixDiag(par_matrix));
   diag_d = hypre_CSRMatrixData(hypre_ParCSRMatrixDiag(par_matrix));
   diag = hypre_ParCSRBlockMatrixDiag(par_blk_matrix);
   diag_i2 = hypre_CTAlloc(HYPRE_Int, local_size+1);
   diag_j2 = hypre_CTAlloc(HYPRE_Int, num_nonzeros_diag);
   diag_d2 = hypre_CTAlloc(double, num_nonzeros_diag*bnnz);
   for (ii = 0; ii <= local_size; ii++) diag_i2[ii] = diag_i[ii];
   for (ii = 0; ii < num_nonzeros_diag; ii++) diag_j2[ii] = diag_j[ii];
   hypre_CSRBlockMatrixI(diag) = diag_i2;
   hypre_CSRBlockMatrixJ(diag) = diag_j2;
   for (ii = 0; ii < num_nonzeros_diag; ii++)
   {
      for (jj = 0; jj < block_size; jj++)
         for (kk = 0; kk < block_size; kk++)
         {
            if (jj <= kk)
               diag_d2[ii*bnnz+jj*block_size+kk] = diag_d[ii];
            else
               diag_d2[ii*bnnz+jj*block_size+kk] = 0.0;
         }
   }
   hypre_CSRBlockMatrixData(diag) = diag_d2;

   offd_i = hypre_CSRMatrixI(hypre_ParCSRMatrixOffd(par_matrix));
   offd_j = hypre_CSRMatrixJ(hypre_ParCSRMatrixOffd(par_matrix));
   offd_d = hypre_CSRMatrixData(hypre_ParCSRMatrixOffd(par_matrix));
   offd   = hypre_ParCSRBlockMatrixOffd(par_blk_matrix);
   offd_i2 = hypre_CTAlloc(HYPRE_Int, local_size+1);
   for (ii = 0; ii <= local_size; ii++) offd_i2[ii] = offd_i[ii];
   hypre_CSRBlockMatrixI(offd) = offd_i2;
   if (num_cols_offd)
   {
      offd_j2 = hypre_CTAlloc(HYPRE_Int, num_nonzeros_offd);
      for (ii = 0; ii < num_nonzeros_offd; ii++) offd_j2[ii] = offd_j[ii];
      hypre_CSRBlockMatrixJ(offd) = offd_j2;
      offd_d2 = hypre_CTAlloc(double, num_nonzeros_offd*bnnz);
      for (ii = 0; ii < num_nonzeros_offd; ii++)
      {
         for (jj = 0; jj < block_size; jj++)
            for (kk = 0; kk < block_size; kk++)
            {
               if (jj <= kk)
                  offd_d2[ii*bnnz+jj*block_size+kk] = offd_d[ii];
               else
                  offd_d2[ii*bnnz+jj*block_size+kk] = 0.0;
            }
      }
      hypre_CSRBlockMatrixData(offd) = offd_d2;
   }
   else
   {
Exemple #15
0
HYPRE_Int AmgCGCGraphAssemble (hypre_ParCSRMatrix *S,HYPRE_Int *vertexrange,HYPRE_Int *CF_marker,HYPRE_Int *CF_marker_offd,HYPRE_Int coarsen_type,
			 HYPRE_IJMatrix *ijG)
/* assemble a graph representing the connections between the grids
 * ================================================================================================
 * S : the strength matrix
 * vertexrange : the parallel layout of the candidate coarse grid vertices
 * CF_marker, CF_marker_offd : the coarse/fine markers 
 * coarsen_type : the coarsening type
 * ijG : the created graph
 * ================================================================================================*/
{
  HYPRE_Int ierr=0;
  HYPRE_Int i,/* ii,*/ip,j,jj,m,n,p;
  HYPRE_Int mpisize,mpirank;

  HYPRE_Real weight;

  MPI_Comm comm = hypre_ParCSRMatrixComm(S);
/*   hypre_MPI_Status status; */

  HYPRE_IJMatrix ijmatrix;
  hypre_CSRMatrix *S_diag = hypre_ParCSRMatrixDiag (S);
  hypre_CSRMatrix *S_offd = hypre_ParCSRMatrixOffd (S);
/*   HYPRE_Int *S_i = hypre_CSRMatrixI(S_diag); */
/*   HYPRE_Int *S_j = hypre_CSRMatrixJ(S_diag); */
  HYPRE_Int *S_offd_i = hypre_CSRMatrixI(S_offd);
  HYPRE_Int *S_offd_j = NULL;
  HYPRE_Int num_variables = hypre_CSRMatrixNumRows (S_diag);
  HYPRE_Int num_cols_offd = hypre_CSRMatrixNumCols (S_offd);
  HYPRE_Int *col_map_offd = hypre_ParCSRMatrixColMapOffd (S);
  HYPRE_Int pointrange_start,pointrange_end;
  HYPRE_Int *pointrange,*pointrange_nonlocal,*pointrange_strong=NULL;
  HYPRE_Int vertexrange_start,vertexrange_end;
  HYPRE_Int *vertexrange_strong= NULL;
  HYPRE_Int *vertexrange_nonlocal;
  HYPRE_Int num_recvs,num_recvs_strong;
  HYPRE_Int *recv_procs,*recv_procs_strong=NULL;
  HYPRE_Int /* *zeros,*rownz,*/*rownz_diag,*rownz_offd;
  HYPRE_Int nz;
  HYPRE_Int nlocal;
  HYPRE_Int one=1;

  hypre_ParCSRCommPkg    *comm_pkg    = hypre_ParCSRMatrixCommPkg (S);
 

  hypre_MPI_Comm_size (comm,&mpisize);
  hypre_MPI_Comm_rank (comm,&mpirank);

  /* determine neighbor processors */
  num_recvs = hypre_ParCSRCommPkgNumRecvs (comm_pkg);
  recv_procs = hypre_ParCSRCommPkgRecvProcs (comm_pkg);
  pointrange = hypre_ParCSRMatrixRowStarts (S);
  pointrange_nonlocal = hypre_CTAlloc  (HYPRE_Int, 2*num_recvs);
  vertexrange_nonlocal = hypre_CTAlloc (HYPRE_Int, 2*num_recvs);
#ifdef HYPRE_NO_GLOBAL_PARTITION
  {
    HYPRE_Int num_sends  =  hypre_ParCSRCommPkgNumSends (comm_pkg);
    HYPRE_Int *send_procs =  hypre_ParCSRCommPkgSendProcs (comm_pkg);
    HYPRE_Int *int_buf_data   = hypre_CTAlloc (HYPRE_Int,4*num_sends);
    HYPRE_Int *int_buf_data2  = int_buf_data + 2*num_sends;
    hypre_MPI_Request *sendrequest,*recvrequest;

    nlocal = vertexrange[1] - vertexrange[0];
    pointrange_start = pointrange[0];
    pointrange_end   = pointrange[1];
    vertexrange_start = vertexrange[0];
    vertexrange_end   = vertexrange[1];
    sendrequest = hypre_CTAlloc (hypre_MPI_Request,2*(num_sends+num_recvs));
    recvrequest = sendrequest+2*num_sends;

    for (i=0;i<num_recvs;i++) {
      hypre_MPI_Irecv (pointrange_nonlocal+2*i,2,HYPRE_MPI_INT,recv_procs[i],tag_pointrange,comm,&recvrequest[2*i]);
      hypre_MPI_Irecv (vertexrange_nonlocal+2*i,2,HYPRE_MPI_INT,recv_procs[i],tag_vertexrange,comm,&recvrequest[2*i+1]);
    }
    for (i=0;i<num_sends;i++) {
      int_buf_data[2*i] = pointrange_start;
      int_buf_data[2*i+1] = pointrange_end;
      int_buf_data2[2*i] = vertexrange_start;
      int_buf_data2[2*i+1] = vertexrange_end;
      hypre_MPI_Isend (int_buf_data+2*i,2,HYPRE_MPI_INT,send_procs[i],tag_pointrange,comm,&sendrequest[2*i]);
      hypre_MPI_Isend (int_buf_data2+2*i,2,HYPRE_MPI_INT,send_procs[i],tag_vertexrange,comm,&sendrequest[2*i+1]);
    }
    hypre_MPI_Waitall (2*(num_sends+num_recvs),sendrequest,hypre_MPI_STATUSES_IGNORE);
    hypre_TFree (int_buf_data);
    hypre_TFree (sendrequest);
  }
#else
  nlocal = vertexrange[mpirank+1] - vertexrange[mpirank];
  pointrange_start = pointrange[mpirank];
  pointrange_end   = pointrange[mpirank+1];
  vertexrange_start = vertexrange[mpirank];
  vertexrange_end   = vertexrange[mpirank+1];
  for (i=0;i<num_recvs;i++) {
    pointrange_nonlocal[2*i] = pointrange[recv_procs[i]];
    pointrange_nonlocal[2*i+1] = pointrange[recv_procs[i]+1];
    vertexrange_nonlocal[2*i] = vertexrange[recv_procs[i]];
    vertexrange_nonlocal[2*i+1] = vertexrange[recv_procs[i]+1];
  }  
#endif
  /* now we have the array recv_procs. However, it may contain too many entries as it is 
     inherited from A. We now have to determine the subset which contains only the
     strongly connected neighbors */
  if (num_cols_offd) {
    S_offd_j = hypre_CSRMatrixJ(S_offd);
  
    recv_procs_strong = hypre_CTAlloc (HYPRE_Int,num_recvs);
    memset (recv_procs_strong,0,num_recvs*sizeof(HYPRE_Int));
    /* don't forget to shorten the pointrange and vertexrange arrays accordingly */
    pointrange_strong = hypre_CTAlloc (HYPRE_Int,2*num_recvs);
    memset (pointrange_strong,0,2*num_recvs*sizeof(HYPRE_Int));
    vertexrange_strong = hypre_CTAlloc (HYPRE_Int,2*num_recvs);
    memset (vertexrange_strong,0,2*num_recvs*sizeof(HYPRE_Int));
    
    for (i=0;i<num_variables;i++)
      for (j=S_offd_i[i];j<S_offd_i[i+1];j++) {
	jj = col_map_offd[S_offd_j[j]];
	for (p=0;p<num_recvs;p++) /* S_offd_j is NOT sorted! */
	  if (jj >= pointrange_nonlocal[2*p] && jj < pointrange_nonlocal[2*p+1]) break;
#if 0
	hypre_printf ("Processor %d, remote point %d on processor %d\n",mpirank,jj,recv_procs[p]);
#endif
	recv_procs_strong [p]=1;
      }
    
    for (p=0,num_recvs_strong=0;p<num_recvs;p++) {
      if (recv_procs_strong[p]) {
	recv_procs_strong[num_recvs_strong]=recv_procs[p];
	pointrange_strong[2*num_recvs_strong] = pointrange_nonlocal[2*p];
	pointrange_strong[2*num_recvs_strong+1] = pointrange_nonlocal[2*p+1];
	vertexrange_strong[2*num_recvs_strong] = vertexrange_nonlocal[2*p];
	vertexrange_strong[2*num_recvs_strong+1] = vertexrange_nonlocal[2*p+1];
	num_recvs_strong++;
      }
    }
  }
  else num_recvs_strong=0;

  hypre_TFree (pointrange_nonlocal);
  hypre_TFree (vertexrange_nonlocal);

  rownz_diag = hypre_CTAlloc (HYPRE_Int,2*nlocal);
  rownz_offd = rownz_diag + nlocal;
  for (p=0,nz=0;p<num_recvs_strong;p++) {
    nz += vertexrange_strong[2*p+1]-vertexrange_strong[2*p];
  }
  for (m=0;m<nlocal;m++) {
    rownz_diag[m]=nlocal-1;
    rownz_offd[m]=nz;
  }
 
