Exemple #1
0
static int icmp_send(struct socket *so, struct mbuf *m, int hlen)
{
    struct ip *ip = mtod(m, struct ip *);
    struct sockaddr_in addr;

    so->s = qemu_socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);
    if (so->s == -1) {
        return -1;
    }

    so->so_m = m;
    so->so_faddr = ip->ip_dst;
    so->so_laddr = ip->ip_src;
    so->so_iptos = ip->ip_tos;
    so->so_type = IPPROTO_ICMP;
    so->so_state = SS_ISFCONNECTED;
    so->so_expire = curtime + SO_EXPIRE;

    addr.sin_family = AF_INET;
    addr.sin_addr = so->so_faddr;

    insque(so, &so->slirp->icmp);

    if (sendto(so->s, m->m_data + hlen, m->m_len - hlen, 0,
               (struct sockaddr *)&addr, sizeof(addr)) == -1) {
        DEBUG_MISC((dfd, "icmp_input icmp sendto tx errno = %d-%s\n",
                    errno, strerror(errno)));
        icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, 0, strerror(errno));
        icmp_detach(so);
    }

    return 0;
}
Exemple #2
0
/* NOTE: icmp dont drop @ipkb */
void icmp_send(unsigned char type, unsigned char code,
		unsigned int data, struct pkbuf *pkb_in)
{
	struct pkbuf *pkb;
	struct ip *iphdr = pkb2ip(pkb_in);
	struct icmp *icmphdr;
	int paylen = _ntohs(iphdr->ip_len);	/* icmp payload length */
	if (paylen < iphlen(iphdr) + 8)
		return;
	/*
	 * RFC 1812 Section 4.3.2.7 for sanity check
	 * An ICMP error message MUST NOT be sent as the result of receiving:
	 * 1. A packet sent as a Link Layer broadcast or multicast
	 * 2. A packet destined to an IP broadcast or IP multicast address
	 *[3] A packet whose source address has a network prefix of zero or is an
	 *      invalid source address (as defined in Section [5.3.7])
	 * 4. Any fragment of a datagram other then the first fragment (i.e., a
	 *      packet for which the fragment offset in the IP header is nonzero).
	 * 5. An ICMP error message
	 */
	if (pkb_in->pk_type != PKT_LOCALHOST)
		return;
	if (MULTICAST(iphdr->ip_dst) || BROADCAST(iphdr->ip_dst))
		return;
	if (iphdr->ip_fragoff & _htons(IP_FRAG_OFF))
		return;

	if (icmp_type_error(type) && iphdr->ip_pro == IP_P_ICMP) {
		icmphdr = ip2icmp(iphdr);
		if (icmphdr->icmp_type > ICMP_T_MAXNUM || icmp_error(icmphdr))
			return;
	}
	/* build icmp packet and send */
	/* ip packet size must be smaller than 576 bytes */
	if (IP_HRD_SZ + ICMP_HRD_SZ + paylen > 576)
		paylen = 576 - IP_HRD_SZ - ICMP_HRD_SZ;
	pkb = alloc_pkb(ETH_HRD_SZ + IP_HRD_SZ + ICMP_HRD_SZ + paylen);
	icmphdr = (struct icmp *)(pkb2ip(pkb)->ip_data);
	icmphdr->icmp_type = type;
	icmphdr->icmp_code = code;
	icmphdr->icmp_cksum = 0;
	icmphdr->icmp_undata = data;
	memcpy(icmphdr->icmp_data, (unsigned char *)iphdr, paylen);
	icmphdr->icmp_cksum =
		icmp_chksum((unsigned short *)icmphdr, ICMP_HRD_SZ + paylen);
	icmpdbg("to "IPFMT"(payload %d) [type %d code %d]\n",
		ipfmt(iphdr->ip_src), paylen, type, code);
	ip_send_info(pkb, 0, IP_HRD_SZ + ICMP_HRD_SZ + paylen,
						0, IP_P_ICMP, iphdr->ip_src);
}
Exemple #3
0
/*
 * TCP input routine, follows pages 65-76 of the
 * protocol specification dated September, 1981 very closely.
 */
void
tcp_input(struct mbuf *m, int iphlen, struct socket *inso)
{
  	struct ip save_ip, *ip;
	register struct tcpiphdr *ti;
	caddr_t optp = NULL;
	int optlen = 0;
	int len, tlen, off;
        register struct tcpcb *tp = NULL;
	register int tiflags;
        struct socket *so = NULL;
	int todrop, acked, ourfinisacked, needoutput = 0;
	int iss = 0;
	u_long tiwin;
	int ret;
    struct ex_list *ex_ptr;
    Slirp *slirp;

	DEBUG_CALL("tcp_input");
	DEBUG_ARGS((dfd, " m = %8lx  iphlen = %2d  inso = %lx\n",
		    (long )m, iphlen, (long )inso ));

	/*
	 * If called with m == 0, then we're continuing the connect
	 */
	if (m == NULL) {
		so = inso;
		slirp = so->slirp;

		/* Re-set a few variables */
		tp = sototcpcb(so);
		m = so->so_m;
                so->so_m = NULL;
		ti = so->so_ti;
		tiwin = ti->ti_win;
		tiflags = ti->ti_flags;

		goto cont_conn;
	}
	slirp = m->slirp;