  
 
  HYPRE_IJMatrixCreate(comm, vertexrange_start, vertexrange_end-1, vertexrange_start, vertexrange_end-1, &ijmatrix);
  HYPRE_IJMatrixSetObjectType(ijmatrix, HYPRE_PARCSR);
  HYPRE_IJMatrixSetDiagOffdSizes (ijmatrix, rownz_diag, rownz_offd);
  HYPRE_IJMatrixInitialize(ijmatrix);
  hypre_TFree (rownz_diag);

  /* initialize graph */
  weight = -1;
  for (m=vertexrange_start;m<vertexrange_end;m++) {
    for (p=0;p<num_recvs_strong;p++) {
      for (n=vertexrange_strong[2*p];n<vertexrange_strong[2*p+1];n++) {
	ierr = HYPRE_IJMatrixAddToValues (ijmatrix,1,&one,&m,&n,&weight);
#if 0
	if (ierr) hypre_printf ("Processor %d: error %d while initializing graphs at (%d, %d)\n",mpirank,ierr,m,n);
#endif
      }
    }
  }
  
  /* weight graph */
  for (i=0;i<num_variables;i++) {

    for (j=S_offd_i[i];j<S_offd_i[i+1];j++) {
      jj = S_offd_j[j]; /* jj is not a global index!!! */
      /* determine processor */
      for (p=0;p<num_recvs_strong;p++) 
	if (col_map_offd[jj] >= pointrange_strong[2*p] && col_map_offd[jj] < pointrange_strong[2*p+1]) break;
      ip=recv_procs_strong[p];
      /* loop over all coarse grids constructed on this processor domain */
      for (m=vertexrange_start;m<vertexrange_end;m++) {
	/* loop over all coarse grids constructed on neighbor processor domain */
	for (n=vertexrange_strong[2*p];n<vertexrange_strong[2*p+1];n++) {
	  /* coarse grid counting inside gridpartition->local/gridpartition->nonlocal starts with one
	     while counting inside range starts with zero */
	  if (CF_marker[i]-1==m && CF_marker_offd[jj]-1==n)
	    /* C-C-coupling */
	    weight = -1;
	  else if ( (CF_marker[i]-1==m && (CF_marker_offd[jj]==0 || CF_marker_offd[jj]-1!=n) )
		   || ( (CF_marker[i]==0 || CF_marker[i]-1!=m) && CF_marker_offd[jj]-1==n ) )
	    /* C-F-coupling */
	    weight = 0;
	  else weight = -8; /* F-F-coupling */
	  ierr = HYPRE_IJMatrixAddToValues (ijmatrix,1,&one,&m,&n,&weight);
#if 0
	  if (ierr) hypre_printf ("Processor %d: error %d while adding %lf to entry (%d, %d)\n",mpirank,ierr,weight,m,n);
#endif
	}
      }
    }
  }

  /* assemble */
  HYPRE_IJMatrixAssemble (ijmatrix);
  /*if (num_recvs_strong) {*/
    hypre_TFree (recv_procs_strong); 
    hypre_TFree (pointrange_strong);
    hypre_TFree (vertexrange_strong);
  /*} */

  *ijG = ijmatrix;
  return (ierr);
}
Exemple #16
0
HYPRE_Int
hypre_BoomerAMGCreateNodalA(hypre_ParCSRMatrix    *A,
                            HYPRE_Int                    num_functions,
                            HYPRE_Int                   *dof_func,
                            HYPRE_Int                    option,
                            HYPRE_Int                    diag_option,     
                            hypre_ParCSRMatrix   **AN_ptr)
{
   MPI_Comm 	       comm            = hypre_ParCSRMatrixComm(A);
   hypre_CSRMatrix    *A_diag          = hypre_ParCSRMatrixDiag(A);
   HYPRE_Int                *A_diag_i        = hypre_CSRMatrixI(A_diag);
   double             *A_diag_data     = hypre_CSRMatrixData(A_diag);


   hypre_CSRMatrix    *A_offd          = hypre_ParCSRMatrixOffd(A);
   HYPRE_Int                *A_offd_i        = hypre_CSRMatrixI(A_offd);
   double             *A_offd_data     = hypre_CSRMatrixData(A_offd);
   HYPRE_Int                *A_diag_j        = hypre_CSRMatrixJ(A_diag);
   HYPRE_Int                *A_offd_j        = hypre_CSRMatrixJ(A_offd);

   HYPRE_Int 		      *row_starts      = hypre_ParCSRMatrixRowStarts(A);
   HYPRE_Int 		      *col_map_offd    = hypre_ParCSRMatrixColMapOffd(A);
   HYPRE_Int                 num_variables   = hypre_CSRMatrixNumRows(A_diag);
   HYPRE_Int 		       num_nonzeros_offd = 0;
   HYPRE_Int 		       num_cols_offd = 0;
                  
   hypre_ParCSRMatrix *AN;
   hypre_CSRMatrix    *AN_diag;
   HYPRE_Int                *AN_diag_i;
   HYPRE_Int                *AN_diag_j;
   double             *AN_diag_data; 
   hypre_CSRMatrix    *AN_offd;
   HYPRE_Int                *AN_offd_i;
   HYPRE_Int                *AN_offd_j;
   double             *AN_offd_data; 
   HYPRE_Int		      *col_map_offd_AN;
   HYPRE_Int		      *new_col_map_offd;
   HYPRE_Int		      *row_starts_AN;
   HYPRE_Int		       AN_num_nonzeros_diag = 0;
   HYPRE_Int		       AN_num_nonzeros_offd = 0;
   HYPRE_Int		       num_cols_offd_AN;
   HYPRE_Int		       new_num_cols_offd;
                 
   hypre_ParCSRCommPkg *comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   HYPRE_Int		       num_sends;
   HYPRE_Int		       num_recvs;
   HYPRE_Int		      *send_procs;
   HYPRE_Int		      *send_map_starts;
   HYPRE_Int		      *send_map_elmts;
   HYPRE_Int		      *new_send_map_elmts;
   HYPRE_Int		      *recv_procs;
   HYPRE_Int		      *recv_vec_starts;

   hypre_ParCSRCommPkg *comm_pkg_AN;
   HYPRE_Int		      *send_procs_AN;
   HYPRE_Int		      *send_map_starts_AN;
   HYPRE_Int		      *send_map_elmts_AN;
   HYPRE_Int		      *recv_procs_AN;
   HYPRE_Int		      *recv_vec_starts_AN;

   HYPRE_Int                 i, j, k, k_map;
                      
   HYPRE_Int                 ierr = 0;

   HYPRE_Int		       index, row;
   HYPRE_Int		       start_index;
   HYPRE_Int		       num_procs;
   HYPRE_Int		       node, cnt;
   HYPRE_Int		       mode;
   HYPRE_Int		       new_send_elmts_size;

   HYPRE_Int		       global_num_nodes;
   HYPRE_Int		       num_nodes;
   HYPRE_Int		       num_fun2;
   HYPRE_Int		      *map_to_node;
   HYPRE_Int		      *map_to_map;
   HYPRE_Int		      *counter;

   double sum;
   double *data;
   

   hypre_MPI_Comm_size(comm,&num_procs);

   if (!comm_pkg)
   {
      hypre_MatvecCommPkgCreate(A);
      comm_pkg = hypre_ParCSRMatrixCommPkg(A);
   }

   mode = fabs(option);

   comm_pkg_AN = NULL;
   col_map_offd_AN = NULL;

#ifdef HYPRE_NO_GLOBAL_PARTITION
   row_starts_AN = hypre_CTAlloc(HYPRE_Int, 2);

   for (i=0; i < 2; i++)
   {
      row_starts_AN[i] = row_starts[i]/num_functions;
      if (row_starts_AN[i]*num_functions < row_starts[i])
      {
	  hypre_printf("nodes not properly aligned or incomplete info!\n");
	  return (87);
      }
   }
   
   global_num_nodes = hypre_ParCSRMatrixGlobalNumRows(A)/num_functions;


#else
   row_starts_AN = hypre_CTAlloc(HYPRE_Int, num_procs+1);

  for (i=0; i < num_procs+1; i++)
   {
      row_starts_AN[i] = row_starts[i]/num_functions;
      if (row_starts_AN[i]*num_functions < row_starts[i])
      {
	  hypre_printf("nodes not properly aligned or incomplete info!\n");
	  return (87);
      }
   }
   
   global_num_nodes = row_starts_AN[num_procs];

#endif

 
   num_nodes =  num_variables/num_functions;
   num_fun2 = num_functions*num_functions;

   map_to_node = hypre_CTAlloc(HYPRE_Int, num_variables);
   AN_diag_i = hypre_CTAlloc(HYPRE_Int, num_nodes+1);
   counter = hypre_CTAlloc(HYPRE_Int, num_nodes);
   for (i=0; i < num_variables; i++)
      map_to_node[i] = i/num_functions;
   for (i=0; i < num_nodes; i++)
      counter[i] = -1;

   AN_num_nonzeros_diag = 0;
   row = 0;
   for (i=0; i < num_nodes; i++)
   {
      AN_diag_i[i] = AN_num_nonzeros_diag;
      for (j=0; j < num_functions; j++)
      {
	 for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	 {
	    k_map = map_to_node[A_diag_j[k]];
	    if (counter[k_map] < i)
	    {
	       counter[k_map] = i;
	       AN_num_nonzeros_diag++;
	    }
	 }
	 row++;
      }
   }
   AN_diag_i[num_nodes] = AN_num_nonzeros_diag;

   AN_diag_j = hypre_CTAlloc(HYPRE_Int, AN_num_nonzeros_diag);	
   AN_diag_data = hypre_CTAlloc(double, AN_num_nonzeros_diag);	

   AN_diag = hypre_CSRMatrixCreate(num_nodes,num_nodes,AN_num_nonzeros_diag);
   hypre_CSRMatrixI(AN_diag) = AN_diag_i;
   hypre_CSRMatrixJ(AN_diag) = AN_diag_j;
   hypre_CSRMatrixData(AN_diag) = AN_diag_data;
       
   for (i=0; i < num_nodes; i++)
      counter[i] = -1;
   index = 0;
   start_index = 0;
   row = 0;

   switch (mode)
   {
      case 1:  /* frobenius norm */
      {
         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             AN_diag_data[index] = A_diag_data[k]*A_diag_data[k];
	             index++;
	          }
	          else
	          {
	             AN_diag_data[counter[k_map]] += 
				A_diag_data[k]*A_diag_data[k];
	          }
	       }
	       row++;
            }
            start_index = index;
         }
         for (i=0; i < AN_num_nonzeros_diag; i++)
            AN_diag_data[i] = sqrt(AN_diag_data[i]);

      }
      break;
      
      case 2:  /* sum of abs. value of all elements in each block */
      {
         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             AN_diag_data[index] = fabs(A_diag_data[k]);
	             index++;
	          }
	          else
	          {
	             AN_diag_data[counter[k_map]] += fabs(A_diag_data[k]);
	          }
	       }
	       row++;
            }
            start_index = index;
         }
         for (i=0; i < AN_num_nonzeros_diag; i++)
            AN_diag_data[i] /= num_fun2;
      }
      break;

      case 3:  /* largest element of each block (sets true value - not abs. value) */
      {

         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
      	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
      	       {
      	          k_map = map_to_node[A_diag_j[k]];
      	          if (counter[k_map] < start_index)
      	          {
      	             counter[k_map] = index;
      	             AN_diag_j[index] = k_map;
      	             AN_diag_data[index] = A_diag_data[k];
      	             index++;
      	          }
      	          else
      	          {
      	             if (fabs(A_diag_data[k]) > 
				fabs(AN_diag_data[counter[k_map]]))
      	                AN_diag_data[counter[k_map]] = A_diag_data[k];
      	          }
      	       }
      	       row++;
            }
            start_index = index;
         }
      }
      break;

      case 4:  /* inf. norm (row-sum)  */
      {

         data = hypre_CTAlloc(double, AN_num_nonzeros_diag*num_functions);

         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             data[index*num_functions + j] = fabs(A_diag_data[k]);
	             index++;
	          }
	          else
	          {
	             data[(counter[k_map])*num_functions + j] += fabs(A_diag_data[k]);
	          }
	       }
	       row++;
            }
            start_index = index;
         }
         for (i=0; i < AN_num_nonzeros_diag; i++)
         {
            AN_diag_data[i]  = data[i*num_functions];
            
            for (j=1; j< num_functions; j++)
            {
               AN_diag_data[i]  = hypre_max( AN_diag_data[i],data[i*num_functions+j]);
            }
         }
         hypre_TFree(data);
      
      }
      break;

      case 6:  /* sum of all elements in each block */
      {
         for (i=0; i < num_nodes; i++)
         {
            for (j=0; j < num_functions; j++)
            {
	       for (k=A_diag_i[row]; k < A_diag_i[row+1]; k++)
	       {
	          k_map = map_to_node[A_diag_j[k]];
	          if (counter[k_map] < start_index)
	          {
	             counter[k_map] = index;
	             AN_diag_j[index] = k_map;
	             AN_diag_data[index] = (A_diag_data[k]);
	             index++;
	          }
	          else
	          {
	             AN_diag_data[counter[k_map]] += (A_diag_data[k]);
	          }
	       }
	       row++;
            }
            start_index = index;
         }
      }
      break;

   }

   if (diag_option ==1 )
   {
      /* make the diag entry the negative of the sum of off-diag entries (DO MORE BELOW) */
      for (i=0; i < num_nodes; i++)
      {
         index = AN_diag_i[i]; 
         sum = 0.0;
         for (k = AN_diag_i[i]+1; k < AN_diag_i[i+1]; k++)
         {
            sum += AN_diag_data[k];
            
         }
         AN_diag_data[index] = -sum;
      }
      
   }
   else if (diag_option == 2)
   {
      
      /*  make all diagonal entries negative */
      /* the diagonal is the first element listed in each row - */
      
      for (i=0; i < num_nodes; i++)
      {
         index = AN_diag_i[i];
         AN_diag_data[index] = - AN_diag_data[index];
      }
   }






   num_nonzeros_offd = A_offd_i[num_variables];
   AN_offd_i = hypre_CTAlloc(HYPRE_Int, num_nodes+1);

   num_cols_offd_AN = 0;

   if (comm_pkg)
   {
      comm_pkg_AN = hypre_CTAlloc(hypre_ParCSRCommPkg,1);
      hypre_ParCSRCommPkgComm(comm_pkg_AN) = comm;
      num_sends = hypre_ParCSRCommPkgNumSends(comm_pkg);
      hypre_ParCSRCommPkgNumSends(comm_pkg_AN) = num_sends;
      num_recvs = hypre_ParCSRCommPkgNumRecvs(comm_pkg);
      hypre_ParCSRCommPkgNumRecvs(comm_pkg_AN) = num_recvs;
      send_procs = hypre_ParCSRCommPkgSendProcs(comm_pkg);
      send_map_starts = hypre_ParCSRCommPkgSendMapStarts(comm_pkg);
      send_map_elmts = hypre_ParCSRCommPkgSendMapElmts(comm_pkg);
      recv_procs = hypre_ParCSRCommPkgRecvProcs(comm_pkg);
      recv_vec_starts = hypre_ParCSRCommPkgRecvVecStarts(comm_pkg);
      send_procs_AN = NULL;
      send_map_elmts_AN = NULL;
      if (num_sends) 
      {
         send_procs_AN = hypre_CTAlloc(HYPRE_Int,num_sends);
         send_map_elmts_AN = hypre_CTAlloc(HYPRE_Int,send_map_starts[num_sends]);
      }
      send_map_starts_AN = hypre_CTAlloc(HYPRE_Int,num_sends+1);
      recv_vec_starts_AN = hypre_CTAlloc(HYPRE_Int,num_recvs+1);
      recv_procs_AN = NULL;
      if (num_recvs) recv_procs_AN = hypre_CTAlloc(HYPRE_Int,num_recvs);
      for (i=0; i < num_sends; i++)
         send_procs_AN[i] = send_procs[i];
      for (i=0; i < num_recvs; i++)
         recv_procs_AN[i] = recv_procs[i];

      send_map_starts_AN[0] = 0;
      cnt = 0;
      for (i=0; i < num_sends; i++)
      {
	 k_map = send_map_starts[i];
	 if (send_map_starts[i+1]-k_map)
            send_map_elmts_AN[cnt++] = send_map_elmts[k_map]/num_functions;
         for (j=send_map_starts[i]+1; j < send_map_starts[i+1]; j++)
         {
            node = send_map_elmts[j]/num_functions;
            if (node > send_map_elmts_AN[cnt-1])
	       send_map_elmts_AN[cnt++] = node; 
         }
         send_map_starts_AN[i+1] = cnt;
      }
      hypre_ParCSRCommPkgSendProcs(comm_pkg_AN) = send_procs_AN;
      hypre_ParCSRCommPkgSendMapStarts(comm_pkg_AN) = send_map_starts_AN;
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg_AN) = send_map_elmts_AN;
      hypre_ParCSRCommPkgRecvProcs(comm_pkg_AN) = recv_procs_AN;
      hypre_ParCSRCommPkgRecvVecStarts(comm_pkg_AN) = recv_vec_starts_AN;
   }

   num_cols_offd = hypre_CSRMatrixNumCols(A_offd);
   if (num_cols_offd)
   {
      if (num_cols_offd > num_variables)
      {
         hypre_TFree(map_to_node);
         map_to_node = hypre_CTAlloc(HYPRE_Int,num_cols_offd);
      }

      num_cols_offd_AN = 1;
      map_to_node[0] = col_map_offd[0]/num_functions;
      for (i=1; i < num_cols_offd; i++)
      {
         map_to_node[i] = col_map_offd[i]/num_functions;
         if (map_to_node[i] > map_to_node[i-1]) num_cols_offd_AN++;
      }
      
      if (num_cols_offd_AN > num_nodes)
      {
         hypre_TFree(counter);
         counter = hypre_CTAlloc(HYPRE_Int,num_cols_offd_AN);
      }

      map_to_map = NULL;
      col_map_offd_AN = NULL;
      map_to_map = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
      col_map_offd_AN = hypre_CTAlloc(HYPRE_Int,num_cols_offd_AN);
      col_map_offd_AN[0] = map_to_node[0];
      recv_vec_starts_AN[0] = 0;
      cnt = 1;
      for (i=0; i < num_recvs; i++)
      {
         for (j=recv_vec_starts[i]; j < recv_vec_starts[i+1]; j++)
         {
            node = map_to_node[j];
	    if (node > col_map_offd_AN[cnt-1])
	    {
	       col_map_offd_AN[cnt++] = node; 
	    }
	    map_to_map[j] = cnt-1;
         }
         recv_vec_starts_AN[i+1] = cnt;
      }

      for (i=0; i < num_cols_offd_AN; i++)
         counter[i] = -1;

      AN_num_nonzeros_offd = 0;
      row = 0;
      for (i=0; i < num_nodes; i++)
      {
         AN_offd_i[i] = AN_num_nonzeros_offd;
         for (j=0; j < num_functions; j++)
         {
	    for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
	    {
	       k_map = map_to_map[A_offd_j[k]];
	       if (counter[k_map] < i)
	       {
	          counter[k_map] = i;
	          AN_num_nonzeros_offd++;
	       }
	    }
	    row++;
         }
      }
      AN_offd_i[num_nodes] = AN_num_nonzeros_offd;
   }