	/*
	 * Get IP and TCP header together in first mbuf.
	 * Note: IP leaves IP header in first mbuf.
	 */
	ti = mtod(m, struct tcpiphdr *);
	if (iphlen > sizeof(struct ip )) {
	  ip_stripoptions(m, (struct mbuf *)0);
	  iphlen=sizeof(struct ip );
	}
	/* XXX Check if too short */


	/*
	 * Save a copy of the IP header in case we want restore it
	 * for sending an ICMP error message in response.
	 */
	ip=mtod(m, struct ip *);
	save_ip = *ip;
	save_ip.ip_len+= iphlen;

	/*
	 * Checksum extended TCP header and data.
	 */
	tlen = ((struct ip *)ti)->ip_len;
        tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = NULL;
        memset(&ti->ti_i.ih_mbuf, 0 , sizeof(struct mbuf_ptr));
	ti->ti_x1 = 0;
	ti->ti_len = htons((uint16_t)tlen);
	len = sizeof(struct ip ) + tlen;
	if(cksum(m, len)) {
	  goto drop;
	}

	/*
	 * Check that TCP offset makes sense,
	 * pull out TCP options and adjust length.		XXX
	 */
	off = ti->ti_off << 2;
	if (off < sizeof (struct tcphdr) || off > tlen) {
	  goto drop;
	}
	tlen -= off;
	ti->ti_len = tlen;
	if (off > sizeof (struct tcphdr)) {
	  optlen = off - sizeof (struct tcphdr);
	  optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
	}
	tiflags = ti->ti_flags;

	/*
	 * Convert TCP protocol specific fields to host format.
	 */
	NTOHL(ti->ti_seq);
	NTOHL(ti->ti_ack);
	NTOHS(ti->ti_win);
	NTOHS(ti->ti_urp);

	/*
	 * Drop TCP, IP headers and TCP options.
	 */
	m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
	m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);

	/*
	 * Locate pcb for segment.
	 */
findso:
	so = slirp->tcp_last_so;
	if (so->so_fport != ti->ti_dport ||
	    so->so_lport != ti->ti_sport ||
	    so->so_laddr.s_addr != ti->ti_src.s_addr ||
	    so->so_faddr.s_addr != ti->ti_dst.s_addr) {
		so = solookup(&slirp->tcb, ti->ti_src, ti->ti_sport,
			       ti->ti_dst, ti->ti_dport);
		if (so)
			slirp->tcp_last_so = so;
	}

	/*
	 * If the state is CLOSED (i.e., TCB does not exist) then
	 * all data in the incoming segment is discarded.
	 * If the TCB exists but is in CLOSED state, it is embryonic,
	 * but should either do a listen or a connect soon.
	 *
	 * state == CLOSED means we've done socreate() but haven't
	 * attached it to a protocol yet...
	 *
	 * XXX If a TCB does not exist, and the TH_SYN flag is
	 * the only flag set, then create a session, mark it
	 * as if it was LISTENING, and continue...
	 */
        if (so == NULL) {
          if (slirp->restricted) {
            /* Any hostfwds will have an existing socket, so we only get here
             * for non-hostfwd connections. These should be dropped, unless it
             * happens to be a guestfwd.
             */
            for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
                if (ex_ptr->ex_fport == ti->ti_dport &&
                    ti->ti_dst.s_addr == ex_ptr->ex_addr.s_addr) {
                    break;
                }
            }
            if (!ex_ptr) {
                goto dropwithreset;
            }
          }

	  if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
	    goto dropwithreset;

	  if ((so = socreate(slirp)) == NULL)
	    goto dropwithreset;
	  if (tcp_attach(so) < 0) {
	    free(so); /* Not sofree (if it failed, it's not insqued) */
	    goto dropwithreset;
	  }

	  sbreserve(&so->so_snd, TCP_SNDSPACE);
	  sbreserve(&so->so_rcv, TCP_RCVSPACE);

	  so->so_laddr = ti->ti_src;
	  so->so_lport = ti->ti_sport;
	  so->so_faddr = ti->ti_dst;
	  so->so_fport = ti->ti_dport;

	  if ((so->so_iptos = tcp_tos(so)) == 0)
	    so->so_iptos = ((struct ip *)ti)->ip_tos;

	  tp = sototcpcb(so);
	  tp->t_state = TCPS_LISTEN;
	}

        /*
         * If this is a still-connecting socket, this probably
         * a retransmit of the SYN.  Whether it's a retransmit SYN
	 * or something else, we nuke it.
         */
        if (so->so_state & SS_ISFCONNECTING)
                goto drop;

	tp = sototcpcb(so);

	/* XXX Should never fail */
        if (tp == NULL)
		goto dropwithreset;
	if (tp->t_state == TCPS_CLOSED)
		goto drop;

	tiwin = ti->ti_win;

	/*
	 * Segment received on connection.
	 * Reset idle time and keep-alive timer.
	 */
	tp->t_idle = 0;
	if (SO_OPTIONS)
	   tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL;
	else
	   tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE;

	/*
	 * Process options if not in LISTEN state,
	 * else do it below (after getting remote address).
	 */
	if (optp && tp->t_state != TCPS_LISTEN)
		tcp_dooptions(tp, (u_char *)optp, optlen, ti);