       
   AN_offd = hypre_CSRMatrixCreate(num_nodes,num_cols_offd_AN,	
		AN_num_nonzeros_offd);
   hypre_CSRMatrixI(AN_offd) = AN_offd_i;
   if (AN_num_nonzeros_offd)
   {
      AN_offd_j = hypre_CTAlloc(HYPRE_Int, AN_num_nonzeros_offd);	
      AN_offd_data = hypre_CTAlloc(double, AN_num_nonzeros_offd);	
      hypre_CSRMatrixJ(AN_offd) = AN_offd_j;
      hypre_CSRMatrixData(AN_offd) = AN_offd_data;
   
      for (i=0; i < num_cols_offd_AN; i++)
         counter[i] = -1;
      index = 0;
      row = 0;
      AN_offd_i[0] = 0;
      start_index = 0;
      switch (mode)
      {
         case 1: /* frobenius norm */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
	          for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
	          {
	             k_map = map_to_map[A_offd_j[k]];
	             if (counter[k_map] < start_index)
	             {
	                counter[k_map] = index;
	                AN_offd_j[index] = k_map;
	                AN_offd_data[index] = A_offd_data[k]*A_offd_data[k];
	                index++;
	             }
	             else
	             {
	                AN_offd_data[counter[k_map]] += 
				A_offd_data[k]*A_offd_data[k];
	             }
	          }
	          row++;
               }
               start_index = index;
            }
            for (i=0; i < AN_num_nonzeros_offd; i++)
	       AN_offd_data[i] = sqrt(AN_offd_data[i]);
         }
         break;
      
         case 2:  /* sum of abs. value of all elements in block */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
	          for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
	          {
	             k_map = map_to_map[A_offd_j[k]];
	             if (counter[k_map] < start_index)
	             {
	                counter[k_map] = index;
	                AN_offd_j[index] = k_map;
	                AN_offd_data[index] = fabs(A_offd_data[k]);
	                index++;
	             }
	             else
	             {
	                AN_offd_data[counter[k_map]] += fabs(A_offd_data[k]);
	             }
	          }
	          row++;
               }
               start_index = index;
            }
            for (i=0; i < AN_num_nonzeros_offd; i++)
               AN_offd_data[i] /= num_fun2;
         }
         break;

         case 3: /* largest element in each block (not abs. value ) */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
      	          for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
      	          {
      	             k_map = map_to_map[A_offd_j[k]];
      	             if (counter[k_map] < start_index)
      	             {
      	                counter[k_map] = index;
      	                AN_offd_j[index] = k_map;
      	                AN_offd_data[index] = A_offd_data[k];
      	                index++;
      	             }
      	             else
      	             {
      	                if (fabs(A_offd_data[k]) > 
				fabs(AN_offd_data[counter[k_map]]))
      	                   AN_offd_data[counter[k_map]] = A_offd_data[k];
      	             }
      	          }
      	          row++;
               }
               start_index = index;
            }
         }
         break;
         
         case 4:  /* inf. norm (row-sum)  */
         {
            
            data = hypre_CTAlloc(double, AN_num_nonzeros_offd*num_functions);
            
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
                  for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
                  {
                     k_map = map_to_map[A_offd_j[k]];
                     if (counter[k_map] < start_index)
                     {
                        counter[k_map] = index;
                        AN_offd_j[index] = k_map;
                        data[index*num_functions + j] = fabs(A_offd_data[k]);
                        index++;
                     }
                     else
                     {
                        data[(counter[k_map])*num_functions + j] += fabs(A_offd_data[k]);
                     }
                  }
                  row++;
               }
               start_index = index;
            }
            for (i=0; i < AN_num_nonzeros_offd; i++)
            {
               AN_offd_data[i]  = data[i*num_functions];
               
               for (j=1; j< num_functions; j++)
               {
                  AN_offd_data[i]  = hypre_max( AN_offd_data[i],data[i*num_functions+j]);
               }
            }
            hypre_TFree(data);
            
         }
         break;
         
         case 6:  /* sum of value of all elements in block */
         {
            for (i=0; i < num_nodes; i++)
            {
               for (j=0; j < num_functions; j++)
               {
                  for (k=A_offd_i[row]; k < A_offd_i[row+1]; k++)
                  {
                     k_map = map_to_map[A_offd_j[k]];
                     if (counter[k_map] < start_index)
                     {
                        counter[k_map] = index;
                        AN_offd_j[index] = k_map;
                        AN_offd_data[index] = (A_offd_data[k]);
                        index++;
                     }
                     else
                     {
                        AN_offd_data[counter[k_map]] += (A_offd_data[k]);
                     }
                  }
                  row++;
               }
               start_index = index;
            }
            
         }
         break;
      }
   
      hypre_TFree(map_to_map);
   }

   if (diag_option ==1 )
   {
      /* make the diag entry the negative of the sum of off-diag entries (here we are adding the 
         off_diag contribution)*/
      /* the diagonal is the first element listed in each row of AN_diag_data - */
      for (i=0; i < num_nodes; i++)
      {
         sum = 0.0;
         for (k = AN_offd_i[i]; k < AN_offd_i[i+1]; k++)
         {
            sum += AN_offd_data[k];
            
         }
         index = AN_diag_i[i];/* location of diag entry in data */ 
         AN_diag_data[index] -= sum; /* subtract from current value */
      }
      
   }

    
   AN = hypre_ParCSRMatrixCreate(comm, global_num_nodes, global_num_nodes,
		row_starts_AN, row_starts_AN, num_cols_offd_AN,
		AN_num_nonzeros_diag, AN_num_nonzeros_offd);

   /* we already created the diag and offd matrices - so we don't need the ones
      created above */
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixDiag(AN));
   hypre_CSRMatrixDestroy(hypre_ParCSRMatrixOffd(AN));
   hypre_ParCSRMatrixDiag(AN) = AN_diag;
   hypre_ParCSRMatrixOffd(AN) = AN_offd;


   hypre_ParCSRMatrixColMapOffd(AN) = col_map_offd_AN;
   hypre_ParCSRMatrixCommPkg(AN) = comm_pkg_AN;

   new_num_cols_offd = num_functions*num_cols_offd_AN;

   if (new_num_cols_offd > num_cols_offd)
   {
      new_col_map_offd = hypre_CTAlloc(HYPRE_Int, new_num_cols_offd);
      cnt = 0;
      for (i=0; i < num_cols_offd_AN; i++)
      {
	 for (j=0; j < num_functions; j++)
         {
 	    new_col_map_offd[cnt++] = num_functions*col_map_offd_AN[i]+j;
         }
      }
      cnt = 0;
      for (i=0; i < num_cols_offd; i++)
      {
         while (col_map_offd[i] >  new_col_map_offd[cnt])
            cnt++;
         col_map_offd[i] = cnt++;
      }
      for (i=0; i < num_recvs+1; i++)
      {
         recv_vec_starts[i] = num_functions*recv_vec_starts_AN[i];
      }

      for (i=0; i < num_nonzeros_offd; i++)
      {
         j = A_offd_j[i];
	 A_offd_j[i] = col_map_offd[j];
      }
      hypre_ParCSRMatrixColMapOffd(A) = new_col_map_offd;
      hypre_CSRMatrixNumCols(A_offd) = new_num_cols_offd;
      hypre_TFree(col_map_offd);
   }
 
   hypre_TFree(map_to_node);
   new_send_elmts_size = send_map_starts_AN[num_sends]*num_functions;

   if (new_send_elmts_size > send_map_starts[num_sends])
   {
      new_send_map_elmts = hypre_CTAlloc(HYPRE_Int,new_send_elmts_size);
      cnt = 0;
      send_map_starts[0] = 0;
      for (i=0; i < num_sends; i++)
      {
         send_map_starts[i+1] = send_map_starts_AN[i+1]*num_functions;
         for (j=send_map_starts_AN[i]; j < send_map_starts_AN[i+1]; j++)
	 {
            for (k=0; k < num_functions; k++)
	       new_send_map_elmts[cnt++] = send_map_elmts_AN[j]*num_functions+k;
	 }
      }
      hypre_TFree(send_map_elmts);
      hypre_ParCSRCommPkgSendMapElmts(comm_pkg) = new_send_map_elmts;
   }
 
   *AN_ptr        = AN;

   hypre_TFree(counter);

   return (ierr);
}
Exemple #17
0
HYPRE_Int 
hypre_MaxwellSolve2( void                * maxwell_vdata,
                     hypre_SStructMatrix * A_in,
                     hypre_SStructVector * f,
                     hypre_SStructVector * u )
{
   hypre_MaxwellData     *maxwell_data = maxwell_vdata;

   hypre_ParVector       *f_edge;
   hypre_ParVector       *u_edge;

   HYPRE_Int              max_iter     = maxwell_data-> max_iter;
   double                 tol          = maxwell_data-> tol;
   HYPRE_Int              rel_change   = maxwell_data-> rel_change;
   HYPRE_Int              zero_guess   = maxwell_data-> zero_guess;
   HYPRE_Int              npre_relax   = maxwell_data-> num_pre_relax;
   HYPRE_Int              npost_relax  = maxwell_data-> num_post_relax;

   hypre_ParCSRMatrix   **Ann_l        = maxwell_data-> Ann_l;
   hypre_ParCSRMatrix   **Pn_l         = maxwell_data-> Pn_l;
   hypre_ParCSRMatrix   **RnT_l        = maxwell_data-> RnT_l;
   hypre_ParVector      **bn_l         = maxwell_data-> bn_l;
   hypre_ParVector      **xn_l         = maxwell_data-> xn_l;
   hypre_ParVector      **resn_l       = maxwell_data-> resn_l;
   hypre_ParVector      **en_l         = maxwell_data-> en_l;
   hypre_ParVector      **nVtemp2_l    = maxwell_data-> nVtemp2_l;
   HYPRE_Int            **nCF_marker_l = maxwell_data-> nCF_marker_l;
   double                *nrelax_weight= maxwell_data-> nrelax_weight;
   double                *nomega       = maxwell_data-> nomega;
   HYPRE_Int              nrelax_type  = maxwell_data-> nrelax_type;
   HYPRE_Int              node_numlevs = maxwell_data-> node_numlevels;

   hypre_ParCSRMatrix    *Tgrad        = maxwell_data-> Tgrad;
   hypre_ParCSRMatrix    *T_transpose  = maxwell_data-> T_transpose;

   hypre_ParCSRMatrix   **Aee_l        = maxwell_data-> Aee_l;
   hypre_IJMatrix       **Pe_l         = maxwell_data-> Pe_l;
   hypre_IJMatrix       **ReT_l        = maxwell_data-> ReT_l;
   hypre_ParVector      **be_l         = maxwell_data-> be_l;
   hypre_ParVector      **xe_l         = maxwell_data-> xe_l;
   hypre_ParVector      **rese_l       = maxwell_data-> rese_l;
   hypre_ParVector      **ee_l         = maxwell_data-> ee_l;
   hypre_ParVector      **eVtemp2_l    = maxwell_data-> eVtemp2_l;
   HYPRE_Int            **eCF_marker_l = maxwell_data-> eCF_marker_l;
   double                *erelax_weight= maxwell_data-> erelax_weight;
   double                *eomega       = maxwell_data-> eomega;
   HYPRE_Int              erelax_type  = maxwell_data-> erelax_type;
   HYPRE_Int              edge_numlevs = maxwell_data-> edge_numlevels;