	/*
	 * Header prediction: check for the two common cases
	 * of a uni-directional data xfer.  If the packet has
	 * no control flags, is in-sequence, the window didn't
	 * change and we're not retransmitting, it's a
	 * candidate.  If the length is zero and the ack moved
	 * forward, we're the sender side of the xfer.  Just
	 * free the data acked & wake any higher level process
	 * that was blocked waiting for space.  If the length
	 * is non-zero and the ack didn't move, we're the
	 * receiver side.  If we're getting packets in-order
	 * (the reassembly queue is empty), add the data to
	 * the socket buffer and note that we need a delayed ack.
	 *
	 * XXX Some of these tests are not needed
	 * eg: the tiwin == tp->snd_wnd prevents many more
	 * predictions.. with no *real* advantage..
	 */
	if (tp->t_state == TCPS_ESTABLISHED &&
	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
	    ti->ti_seq == tp->rcv_nxt &&
	    tiwin && tiwin == tp->snd_wnd &&
	    tp->snd_nxt == tp->snd_max) {
		if (ti->ti_len == 0) {
			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
			    tp->snd_cwnd >= tp->snd_wnd) {
				/*
				 * this is a pure ack for outstanding data.
				 */
				if (tp->t_rtt &&
				    SEQ_GT(ti->ti_ack, tp->t_rtseq))
					tcp_xmit_timer(tp, tp->t_rtt);
				acked = ti->ti_ack - tp->snd_una;
				sbdrop(&so->so_snd, acked);
				tp->snd_una = ti->ti_ack;
				m_free(m);

				/*
				 * If all outstanding data are acked, stop
				 * retransmit timer, otherwise restart timer
				 * using current (possibly backed-off) value.
				 * If process is waiting for space,
				 * wakeup/selwakeup/signal.  If data
				 * are ready to send, let tcp_output
				 * decide between more output or persist.
				 */
				if (tp->snd_una == tp->snd_max)
					tp->t_timer[TCPT_REXMT] = 0;
				else if (tp->t_timer[TCPT_PERSIST] == 0)
					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;

				/*
				 * This is called because sowwakeup might have
				 * put data into so_snd.  Since we don't so sowwakeup,
				 * we don't need this.. XXX???
				 */
				if (so->so_snd.sb_cc)
					(void) tcp_output(tp);

				return;
			}
		} else if (ti->ti_ack == tp->snd_una &&
		    tcpfrag_list_empty(tp) &&
		    ti->ti_len <= sbspace(&so->so_rcv)) {
			/*
			 * this is a pure, in-sequence data packet
			 * with nothing on the reassembly queue and
			 * we have enough buffer space to take it.
			 */
			tp->rcv_nxt += ti->ti_len;
			/*
			 * Add data to socket buffer.
			 */
			if (so->so_emu) {
				if (tcp_emu(so,m)) sbappend(so, m);
			} else
				sbappend(so, m);

			/*
			 * If this is a short packet, then ACK now - with Nagel
			 *	congestion avoidance sender won't send more until
			 *	he gets an ACK.
			 *
			 * It is better to not delay acks at all to maximize
			 * TCP throughput.  See RFC 2581.
			 */
			tp->t_flags |= TF_ACKNOW;
			tcp_output(tp);
			return;
		}
	} /* header prediction */
	/*
	 * Calculate amount of space in receive window,
	 * and then do TCP input processing.
	 * Receive window is amount of space in rcv queue,
	 * but not less than advertised window.
	 */
	{ int win;
          win = sbspace(&so->so_rcv);
	  if (win < 0)
	    win = 0;
	  tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
	}

	switch (tp->t_state) {

	/*
	 * If the state is LISTEN then ignore segment if it contains an RST.
	 * If the segment contains an ACK then it is bad and send a RST.
	 * If it does not contain a SYN then it is not interesting; drop it.
	 * Don't bother responding if the destination was a broadcast.
	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
	 * tp->iss, and send a segment:
	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
	 * Fill in remote peer address fields if not previously specified.
	 * Enter SYN_RECEIVED state, and process any other fields of this
	 * segment in this state.
	 */
	case TCPS_LISTEN: {

	  if (tiflags & TH_RST)
	    goto drop;
	  if (tiflags & TH_ACK)
	    goto dropwithreset;
	  if ((tiflags & TH_SYN) == 0)
	    goto drop;

	  /*
	   * This has way too many gotos...
	   * But a bit of spaghetti code never hurt anybody :)
	   */

	  /*
	   * If this is destined for the control address, then flag to
	   * tcp_ctl once connected, otherwise connect
	   */
	  if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) ==
	      slirp->vnetwork_addr.s_addr) {
	    if (so->so_faddr.s_addr != slirp->vhost_addr.s_addr &&
		so->so_faddr.s_addr != slirp->vnameserver_addr.s_addr) {
		/* May be an add exec */
		for (ex_ptr = slirp->exec_list; ex_ptr;
		     ex_ptr = ex_ptr->ex_next) {
		  if(ex_ptr->ex_fport == so->so_fport &&
		     so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr) {
		    so->so_state |= SS_CTL;
		    break;
		  }
		}
		if (so->so_state & SS_CTL) {
		    goto cont_input;
		}
	    }
	    /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
	  }

	  if (so->so_emu & EMU_NOCONNECT) {
	    so->so_emu &= ~EMU_NOCONNECT;
	    goto cont_input;
	  }

          if ((tcp_fconnect(so) == -1) &&
#if defined(_WIN32)
              socket_error() != WSAEWOULDBLOCK
#else
              (errno != EINPROGRESS) && (errno != EWOULDBLOCK)
#endif
          ) {
	    u_char code=ICMP_UNREACH_NET;
	    DEBUG_MISC((dfd, " tcp fconnect errno = %d-%s\n",
			errno,strerror(errno)));
	    if(errno == ECONNREFUSED) {
	      /* ACK the SYN, send RST to refuse the connection */
	      tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0,
			  TH_RST|TH_ACK);
	    } else {
	      if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
	      HTONL(ti->ti_seq);             /* restore tcp header */
	      HTONL(ti->ti_ack);
	      HTONS(ti->ti_win);
	      HTONS(ti->ti_urp);
	      m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
	      m->m_len  += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
	      *ip=save_ip;
	      icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno));
	    }
            tcp_close(tp);
	    m_free(m);
	  } else {
	    /*
	     * Haven't connected yet, save the current mbuf
	     * and ti, and return
	     * XXX Some OS's don't tell us whether the connect()
	     * succeeded or not.  So we must time it out.
	     */
	    so->so_m = m;
	    so->so_ti = ti;
	    tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
	    tp->t_state = TCPS_SYN_RECEIVED;
	    tcp_template(tp);
	  }
	  return;

	cont_conn:
	  /* m==NULL
	   * Check if the connect succeeded
	   */
	  if (so->so_state & SS_NOFDREF) {
	    tp = tcp_close(tp);
	    goto dropwithreset;
	  }
	cont_input:
	  tcp_template(tp);

	  if (optp)
	    tcp_dooptions(tp, (u_char *)optp, optlen, ti);

	  if (iss)
	    tp->iss = iss;
	  else
	    tp->iss = slirp->tcp_iss;
	  slirp->tcp_iss += TCP_ISSINCR/2;
	  tp->irs = ti->ti_seq;
	  tcp_sendseqinit(tp);
	  tcp_rcvseqinit(tp);
	  tp->t_flags |= TF_ACKNOW;
	  tp->t_state = TCPS_SYN_RECEIVED;
	  tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
	  goto trimthenstep6;
	} /* case TCPS_LISTEN */

	/*
	 * If the state is SYN_SENT:
	 *	if seg contains an ACK, but not for our SYN, drop the input.
	 *	if seg contains a RST, then drop the connection.
	 *	if seg does not contain SYN, then drop it.
	 * Otherwise this is an acceptable SYN segment
	 *	initialize tp->rcv_nxt and tp->irs
	 *	if seg contains ack then advance tp->snd_una
	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
	 *	arrange for segment to be acked (eventually)
	 *	continue processing rest of data/controls, beginning with URG
	 */
	case TCPS_SYN_SENT:
		if ((tiflags & TH_ACK) &&
		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
		     SEQ_GT(ti->ti_ack, tp->snd_max)))
			goto dropwithreset;

		if (tiflags & TH_RST) {
                        if (tiflags & TH_ACK) {
                                tcp_drop(tp, 0); /* XXX Check t_softerror! */
                        }
			goto drop;
		}

		if ((tiflags & TH_SYN) == 0)
			goto drop;
		if (tiflags & TH_ACK) {
			tp->snd_una = ti->ti_ack;
			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
				tp->snd_nxt = tp->snd_una;
		}

		tp->t_timer[TCPT_REXMT] = 0;
		tp->irs = ti->ti_seq;
		tcp_rcvseqinit(tp);
		tp->t_flags |= TF_ACKNOW;
		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
			soisfconnected(so);
			tp->t_state = TCPS_ESTABLISHED;

			(void) tcp_reass(tp, (struct tcpiphdr *)0,
				(struct mbuf *)0);
			/*
			 * if we didn't have to retransmit the SYN,
			 * use its rtt as our initial srtt & rtt var.
			 */
			if (tp->t_rtt)
				tcp_xmit_timer(tp, tp->t_rtt);
		} else
			tp->t_state = TCPS_SYN_RECEIVED;

trimthenstep6:
		/*
		 * Advance ti->ti_seq to correspond to first data byte.
		 * If data, trim to stay within window,
		 * dropping FIN if necessary.
		 */
		ti->ti_seq++;
		if (ti->ti_len > tp->rcv_wnd) {
			todrop = ti->ti_len - tp->rcv_wnd;
			m_adj(m, -todrop);
			ti->ti_len = tp->rcv_wnd;
			tiflags &= ~TH_FIN;
		}
		tp->snd_wl1 = ti->ti_seq - 1;
		tp->rcv_up = ti->ti_seq;
		goto step6;
	} /* switch tp->t_state */
	/*
	 * States other than LISTEN or SYN_SENT.
	 * Check that at least some bytes of segment are within
	 * receive window.  If segment begins before rcv_nxt,
	 * drop leading data (and SYN); if nothing left, just ack.
	 */
	todrop = tp->rcv_nxt - ti->ti_seq;
	if (todrop > 0) {
		if (tiflags & TH_SYN) {
			tiflags &= ~TH_SYN;
			ti->ti_seq++;
			if (ti->ti_urp > 1)
				ti->ti_urp--;
			else
				tiflags &= ~TH_URG;
			todrop--;
		}
		/*
		 * Following if statement from Stevens, vol. 2, p. 960.
		 */
		if (todrop > ti->ti_len
		    || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
			/*
			 * Any valid FIN must be to the left of the window.
			 * At this point the FIN must be a duplicate or out
			 * of sequence; drop it.
			 */
			tiflags &= ~TH_FIN;