   HYPRE_Int            **BdryRanks_l  = maxwell_data-> BdryRanks_l;
   HYPRE_Int             *BdryRanksCnts_l= maxwell_data-> BdryRanksCnts_l;

   HYPRE_Int              logging      = maxwell_data-> logging;
   double                *norms        = maxwell_data-> norms;
   double                *rel_norms    = maxwell_data-> rel_norms;

   HYPRE_Int              Solve_err_flag;
   HYPRE_Int              relax_local, cycle_param;
                                                                                                            
   double                 b_dot_b = 0, r_dot_r, eps = 0;
   double                 e_dot_e, x_dot_x;

   HYPRE_Int              i, j;
   HYPRE_Int              level;

   HYPRE_Int              ierr= 0;

   
   /* added for the relaxation routines */
   hypre_ParVector *ze = NULL;

   if (hypre_NumThreads() > 1)
   {
      /* Aee is always bigger than Ann */

      ze = hypre_ParVectorCreate(hypre_ParCSRMatrixComm(Aee_l[0]),
                                hypre_ParCSRMatrixGlobalNumRows(Aee_l[0]),
                                hypre_ParCSRMatrixRowStarts(Aee_l[0]));
      hypre_ParVectorInitialize(ze);
      hypre_ParVectorSetPartitioningOwner(ze,0);

   }

   hypre_BeginTiming(maxwell_data-> time_index);

   hypre_SStructVectorConvert(f, &f_edge);
   hypre_SStructVectorConvert(u, &u_edge);
   hypre_ParVectorZeroBCValues(f_edge, BdryRanks_l[0], BdryRanksCnts_l[0]);
   hypre_ParVectorZeroBCValues(u_edge, BdryRanks_l[0], BdryRanksCnts_l[0]);
   be_l[0]= f_edge;
   xe_l[0]= u_edge;

  /* the nodal fine vectors: xn= 0. bn= T'*(be- Aee*xe) is updated in the cycle. */
   hypre_ParVectorSetConstantValues(xn_l[0], 0.0);

   relax_local= 0;
   cycle_param= 0;

  (maxwell_data-> num_iterations) = 0;
  /* if max_iter is zero, return */
   if (max_iter == 0)
   {
      /* if using a zero initial guess, return zero */
      if (zero_guess)
      {
         hypre_ParVectorSetConstantValues(xe_l[0], 0.0);
      }
                                                                                                            
      hypre_EndTiming(maxwell_data -> time_index);
      return ierr;
   }
                                                                                                            
   /* part of convergence check */
   if (tol > 0.0)
   {
      /* eps = (tol^2) */
      b_dot_b= hypre_ParVectorInnerProd(be_l[0], be_l[0]);
      eps = tol*tol;
                                                                                                            
      /* if rhs is zero, return a zero solution */
      if (b_dot_b == 0.0)
      {
         hypre_ParVectorSetConstantValues(xe_l[0], 0.0);
         if (logging > 0)
         {
            norms[0]     = 0.0;
            rel_norms[0] = 0.0;
         }
                                                                                                            
         hypre_EndTiming(maxwell_data -> time_index);
         return ierr;
      }
   }

   /*-----------------------------------------------------
    * Do V-cycles:
    * For each index l, "fine" = l, "coarse" = (l-1)
    *   
    *   solution update:
    *      edge_sol= edge_sol + T*node_sol
    *-----------------------------------------------------*/
   for (i = 0; i < max_iter; i++)
   {
     /* compute fine grid residual & nodal rhs. */
      hypre_ParVectorCopy(be_l[0], rese_l[0]);
      hypre_ParCSRMatrixMatvec(-1.0, Aee_l[0], xe_l[0], 1.0, rese_l[0]);
      hypre_ParVectorZeroBCValues(rese_l[0], BdryRanks_l[0], BdryRanksCnts_l[0]);
      hypre_ParCSRMatrixMatvec(1.0, T_transpose, rese_l[0], 0.0, bn_l[0]);

      /* convergence check */
      if (tol > 0.0)
      {
         r_dot_r= hypre_ParVectorInnerProd(rese_l[0], rese_l[0]);

         if (logging > 0)
         {
            norms[i] = sqrt(r_dot_r);
            if (b_dot_b > 0)
               rel_norms[i] = sqrt(r_dot_r/b_dot_b);
            else
               rel_norms[i] = 0.0;
         }
                                                                                                            
         /* always do at least 1 V-cycle */
         if ((r_dot_r/b_dot_b < eps) && (i > 0))
         {
            if (rel_change)
            {
               if ((e_dot_e/x_dot_x) < eps)
                  break;
            }
            else
            {
               break;
            }
         }
      }

      hypre_ParVectorCopy(bn_l[0], resn_l[0]);
      hypre_ParCSRMatrixMatvec(-1.0, Ann_l[0], xn_l[0], 1.0, resn_l[0]);
      r_dot_r= hypre_ParVectorInnerProd(resn_l[0], resn_l[0]);

      for (level= 0; level<= node_numlevs-2; level++)
      {
         /*-----------------------------------------------
          * Down cycle
          *-----------------------------------------------*/
          for (j= 0; j< npre_relax; j++)
          {
             Solve_err_flag = hypre_BoomerAMGRelaxIF(Ann_l[level],
                                                     bn_l[level],
                                                     nCF_marker_l[level],
                                                     nrelax_type,
                                                     relax_local,
                                                     cycle_param,
                                                     nrelax_weight[level],
                                                     nomega[level],
                                                     NULL,
                                                     xn_l[level],
                                                     nVtemp2_l[level],
                                                     ze);
          }  /*for (j= 0; j< npre_relax; j++) */

         /* compute residuals */
          hypre_ParVectorCopy(bn_l[level], resn_l[level]);
          hypre_ParCSRMatrixMatvec(-1.0, Ann_l[level], xn_l[level], 
                                    1.0, resn_l[level]);

         /* restrict residuals */
          hypre_ParCSRMatrixMatvecT(1.0, RnT_l[level], resn_l[level],
                                    0.0, bn_l[level+1]);

         /* zero off initial guess for the next level */
          hypre_ParVectorSetConstantValues(xn_l[level+1], 0.0);

      }  /* for (level= 0; level<= node_numlevs-2; level++) */
 
      /* coarsest node solve */
      level= node_numlevs-1;
      Solve_err_flag = hypre_BoomerAMGRelaxIF(Ann_l[level],
                                              bn_l[level],
                                              nCF_marker_l[level],
                                              nrelax_type,
                                              relax_local,
                                              cycle_param,
                                              nrelax_weight[level],
                                              nomega[level],
                                              NULL,
                                              xn_l[level],
                                              nVtemp2_l[level],
                                              ze);

     /*---------------------------------------------------------------------
      *  Cycle up the levels.
      *---------------------------------------------------------------------*/
      for (level= (node_numlevs - 2); level>= 1; level--)
      {
          hypre_ParCSRMatrixMatvec(1.0, Pn_l[level], xn_l[level+1], 0.0,
                                   en_l[level]);
          hypre_ParVectorAxpy(1.0, en_l[level], xn_l[level]);

         /* post smooth */
          for (j= 0; j< npost_relax; j++)
          {
             Solve_err_flag = hypre_BoomerAMGRelaxIF(Ann_l[level],
                                                     bn_l[level],
                                                     nCF_marker_l[level],
                                                     nrelax_type,
                                                     relax_local,
                                                     cycle_param,
                                                     nrelax_weight[level],
                                                     nomega[level],
                                                     NULL,
                                                     xn_l[level],
                                                     nVtemp2_l[level],
                                                     ze);
          }
      }   /* for (level= (en_numlevs - 2); level>= 1; level--) */

      /* interpolate error and correct on finest grids */
      hypre_ParCSRMatrixMatvec(1.0, Pn_l[0], xn_l[1], 0.0, en_l[0]);
      hypre_ParVectorAxpy(1.0, en_l[0], xn_l[0]);
                                                                                                              
      for (j= 0; j< npost_relax; j++)
      {
         Solve_err_flag = hypre_BoomerAMGRelaxIF(Ann_l[0],
                                                 bn_l[0],
                                                 nCF_marker_l[0],
                                                 nrelax_type,
                                                 relax_local,
                                                 cycle_param,
                                                 nrelax_weight[0],
                                                 nomega[0],
                                                 NULL,
                                                 xn_l[0],
                                                 nVtemp2_l[0],
                                                 ze);
      }  /* for (j= 0; j< npost_relax; j++) */
      hypre_ParVectorCopy(bn_l[0], resn_l[0]);
      hypre_ParCSRMatrixMatvec(-1.0, Ann_l[0], xn_l[0], 1.0, resn_l[0]);

      /* add the gradient solution component to xe_l[0] */
      hypre_ParCSRMatrixMatvec(1.0, Tgrad, xn_l[0], 1.0, xe_l[0]);

      hypre_ParVectorCopy(be_l[0], rese_l[0]);
      hypre_ParCSRMatrixMatvec(-1.0, Aee_l[0], xe_l[0], 1.0, rese_l[0]);
      r_dot_r= hypre_ParVectorInnerProd(rese_l[0], rese_l[0]);

      for (level= 0; level<= edge_numlevs-2; level++)
      {
         /*-----------------------------------------------
          * Down cycle
          *-----------------------------------------------*/
          for (j= 0; j< npre_relax; j++)
          {
             Solve_err_flag = hypre_BoomerAMGRelaxIF(Aee_l[level],
                                                     be_l[level],
                                                     eCF_marker_l[level],
                                                     erelax_type,
                                                     relax_local,
                                                     cycle_param,
                                                     erelax_weight[level],
                                                     eomega[level],
                                                     NULL,
                                                     xe_l[level],
                                                     eVtemp2_l[level], 
                                                     ze);
          }  /*for (j= 0; j< npre_relax; j++) */
                                                                                                              