			/*
			 * Send an ACK to resynchronize and drop any data.
			 * But keep on processing for RST or ACK.
			 */
			tp->t_flags |= TF_ACKNOW;
			todrop = ti->ti_len;
		}
		m_adj(m, todrop);
		ti->ti_seq += todrop;
		ti->ti_len -= todrop;
		if (ti->ti_urp > todrop)
			ti->ti_urp -= todrop;
		else {
			tiflags &= ~TH_URG;
			ti->ti_urp = 0;
		}
	}
	/*
	 * If new data are received on a connection after the
	 * user processes are gone, then RST the other end.
	 */
	if ((so->so_state & SS_NOFDREF) &&
	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
		tp = tcp_close(tp);
		goto dropwithreset;
	}

	/*
	 * If segment ends after window, drop trailing data
	 * (and PUSH and FIN); if nothing left, just ACK.
	 */
	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
	if (todrop > 0) {
		if (todrop >= ti->ti_len) {
			/*
			 * If a new connection request is received
			 * while in TIME_WAIT, drop the old connection
			 * and start over if the sequence numbers
			 * are above the previous ones.
			 */
			if (tiflags & TH_SYN &&
			    tp->t_state == TCPS_TIME_WAIT &&
			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
				iss = tp->rcv_nxt + TCP_ISSINCR;
				tp = tcp_close(tp);
				goto findso;
			}
			/*
			 * If window is closed can only take segments at
			 * window edge, and have to drop data and PUSH from
			 * incoming segments.  Continue processing, but
			 * remember to ack.  Otherwise, drop segment
			 * and ack.
			 */
			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
				tp->t_flags |= TF_ACKNOW;
			} else {
				goto dropafterack;
			}
		}
		m_adj(m, -todrop);
		ti->ti_len -= todrop;
		tiflags &= ~(TH_PUSH|TH_FIN);
	}

	/*
	 * If the RST bit is set examine the state:
	 *    SYN_RECEIVED STATE:
	 *	If passive open, return to LISTEN state.
	 *	If active open, inform user that connection was refused.
	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
	 *	Inform user that connection was reset, and close tcb.
	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
	 *	Close the tcb.
	 */
	if (tiflags&TH_RST) switch (tp->t_state) {

	case TCPS_SYN_RECEIVED:
	case TCPS_ESTABLISHED:
	case TCPS_FIN_WAIT_1:
	case TCPS_FIN_WAIT_2:
	case TCPS_CLOSE_WAIT:
		tp->t_state = TCPS_CLOSED;
                tcp_close(tp);
		goto drop;

	case TCPS_CLOSING:
	case TCPS_LAST_ACK:
	case TCPS_TIME_WAIT:
                tcp_close(tp);
		goto drop;
	}

	/*
	 * If a SYN is in the window, then this is an
	 * error and we send an RST and drop the connection.
	 */
	if (tiflags & TH_SYN) {
		tp = tcp_drop(tp,0);
		goto dropwithreset;
	}

	/*
	 * If the ACK bit is off we drop the segment and return.
	 */
	if ((tiflags & TH_ACK) == 0) goto drop;

	/*
	 * Ack processing.
	 */
	switch (tp->t_state) {
	/*
	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
	 * ESTABLISHED state and continue processing, otherwise
	 * send an RST.  una<=ack<=max
	 */
	case TCPS_SYN_RECEIVED:

		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
		    SEQ_GT(ti->ti_ack, tp->snd_max))
			goto dropwithreset;
		tp->t_state = TCPS_ESTABLISHED;
		/*
		 * The sent SYN is ack'ed with our sequence number +1
		 * The first data byte already in the buffer will get
		 * lost if no correction is made.  This is only needed for
		 * SS_CTL since the buffer is empty otherwise.
		 * tp->snd_una++; or:
		 */
		tp->snd_una=ti->ti_ack;
		if (so->so_state & SS_CTL) {
		  /* So tcp_ctl reports the right state */
		  ret = tcp_ctl(so);
		  if (ret == 1) {
		    soisfconnected(so);
		    so->so_state &= ~SS_CTL;   /* success XXX */
		  } else if (ret == 2) {
		    so->so_state &= SS_PERSISTENT_MASK;
		    so->so_state |= SS_NOFDREF; /* CTL_CMD */
		  } else {
		    needoutput = 1;
		    tp->t_state = TCPS_FIN_WAIT_1;
		  }
		} else {
		  soisfconnected(so);
		}

		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
		tp->snd_wl1 = ti->ti_seq - 1;
		/* Avoid ack processing; snd_una==ti_ack  =>  dup ack */
		goto synrx_to_est;
		/* fall into ... */

	/*
	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
	 * ACKs.  If the ack is in the range
	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
	 * then advance tp->snd_una to ti->ti_ack and drop
	 * data from the retransmission queue.  If this ACK reflects
	 * more up to date window information we update our window information.
	 */
	case TCPS_ESTABLISHED:
	case TCPS_FIN_WAIT_1:
	case TCPS_FIN_WAIT_2:
	case TCPS_CLOSE_WAIT:
	case TCPS_CLOSING:
	case TCPS_LAST_ACK:
	case TCPS_TIME_WAIT:

		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
			  DEBUG_MISC((dfd, " dup ack  m = %lx  so = %lx\n",
				      (long )m, (long )so));
				/*
				 * If we have outstanding data (other than
				 * a window probe), this is a completely
				 * duplicate ack (ie, window info didn't
				 * change), the ack is the biggest we've
				 * seen and we've seen exactly our rexmt
				 * threshold of them, assume a packet
				 * has been dropped and retransmit it.
				 * Kludge snd_nxt & the congestion
				 * window so we send only this one
				 * packet.
				 *
				 * We know we're losing at the current
				 * window size so do congestion avoidance
				 * (set ssthresh to half the current window
				 * and pull our congestion window back to
				 * the new ssthresh).
				 *
				 * Dup acks mean that packets have left the
				 * network (they're now cached at the receiver)
				 * so bump cwnd by the amount in the receiver
				 * to keep a constant cwnd packets in the
				 * network.
				 */
				if (tp->t_timer[TCPT_REXMT] == 0 ||
				    ti->ti_ack != tp->snd_una)
					tp->t_dupacks = 0;
				else if (++tp->t_dupacks == TCPREXMTTHRESH) {
					tcp_seq onxt = tp->snd_nxt;
					u_int win =
					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
						tp->t_maxseg;

					if (win < 2)
						win = 2;
					tp->snd_ssthresh = win * tp->t_maxseg;
					tp->t_timer[TCPT_REXMT] = 0;
					tp->t_rtt = 0;
					tp->snd_nxt = ti->ti_ack;
					tp->snd_cwnd = tp->t_maxseg;
					(void) tcp_output(tp);
					tp->snd_cwnd = tp->snd_ssthresh +
					       tp->t_maxseg * tp->t_dupacks;
					if (SEQ_GT(onxt, tp->snd_nxt))
						tp->snd_nxt = onxt;
					goto drop;
				} else if (tp->t_dupacks > TCPREXMTTHRESH) {
					tp->snd_cwnd += tp->t_maxseg;
					(void) tcp_output(tp);
					goto drop;
				}
			} else
				tp->t_dupacks = 0;
			break;
		}
	synrx_to_est:
		/*
		 * If the congestion window was inflated to account
		 * for the other side's cached packets, retract it.
		 */
		if (tp->t_dupacks > TCPREXMTTHRESH &&
		    tp->snd_cwnd > tp->snd_ssthresh)
			tp->snd_cwnd = tp->snd_ssthresh;
		tp->t_dupacks = 0;
		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
			goto dropafterack;
		}
		acked = ti->ti_ack - tp->snd_una;

		/*
		 * If transmit timer is running and timed sequence
		 * number was acked, update smoothed round trip time.
		 * Since we now have an rtt measurement, cancel the
		 * timer backoff (cf., Phil Karn's retransmit alg.).
		 * Recompute the initial retransmit timer.
		 */
		if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
			tcp_xmit_timer(tp,tp->t_rtt);

		/*
		 * If all outstanding data is acked, stop retransmit
		 * timer and remember to restart (more output or persist).
		 * If there is more data to be acked, restart retransmit
		 * timer, using current (possibly backed-off) value.
		 */
		if (ti->ti_ack == tp->snd_max) {
			tp->t_timer[TCPT_REXMT] = 0;
			needoutput = 1;
		} else if (tp->t_timer[TCPT_PERSIST] == 0)
			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
		/*
		 * When new data is acked, open the congestion window.
		 * If the window gives us less than ssthresh packets
		 * in flight, open exponentially (maxseg per packet).
		 * Otherwise open linearly: maxseg per window
		 * (maxseg^2 / cwnd per packet).
		 */
		{
		  register u_int cw = tp->snd_cwnd;
		  register u_int incr = tp->t_maxseg;

		  if (cw > tp->snd_ssthresh)
		    incr = incr * incr / cw;
		  tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
		}
		if (acked > so->so_snd.sb_cc) {
			tp->snd_wnd -= so->so_snd.sb_cc;
			sbdrop(&so->so_snd, (int )so->so_snd.sb_cc);
			ourfinisacked = 1;
		} else {
			sbdrop(&so->so_snd, acked);
			tp->snd_wnd -= acked;
			ourfinisacked = 0;
		}
		tp->snd_una = ti->ti_ack;
		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
			tp->snd_nxt = tp->snd_una;

		switch (tp->t_state) {

		/*
		 * In FIN_WAIT_1 STATE in addition to the processing
		 * for the ESTABLISHED state if our FIN is now acknowledged
		 * then enter FIN_WAIT_2.
		 */
		case TCPS_FIN_WAIT_1:
			if (ourfinisacked) {
				/*
				 * If we can't receive any more
				 * data, then closing user can proceed.
				 * Starting the timer is contrary to the
				 * specification, but if we don't get a FIN
				 * we'll hang forever.
				 */
				if (so->so_state & SS_FCANTRCVMORE) {
					tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE;
				}
				tp->t_state = TCPS_FIN_WAIT_2;
			}
			break;

	 	/*
		 * In CLOSING STATE in addition to the processing for
		 * the ESTABLISHED state if the ACK acknowledges our FIN
		 * then enter the TIME-WAIT state, otherwise ignore
		 * the segment.
		 */
		case TCPS_CLOSING:
			if (ourfinisacked) {
				tp->t_state = TCPS_TIME_WAIT;
				tcp_canceltimers(tp);
				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			}
			break;

		/*
		 * In LAST_ACK, we may still be waiting for data to drain
		 * and/or to be acked, as well as for the ack of our FIN.
		 * If our FIN is now acknowledged, delete the TCB,
		 * enter the closed state and return.
		 */
		case TCPS_LAST_ACK:
			if (ourfinisacked) {
                                tcp_close(tp);
				goto drop;
			}
			break;

		/*
		 * In TIME_WAIT state the only thing that should arrive
		 * is a retransmission of the remote FIN.  Acknowledge
		 * it and restart the finack timer.
		 */
		case TCPS_TIME_WAIT:
			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			goto dropafterack;
		}
	} /* switch(tp->t_state) */

step6:
	/*
	 * Update window information.
	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
	 */
	if ((tiflags & TH_ACK) &&
	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
	    (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
	    (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
		tp->snd_wnd = tiwin;
		tp->snd_wl1 = ti->ti_seq;
		tp->snd_wl2 = ti->ti_ack;
		if (tp->snd_wnd > tp->max_sndwnd)
			tp->max_sndwnd = tp->snd_wnd;
		needoutput = 1;
	}

	/*
	 * Process segments with URG.
	 */
	if ((tiflags & TH_URG) && ti->ti_urp &&
	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
		/*
		 * This is a kludge, but if we receive and accept
		 * random urgent pointers, we'll crash in
		 * soreceive.  It's hard to imagine someone
		 * actually wanting to send this much urgent data.
		 */
		if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
			ti->ti_urp = 0;
			tiflags &= ~TH_URG;
			goto dodata;
		}
		/*
		 * If this segment advances the known urgent pointer,
		 * then mark the data stream.  This should not happen
		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
		 * a FIN has been received from the remote side.
		 * In these states we ignore the URG.
		 *
		 * According to RFC961 (Assigned Protocols),
		 * the urgent pointer points to the last octet
		 * of urgent data.  We continue, however,
		 * to consider it to indicate the first octet
		 * of data past the urgent section as the original
		 * spec states (in one of two places).
		 */
		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
			tp->rcv_up = ti->ti_seq + ti->ti_urp;
			so->so_urgc =  so->so_rcv.sb_cc +
				(tp->rcv_up - tp->rcv_nxt); /* -1; */
			tp->rcv_up = ti->ti_seq + ti->ti_urp;

		}
	} else
		/*
		 * If no out of band data is expected,
		 * pull receive urgent pointer along
		 * with the receive window.
		 */
		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
			tp->rcv_up = tp->rcv_nxt;
dodata:

	/*
	 * If this is a small packet, then ACK now - with Nagel
	 *      congestion avoidance sender won't send more until
	 *      he gets an ACK.
	 */
	if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
	    ((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
		tp->t_flags |= TF_ACKNOW;
	}

	/*
	 * Process the segment text, merging it into the TCP sequencing queue,
	 * and arranging for acknowledgment of receipt if necessary.
	 * This process logically involves adjusting tp->rcv_wnd as data
	 * is presented to the user (this happens in tcp_usrreq.c,
	 * case PRU_RCVD).  If a FIN has already been received on this
	 * connection then we just ignore the text.
	 */
	if ((ti->ti_len || (tiflags&TH_FIN)) &&
	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
		TCP_REASS(tp, ti, m, so, tiflags);
	} else {
		m_free(m);
		tiflags &= ~TH_FIN;
	}

	/*
	 * If FIN is received ACK the FIN and let the user know
	 * that the connection is closing.
	 */
	if (tiflags & TH_FIN) {
		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
			/*
			 * If we receive a FIN we can't send more data,
			 * set it SS_FDRAIN
                         * Shutdown the socket if there is no rx data in the
			 * buffer.
			 * soread() is called on completion of shutdown() and
			 * will got to TCPS_LAST_ACK, and use tcp_output()
			 * to send the FIN.
			 */
			sofwdrain(so);

			tp->t_flags |= TF_ACKNOW;
			tp->rcv_nxt++;
		}
		switch (tp->t_state) {

	 	/*
		 * In SYN_RECEIVED and ESTABLISHED STATES
		 * enter the CLOSE_WAIT state.
		 */
		case TCPS_SYN_RECEIVED:
		case TCPS_ESTABLISHED:
		  if(so->so_emu == EMU_CTL)        /* no shutdown on socket */
		    tp->t_state = TCPS_LAST_ACK;
		  else
		    tp->t_state = TCPS_CLOSE_WAIT;
		  break;

	 	/*
		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
		 * enter the CLOSING state.
		 */
		case TCPS_FIN_WAIT_1:
			tp->t_state = TCPS_CLOSING;
			break;

	 	/*
		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
		 * starting the time-wait timer, turning off the other
		 * standard timers.
		 */
		case TCPS_FIN_WAIT_2:
			tp->t_state = TCPS_TIME_WAIT;
			tcp_canceltimers(tp);
			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			break;

		/*
		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
		 */
		case TCPS_TIME_WAIT:
			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
			break;
		}
	}