         /* compute residuals */
          hypre_ParVectorCopy(be_l[level], rese_l[level]);
          hypre_ParCSRMatrixMatvec(-1.0, Aee_l[level], xe_l[level],
                                    1.0, rese_l[level]);

         /* restrict residuals */
          hypre_ParCSRMatrixMatvecT(1.0,
             (hypre_ParCSRMatrix *) hypre_IJMatrixObject(ReT_l[level]),
                                    rese_l[level], 0.0, be_l[level+1]);
          hypre_ParVectorZeroBCValues(be_l[level+1], BdryRanks_l[level+1],
                                      BdryRanksCnts_l[level+1]);

         /* zero off initial guess for the next level */
          hypre_ParVectorSetConstantValues(xe_l[level+1], 0.0);
                                                                                                              
      }  /* for (level= 1; level<= edge_numlevels-2; level++) */
                                                                                                              
      /* coarsest edge solve */
      level= edge_numlevs-1;
      for (j= 0; j< npre_relax; j++)
      {
         Solve_err_flag = hypre_BoomerAMGRelaxIF(Aee_l[level],
                                                 be_l[level],
                                                 eCF_marker_l[level],
                                                 erelax_type,
                                                 relax_local,
                                                 cycle_param,
                                                 erelax_weight[level],
                                                 eomega[level],
                                                 NULL,
                                                 xe_l[level],
                                                 eVtemp2_l[level], 
                                                 ze);
      }

     /*---------------------------------------------------------------------
      *  Up cycle. 
      *---------------------------------------------------------------------*/
      for (level= (edge_numlevs - 2); level>= 1; level--)
      {
         hypre_ParCSRMatrixMatvec(1.0, 
           (hypre_ParCSRMatrix *) hypre_IJMatrixObject(Pe_l[level]), 
                                  xe_l[level+1], 0.0, ee_l[level]);
         hypre_ParVectorZeroBCValues(ee_l[level], BdryRanks_l[level],
                                     BdryRanksCnts_l[level]);
         hypre_ParVectorAxpy(1.0, ee_l[level], xe_l[level]);

         /* post smooth */
         for (j= 0; j< npost_relax; j++)
         {
            Solve_err_flag = hypre_BoomerAMGRelaxIF(Aee_l[level],
                                                    be_l[level],
                                                    eCF_marker_l[level],
                                                    erelax_type,
                                                    relax_local,
                                                    cycle_param,
                                                    erelax_weight[level],
                                                    eomega[level],
                                                    NULL,
                                                    xe_l[level],
                                                    eVtemp2_l[level], 
                                                    ze);
         }

      }  /* for (level= (edge_numlevs - 2); level>= 1; level--) */

      /* interpolate error and correct on finest grids */
      hypre_ParCSRMatrixMatvec(1.0, 
        (hypre_ParCSRMatrix *) hypre_IJMatrixObject(Pe_l[0]), 
                               xe_l[1], 0.0, ee_l[0]);
      hypre_ParVectorZeroBCValues(ee_l[0], BdryRanks_l[0],
                                  BdryRanksCnts_l[0]);
      hypre_ParVectorAxpy(1.0, ee_l[0], xe_l[0]);

      for (j= 0; j< npost_relax; j++)
      {
         Solve_err_flag = hypre_BoomerAMGRelaxIF(Aee_l[0],
                                                 be_l[0],
                                                 eCF_marker_l[0],
                                                 erelax_type,
                                                 relax_local,
                                                 cycle_param,
                                                 erelax_weight[0],
                                                 eomega[0],
                                                 NULL,
                                                 xe_l[0],
                                                 eVtemp2_l[0],
                                                 ze);
      }  /* for (j= 0; j< npost_relax; j++) */

      e_dot_e= hypre_ParVectorInnerProd(ee_l[0], ee_l[0]);
      x_dot_x= hypre_ParVectorInnerProd(xe_l[0], xe_l[0]);

      hypre_ParVectorCopy(be_l[0], rese_l[0]);
      hypre_ParCSRMatrixMatvec(-1.0, Aee_l[0], xe_l[0], 1.0, rese_l[0]);

      (maxwell_data -> num_iterations) = (i + 1);
   }

   hypre_EndTiming(maxwell_data -> time_index);


   if (ze)
      hypre_ParVectorDestroy(ze);

   return ierr;
}
Exemple #18
0
HYPRE_Int
main( HYPRE_Int   argc,
      char *argv[] )
{


   HYPRE_Int        num_procs, myid;
   HYPRE_Int        verbose = 0, build_matrix_type = 1;
   HYPRE_Int        index, matrix_arg_index, commpkg_flag=3;
   HYPRE_Int        i, k, ierr=0;
   HYPRE_Int        row_start, row_end; 
   HYPRE_Int        col_start, col_end, global_num_rows;
   HYPRE_Int       *row_part, *col_part; 
   char      *csrfilename;
   HYPRE_Int        preload = 0, loop = 0, loop2 = LOOP2;   
   HYPRE_Int        bcast_rows[2], *info;
   


   hypre_ParCSRMatrix    *parcsr_A, *small_A;
   HYPRE_ParCSRMatrix    A_temp, A_temp_small; 
   hypre_CSRMatrix       *A_CSR;
   hypre_ParCSRCommPkg	 *comm_pkg;   

  
   HYPRE_Int                 nx, ny, nz;
   HYPRE_Int                 P, Q, R;
   HYPRE_Int                 p, q, r;
   HYPRE_Real          values[4];

   hypre_ParVector     *x_new;
   hypre_ParVector     *y_new, *y;
   HYPRE_Int                 *row_starts;
   HYPRE_Real          ans;
   HYPRE_Real          start_time, end_time, total_time, *loop_times;
   HYPRE_Real          T_avg, T_std;
   
   HYPRE_Int                   noparmprint = 0;
 
#if mydebug   
   HYPRE_Int  j, tmp_int;
#endif

   /*-----------------------------------------------------------
    * Initialize MPI
    *-----------------------------------------------------------*/


   hypre_MPI_Init(&argc, &argv);

   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &num_procs );
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &myid );



   /*-----------------------------------------------------------
    * default - is 27pt laplace
    *-----------------------------------------------------------*/

    
   build_matrix_type = 2;
   matrix_arg_index = argc;

   /*-----------------------------------------------------------
    * Parse command line
    *-----------------------------------------------------------*/
 
   index = 1;
   while ( index < argc) 
   {
      if  ( strcmp(argv[index], "-verbose") == 0 )
      {
         index++;  
         verbose = 1;
      }
      else if ( strcmp(argv[index], "-fromonecsrfile") == 0 )
      {
         index++;
         build_matrix_type      = 1;      
         matrix_arg_index = index; /*this tells where the name is*/
      }
      else if  ( strcmp(argv[index], "-commpkg") == 0 )
      {
         index++;  
         commpkg_flag = atoi(argv[index++]);
      }
      else if ( strcmp(argv[index], "-laplacian") == 0 )
      {
         index++;
         build_matrix_type      = 2;
         matrix_arg_index = index;
      }
      else if ( strcmp(argv[index], "-27pt") == 0 )
      {
         index++;
         build_matrix_type      = 4;
         matrix_arg_index = index;
      }
/*
      else if  ( strcmp(argv[index], "-nopreload") == 0 )
      {
         index++;  
         preload = 0;
      }
*/
      else if  ( strcmp(argv[index], "-loop") == 0 )
      {
         index++;  
         loop = atoi(argv[index++]);
      }
      else if  ( strcmp(argv[index], "-noparmprint") == 0 )
      {
         index++;  
         noparmprint = 1;
         
      }
      else  
      {
	 index++;
         /*hypre_printf("Warning: Unrecogized option '%s'\n",argv[index++] );*/
      }
   }
   
   
  
   /*-----------------------------------------------------------
    * Setup the Matrix problem   
    *-----------------------------------------------------------*/

  /*-----------------------------------------------------------
    *  Get actual partitioning- 
    *  read in an actual csr matrix.
    *-----------------------------------------------------------*/


   if (build_matrix_type ==1) /*read in a csr matrix from one file */
   {
      if (matrix_arg_index < argc)
      {
	 csrfilename = argv[matrix_arg_index];
      }
      else
      {
         hypre_printf("Error: No filename specified \n");
         exit(1);
      }
      if (myid == 0)
      {
	/*hypre_printf("  FromFile: %s\n", csrfilename);*/
         A_CSR = hypre_CSRMatrixRead(csrfilename);
      }
      row_part = NULL;
      col_part = NULL;

      parcsr_A = hypre_CSRMatrixToParCSRMatrix(hypre_MPI_COMM_WORLD, A_CSR, 
					       row_part, col_part);

      if (myid == 0) hypre_CSRMatrixDestroy(A_CSR);
   }
   else if (build_matrix_type ==2)
   {
      
      myBuildParLaplacian(argc, argv, matrix_arg_index,  &A_temp, !noparmprint);
     parcsr_A = (hypre_ParCSRMatrix *) A_temp;      
 
   }
   else if (build_matrix_type ==4)
   {
      myBuildParLaplacian27pt(argc, argv, matrix_arg_index, &A_temp, !noparmprint);
     parcsr_A = (hypre_ParCSRMatrix *) A_temp;
   }

 
  /*-----------------------------------------------------------
   * create a small problem so that timings are more accurate - 
   * code gets run twice (small laplace)
   *-----------------------------------------------------------*/

   /*this is no longer being used - preload = 0 is set at the beginning */

   if (preload == 1) 
   {
 
      /*hypre_printf("preload!\n");*/
      
        
       values[1] = -1;
       values[2] = -1;
       values[3] = -1;
       values[0] = - 6.0    ;

       nx = 2;
       ny = num_procs;
       nz = 2;

       P  = 1;
       Q  = num_procs;
       R  = 1;

       p = myid % P;
       q = (( myid - p)/P) % Q;
       r = ( myid - p - P*q)/( P*Q );
       
      A_temp_small = (HYPRE_ParCSRMatrix) GenerateLaplacian(hypre_MPI_COMM_WORLD, nx, ny, nz, 
				      P, Q, R, p, q, r, values);
      small_A = (hypre_ParCSRMatrix *) A_temp_small;     

      /*do comm packages*/
      hypre_NewCommPkgCreate(small_A);
      hypre_NewCommPkgDestroy(small_A); 

      hypre_MatvecCommPkgCreate(small_A);
      hypre_ParCSRMatrixDestroy(small_A); 
  
   }





   /*-----------------------------------------------------------
    *  Prepare for timing
    *-----------------------------------------------------------*/

   /* instead of preloading, let's not time the first one if more than one*/

    
   if (!loop)
   {
      loop = 1;
      /* and don't do any timings */
      
   }
   else
   {
      
      loop +=1;
      if (loop < 2) loop = 2;
   }
      
   
   loop_times = hypre_CTAlloc(HYPRE_Real, loop);
   


/******************************************************************************************/   

   hypre_MPI_Barrier(hypre_MPI_COMM_WORLD);

   if (commpkg_flag == 1 || commpkg_flag ==3 )
   {
  
      /*-----------------------------------------------------------
       *  Create new comm package
       *-----------------------------------------------------------*/


    
      if (!myid) hypre_printf("********************************************************\n" );  
 
      /*do loop times*/
      for (i=0; i< loop; i++) 
      {
         loop_times[i] = 0.0;
         for (k=0; k< loop2; k++) 
         {
         
            hypre_MPI_Barrier(hypre_MPI_COMM_WORLD);
            
            start_time = hypre_MPI_Wtime();

#if mpip_on
            if (i==(loop-1)) hypre_MPI_Pcontrol(1); 
#endif
     
            hypre_NewCommPkgCreate(parcsr_A);

#if mpip_on
            if (i==(loop-1)) hypre_MPI_Pcontrol(0); 
#endif  
  
            end_time = hypre_MPI_Wtime();
            
            end_time = end_time - start_time;
        
            hypre_MPI_Allreduce(&end_time, &total_time, 1,
                       HYPRE_MPI_REAL, hypre_MPI_MAX, hypre_MPI_COMM_WORLD);
         
            loop_times[i] += total_time;

            if (  !((i+1)== loop  &&  (k+1) == loop2)) hypre_NewCommPkgDestroy(parcsr_A); 
            
         }/*end of loop2 */
      
        
      } /*end of loop*/
      


      /* calculate the avg and std. */
      if (loop > 1)
      {
         
         /* calculate the avg and std. */
         stats_mo(loop_times, loop, &T_avg, &T_std);
      
         if (!myid) hypre_printf(" NewCommPkgCreate:  AVG. wall clock time =  %f seconds\n", T_avg);  
         if (!myid) hypre_printf("                    STD. for %d  runs     =  %f\n", loop-1, T_std);  
         if (!myid) hypre_printf("                    (Note: avg./std. timings exclude run 0.)\n");
         if (!myid) hypre_printf("********************************************************\n" );  
         for (i=0; i< loop; i++) 
         {
            if (!myid) hypre_printf("      run %d  =  %f sec.\n", i, loop_times[i]);  
         }
         if (!myid) hypre_printf("********************************************************\n" );  
   
       }
       else 
       {
         if (!myid) hypre_printf("********************************************************\n" );  
         if (!myid) hypre_printf(" NewCommPkgCreate:\n");  
         if (!myid) hypre_printf("      run time =  %f sec.\n", loop_times[0]);  
         if (!myid) hypre_printf("********************************************************\n" );  
       }


     /*-----------------------------------------------------------
       *  Verbose printing
       *-----------------------------------------------------------*/

      /*some verification*/

       global_num_rows = hypre_ParCSRMatrixGlobalNumRows(parcsr_A); 

       if (verbose) 
       {

	  ierr = hypre_ParCSRMatrixGetLocalRange( parcsr_A,
                                      &row_start, &row_end ,
                                       &col_start, &col_end );


	  comm_pkg = hypre_ParCSRMatrixCommPkg(parcsr_A);
     
          hypre_printf("myid = %i, my ACTUAL local range: [%i, %i]\n", myid, 
		 row_start, row_end);
	  
	
	  ierr = hypre_GetAssumedPartitionRowRange( myid, global_num_rows, &row_start, 
					      &row_end);


	  hypre_printf("myid = %i, my assumed local range: [%i, %i]\n", myid, 
		 row_start, row_end);

          hypre_printf("myid = %d, num_recvs = %d\n", myid, 
		 hypre_ParCSRCommPkgNumRecvs(comm_pkg)  );  

#if mydebug   
	  for (i=0; i < hypre_ParCSRCommPkgNumRecvs(comm_pkg); i++) 
	  {
              hypre_printf("myid = %d, recv proc = %d, vec_starts = [%d : %d]\n", 
		     myid,  hypre_ParCSRCommPkgRecvProcs(comm_pkg)[i], 
		     hypre_ParCSRCommPkgRecvVecStarts(comm_pkg)[i],
		     hypre_ParCSRCommPkgRecvVecStarts(comm_pkg)[i+1]-1);
	   }
#endif 
	  hypre_printf("myid = %d, num_sends = %d\n", myid, 
		 hypre_ParCSRCommPkgNumSends(comm_pkg)  );  

#if mydebug
	  for (i=0; i <hypre_ParCSRCommPkgNumSends(comm_pkg) ; i++) 
          {
	    tmp_int =  hypre_ParCSRCommPkgSendMapStarts(comm_pkg)[i+1] -  
                     hypre_ParCSRCommPkgSendMapStarts(comm_pkg)[i];
	    index = hypre_ParCSRCommPkgSendMapStarts(comm_pkg)[i];
	    for (j=0; j< tmp_int; j++) 
	    {
	       hypre_printf("myid = %d, send proc = %d, send element = %d\n",myid,  
		      hypre_ParCSRCommPkgSendProcs(comm_pkg)[i],
		      hypre_ParCSRCommPkgSendMapElmts(comm_pkg)[index+j]); 
	     }   
	  }
#endif
       }
       /*-----------------------------------------------------------
        *  To verify correctness (if commpkg_flag = 3)
        *-----------------------------------------------------------*/

       if (commpkg_flag == 3 ) 
       {
          /*do a matvec - we are assuming a square matrix */
          row_starts = hypre_ParCSRMatrixRowStarts(parcsr_A);
   
          x_new = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD, global_num_rows, row_starts);
          hypre_ParVectorSetPartitioningOwner(x_new, 0);
          hypre_ParVectorInitialize(x_new);
          hypre_ParVectorSetRandomValues(x_new, 1);    
          
          y_new = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD, global_num_rows, row_starts);
          hypre_ParVectorSetPartitioningOwner(y_new, 0);
          hypre_ParVectorInitialize(y_new);
          hypre_ParVectorSetConstantValues(y_new, 0.0);
          
          /*y = 1.0*A*x+1.0*y */
          hypre_ParCSRMatrixMatvec (1.0, parcsr_A, x_new, 1.0, y_new);
       }
   
   /*-----------------------------------------------------------
    *  Clean up after MyComm
    *-----------------------------------------------------------*/


       hypre_NewCommPkgDestroy(parcsr_A); 

   }

  




/******************************************************************************************/
/******************************************************************************************/

   hypre_MPI_Barrier(hypre_MPI_COMM_WORLD);


   if (commpkg_flag > 1 )
   {

      /*-----------------------------------------------------------
       *  Set up standard comm package
       *-----------------------------------------------------------*/

      bcast_rows[0] = 23;
      bcast_rows[1] = 1789;
      
      if (!myid) hypre_printf("********************************************************\n" );  
      /*do loop times*/
      for (i=0; i< loop; i++) 
      {

         loop_times[i] = 0.0;
         for (k=0; k< loop2; k++) 
         {
            

            hypre_MPI_Barrier(hypre_MPI_COMM_WORLD);

         
            start_time = hypre_MPI_Wtime();

#if time_gather
                  
            info = hypre_CTAlloc(HYPRE_Int, num_procs);
            
            hypre_MPI_Allgather(bcast_rows, 1, HYPRE_MPI_INT, info, 1, HYPRE_MPI_INT, hypre_MPI_COMM_WORLD); 

#endif

            hypre_MatvecCommPkgCreate(parcsr_A);

            end_time = hypre_MPI_Wtime();


            end_time = end_time - start_time;
        
            hypre_MPI_Allreduce(&end_time, &total_time, 1,
                          HYPRE_MPI_REAL, hypre_MPI_MAX, hypre_MPI_COMM_WORLD);

            loop_times[i] += total_time;
         
       
         if (  !((i+1)== loop  &&  (k+1) == loop2))   hypre_MatvecCommPkgDestroy(hypre_ParCSRMatrixCommPkg(parcsr_A));
               
         }/* end of loop 2*/
         
        
      } /*end of loop*/
      
      /* calculate the avg and std. */
      if (loop > 1)
      {
         
         stats_mo(loop_times, loop, &T_avg, &T_std);      
         if (!myid) hypre_printf("Current CommPkgCreate:  AVG. wall clock time =  %f seconds\n", T_avg);  
         if (!myid) hypre_printf("                        STD. for %d  runs     =  %f\n", loop-1, T_std);  
         if (!myid) hypre_printf("                        (Note: avg./std. timings exclude run 0.)\n");
         if (!myid) hypre_printf("********************************************************\n" );  
         for (i=0; i< loop; i++) 
         {
            if (!myid) hypre_printf("      run %d  =  %f sec.\n", i, loop_times[i]);  
         }
         if (!myid) hypre_printf("********************************************************\n" );  
         
      }
      else 
      {
         if (!myid) hypre_printf("********************************************************\n" );  
         if (!myid) hypre_printf(" Current CommPkgCreate:\n");  
         if (!myid) hypre_printf("      run time =  %f sec.\n", loop_times[0]);  
         if (!myid) hypre_printf("********************************************************\n" );  
      }





      /*-----------------------------------------------------------
       * Verbose printing
       *-----------------------------------------------------------*/

      /*some verification*/

    
       if (verbose) 
       {

          ierr = hypre_ParCSRMatrixGetLocalRange( parcsr_A,
						  &row_start, &row_end ,
						  &col_start, &col_end );


          comm_pkg = hypre_ParCSRMatrixCommPkg(parcsr_A);
     
          hypre_printf("myid = %i, std - my local range: [%i, %i]\n", myid, 
		 row_start, row_end);

          ierr = hypre_ParCSRMatrixGetLocalRange( parcsr_A,
						  &row_start, &row_end ,
						  &col_start, &col_end );

          hypre_printf("myid = %d, std - num_recvs = %d\n", myid, 
		 hypre_ParCSRCommPkgNumRecvs(comm_pkg)  );  

#if mydebug   
	  for (i=0; i < hypre_ParCSRCommPkgNumRecvs(comm_pkg); i++) 
          {
              hypre_printf("myid = %d, std - recv proc = %d, vec_starts = [%d : %d]\n", 
		     myid,  hypre_ParCSRCommPkgRecvProcs(comm_pkg)[i], 
		     hypre_ParCSRCommPkgRecvVecStarts(comm_pkg)[i],
		     hypre_ParCSRCommPkgRecvVecStarts(comm_pkg)[i+1]-1);
	  }
#endif
          hypre_printf("myid = %d, std - num_sends = %d\n", myid, 
		 hypre_ParCSRCommPkgNumSends(comm_pkg));  


#if mydebug
          for (i=0; i <hypre_ParCSRCommPkgNumSends(comm_pkg) ; i++) 
          {
	     tmp_int =  hypre_ParCSRCommPkgSendMapStarts(comm_pkg)[i+1] -  
	                hypre_ParCSRCommPkgSendMapStarts(comm_pkg)[i];
	     index = hypre_ParCSRCommPkgSendMapStarts(comm_pkg)[i];
	     for (j=0; j< tmp_int; j++) 
	     {
	        hypre_printf("myid = %d, std - send proc = %d, send element = %d\n",myid,  
		       hypre_ParCSRCommPkgSendProcs(comm_pkg)[i],
		       hypre_ParCSRCommPkgSendMapElmts(comm_pkg)[index+j]); 
	     }   
	  } 
#endif
       }

       /*-----------------------------------------------------------
        * Verify correctness
        *-----------------------------------------------------------*/

 

       if (commpkg_flag == 3 ) 
       { 
          global_num_rows = hypre_ParCSRMatrixGlobalNumRows(parcsr_A); 
          row_starts = hypre_ParCSRMatrixRowStarts(parcsr_A);
 
       
          y = hypre_ParVectorCreate(hypre_MPI_COMM_WORLD, global_num_rows,row_starts);
          hypre_ParVectorSetPartitioningOwner(y, 0);
          hypre_ParVectorInitialize(y);
          hypre_ParVectorSetConstantValues(y, 0.0);

          hypre_ParCSRMatrixMatvec (1.0, parcsr_A, x_new, 1.0, y);
      
       }

   }






   /*-----------------------------------------------------------
    *  Compare matvecs for both comm packages (3)
    *-----------------------------------------------------------*/

   if (commpkg_flag == 3 ) 
   { 
     /*make sure that y and y_new are the same  - now y_new should=0*/   
     hypre_ParVectorAxpy( -1.0, y, y_new );


     hypre_ParVectorSetRandomValues(y, 1);

     ans = hypre_ParVectorInnerProd( y, y_new );
     if (!myid)
     {
        
        if ( fabs(ans) > 1e-8 ) 
        {  
           hypre_printf("!!!!! WARNING !!!!! should be zero if correct = %6.10f\n", 
                  ans); 
        } 
        else
        {
           hypre_printf("Matvecs match ( should be zero = %6.10f )\n", 
                  ans); 
        }
     }
     

   }
 

   /*-----------------------------------------------------------
    *  Clean up
    *-----------------------------------------------------------*/

    
   hypre_ParCSRMatrixDestroy(parcsr_A); /*this calls the standard comm 
                                          package destroy - but we'll destroy 
                                          ours separately until it is
                                          incorporated */

  if (commpkg_flag == 3 ) 
  { 

      hypre_ParVectorDestroy(x_new);
      hypre_ParVectorDestroy(y);
      hypre_ParVectorDestroy(y_new);
  }




   hypre_MPI_Finalize();

   return(ierr);


}
Exemple #19
0
HYPRE_Int
hypre_ParChordMatrixToParCSRMatrix(
   hypre_ParChordMatrix *Ac,
   MPI_Comm comm,
   hypre_ParCSRMatrix **pAp )
{
   /* Some parts of this function are copied from hypre_CSRMatrixToParCSRMatrix. */

   hypre_ParCSRMatrix *Ap;
   HYPRE_Int *row_starts, *col_starts;
   HYPRE_Int global_num_rows, global_num_cols, my_id, num_procs;
   HYPRE_Int num_cols_offd, num_nonzeros_diag, num_nonzeros_offd;
   HYPRE_Int          *local_num_rows;
/* not computed   HYPRE_Int          *local_num_nonzeros; */
   HYPRE_Int          num_nonzeros, first_col_diag, last_col_diag;
   HYPRE_Int i,ic,ij,ir,ilocal,p,r,r_p,r_global,r_local, jlen;
   HYPRE_Int *a_i, *a_j, *ilen;
   HYPRE_Int **rdofs, **ps;
   double data;
   double *a_data;
   double **datas;
   hypre_CSRMatrix *local_A;

   hypre_MPI_Comm_rank(comm, &my_id);
   hypre_MPI_Comm_size(comm, &num_procs);

   hypre_ParChordMatrix_RowStarts
      ( Ac, comm, &row_starts, &global_num_cols );
   /* ... this function works correctly only under some assumptions;
      see the function definition for details */
   global_num_rows = row_starts[num_procs] - row_starts[0];

   col_starts = NULL;
   /* The offd and diag blocks aren't defined until we have both row
      and column partitions... */
   num_cols_offd = 0;
   num_nonzeros_diag = 0;
   num_nonzeros_offd = 0;

   Ap  = hypre_ParCSRMatrixCreate( comm, global_num_rows, global_num_cols,
                          row_starts, col_starts,
                          num_cols_offd, num_nonzeros_diag, num_nonzeros_offd);
   *pAp = Ap;

   row_starts = hypre_ParCSRMatrixRowStarts(Ap);
   col_starts = hypre_ParCSRMatrixColStarts(Ap);

   local_num_rows = hypre_CTAlloc(HYPRE_Int, num_procs);
   for (i=0; i < num_procs; i++)
         local_num_rows[i] = row_starts[i+1] - row_starts[i];

   num_nonzeros = 0;
   for ( p=0; p<hypre_ParChordMatrixNumInprocessors(Ac); ++p ) {
      num_nonzeros += hypre_ParChordMatrixNumInchords(Ac)[p];
   };

   local_A = hypre_CSRMatrixCreate( local_num_rows[my_id], global_num_cols,
                                    num_nonzeros );

   /* Compute local CSRMatrix-like i,j arrays for this processor. */

   ps = hypre_CTAlloc( HYPRE_Int*, hypre_ParChordMatrixNumIdofs(Ac) );
   rdofs = hypre_CTAlloc( HYPRE_Int*, hypre_ParChordMatrixNumIdofs(Ac) );
   datas = hypre_CTAlloc( double*, hypre_ParChordMatrixNumIdofs(Ac) );
   ilen  = hypre_CTAlloc( HYPRE_Int, hypre_ParChordMatrixNumIdofs(Ac) );
   jlen = 0;
   for ( i=0; i<hypre_ParChordMatrixNumIdofs(Ac); ++i ) {
      ilen[i] = 0;
      ps[i] = hypre_CTAlloc( HYPRE_Int, hypre_ParChordMatrixNumRdofs(Ac) );
      rdofs[i] = hypre_CTAlloc( HYPRE_Int, hypre_ParChordMatrixNumRdofs(Ac) );
      datas[i] = hypre_CTAlloc( double, hypre_ParChordMatrixNumRdofs(Ac) );
      /* ... rdofs[i], datas[i] will generally, not always, be much too big */
   }
   for ( p=0; p<hypre_ParChordMatrixNumInprocessors(Ac); ++p ) {
      for ( ic=0; ic<hypre_ParChordMatrixNumInchords(Ac)[p]; ++ic ) {
         ilocal = hypre_ParChordMatrixInchordIdof(Ac)[p][ic];
         r = hypre_ParChordMatrixInchordRdof(Ac)[p][ic];
         data = hypre_ParChordMatrixInchordData(Ac)[p][ic];
         ps[ilocal][ ilen[ilocal] ] = p;
         rdofs[ilocal][ ilen[ilocal] ] = r;
         datas[ilocal][ ilen[ilocal] ] = data;
         ++ilen[ilocal];
         ++jlen;
      }
   };

   a_i = hypre_CTAlloc( HYPRE_Int, hypre_ParChordMatrixNumIdofs(Ac)+1 );
   a_j = hypre_CTAlloc( HYPRE_Int, jlen );
   a_data = hypre_CTAlloc( double, jlen );
   a_i[0] = 0;
   for ( ilocal=0; ilocal<hypre_ParChordMatrixNumIdofs(Ac); ++ilocal ) {
      a_i[ilocal+1] = a_i[ilocal] + ilen[ilocal];
      ir = 0;
      for ( ij=a_i[ilocal]; ij<a_i[ilocal+1]; ++ij ) {
         p = ps[ilocal][ir];
         r_p = rdofs[ilocal][ir];  /* local in proc. p */
         r_global = r_p + hypre_ParChordMatrixFirstindexRdof(Ac)[p];
         r_local = r_global - hypre_ParChordMatrixFirstindexRdof(Ac)[my_id];
         a_j[ij] = r_local;
         a_data[ij] = datas[ilocal][ir];
         ir++;
      };
   };

   for ( i=0; i<hypre_ParChordMatrixNumIdofs(Ac); ++i ) {
      hypre_TFree( ps[i] );
      hypre_TFree( rdofs[i] );
      hypre_TFree( datas[i] );
   };
   hypre_TFree( ps );
   hypre_TFree( rdofs );
   hypre_TFree( datas );
   hypre_TFree( ilen );

   first_col_diag = col_starts[my_id];
   last_col_diag = col_starts[my_id+1]-1;

   hypre_CSRMatrixData(local_A) = a_data;
   hypre_CSRMatrixI(local_A) = a_i;
   hypre_CSRMatrixJ(local_A) = a_j;
   hypre_CSRMatrixOwnsData(local_A) = 0;

   GenerateDiagAndOffd(local_A, Ap, first_col_diag, last_col_diag);

   /* set pointers back to NULL before destroying */
   if (my_id == 0)
   {
      hypre_TFree(a_data);
      /* ... the data has been copied into different diag & offd arrays of Ap */
      hypre_TFree(a_j);
      hypre_TFree(a_i);
      hypre_CSRMatrixData(local_A) = NULL;
      hypre_CSRMatrixI(local_A) = NULL;
      hypre_CSRMatrixJ(local_A) = NULL; 
   }      
   hypre_CSRMatrixDestroy(local_A);
   hypre_TFree(local_num_rows);
/*   hypre_TFree(csr_matrix_datatypes);*/
   return 0;
}