	/*
	 * Return any desired output.
	 */
	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
		(void) tcp_output(tp);
	}
	return;

dropafterack:
	/*
	 * Generate an ACK dropping incoming segment if it occupies
	 * sequence space, where the ACK reflects our state.
	 */
	if (tiflags & TH_RST)
		goto drop;
	m_free(m);
	tp->t_flags |= TF_ACKNOW;
	(void) tcp_output(tp);
	return;

dropwithreset:
	/* reuses m if m!=NULL, m_free() unnecessary */
	if (tiflags & TH_ACK)
		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
	else {
		if (tiflags & TH_SYN) ti->ti_len++;
		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
		    TH_RST|TH_ACK);
	}

	return;

drop:
	/*
	 * Drop space held by incoming segment and return.
	 */
	m_free(m);
}
Exemple #4
0
void
udp_input(register struct mbuf *m, int iphlen)
{
	register struct ip *ip;
	register struct udphdr *uh;
/*	struct mbuf *opts = 0;*/
	int len;
	struct ip save_ip;
	struct socket *so;

	DEBUG_CALL("udp_input");
	DEBUG_ARG("m = %lx", (long)m);
	DEBUG_ARG("iphlen = %d", iphlen);

	STAT(udpstat.udps_ipackets++);

	/*
	 * Strip IP options, if any; should skip this,
	 * make available to user, and use on returned packets,
	 * but we don't yet have a way to check the checksum
	 * with options still present.
	 */
	if(iphlen > sizeof(struct ip)) {
		ip_stripoptions(m, (struct mbuf *)0);
		iphlen = sizeof(struct ip);
	}

	/*
	 * Get IP and UDP header together in first mbuf.
	 */
	ip = mtod(m, struct ip *);
	uh = (struct udphdr *)((caddr_t)ip + iphlen);

	/*
	 * Make mbuf data length reflect UDP length.
	 * If not enough data to reflect UDP length, drop.
	 */
	len = ntohs((u_int16_t)uh->uh_ulen);

	if (ip->ip_len != len) {
		if (len > ip->ip_len) {
			STAT(udpstat.udps_badlen++);
			goto bad;
		}
		m_adj(m, len - ip->ip_len);
		ip->ip_len = len;
	}

	/*
	 * Save a copy of the IP header in case we want restore it
	 * for sending an ICMP error message in response.
	 */
	save_ip = *ip;
	save_ip.ip_len+= iphlen;         /* tcp_input subtracts this */

	/*
	 * Checksum extended UDP header and data.
	 */
	if (UDPCKSUM && uh->uh_sum) {
      memset(&((struct ipovly *)ip)->ih_mbuf, 0, sizeof(struct mbuf_ptr));
	  ((struct ipovly *)ip)->ih_x1 = 0;
	  ((struct ipovly *)ip)->ih_len = uh->uh_ulen;
	  /* keep uh_sum for ICMP reply
	   * uh->uh_sum = cksum(m, len + sizeof (struct ip));
	   * if (uh->uh_sum) {
	   */
	  if(cksum(m, len + sizeof(struct ip))) {
	    STAT(udpstat.udps_badsum++);
	    goto bad;
	  }
	}

        /*
         *  handle DHCP/BOOTP
         */
        if (ntohs(uh->uh_dport) == BOOTP_SERVER) {
            bootp_input(m);
            goto bad;
        }

        if (slirp_restrict)
            goto bad;

        /*
         *  handle TFTP
         */
        if (ntohs(uh->uh_dport) == TFTP_SERVER) {
            tftp_input(m);
            goto bad;
        }

	/*
	 * Locate pcb for datagram.
	 */
	so = udp_last_so;
	if (so->so_lport != uh->uh_sport ||
	    so->so_laddr.s_addr != ip->ip_src.s_addr) {
		struct socket *tmp;

		for (tmp = udb.so_next; tmp != &udb; tmp = tmp->so_next) {
			if (tmp->so_lport == uh->uh_sport &&
			    tmp->so_laddr.s_addr == ip->ip_src.s_addr) {
				tmp->so_faddr.s_addr = ip->ip_dst.s_addr;
				tmp->so_fport = uh->uh_dport;
				so = tmp;
				break;
			}
		}
		if (tmp == &udb) {
		  so = NULL;
		} else {
		  STAT(udpstat.udpps_pcbcachemiss++);
		  udp_last_so = so;
		}
	}

	if (so == NULL) {
	  /*
	   * If there's no socket for this packet,
	   * create one
	   */
	  if ((so = socreate()) == NULL) goto bad;
	  if(udp_attach(so) == -1) {
	    DEBUG_MISC((dfd," udp_attach errno = %d-%s\n",
			errno,strerror(errno)));
	    sofree(so);
	    goto bad;
	  }

	  /*
	   * Setup fields
	   */
	  /* udp_last_so = so; */
	  so->so_laddr = ip->ip_src;
	  so->so_lport = uh->uh_sport;

	  if ((so->so_iptos = udp_tos(so)) == 0)
	    so->so_iptos = ip->ip_tos;

	  /*
	   * XXXXX Here, check if it's in udpexec_list,
	   * and if it is, do the fork_exec() etc.
	   */
	}

        so->so_faddr = ip->ip_dst; /* XXX */
        so->so_fport = uh->uh_dport; /* XXX */

	iphlen += sizeof(struct udphdr);
	m->m_len -= iphlen;
	m->m_data += iphlen;

	/*
	 * Now we sendto() the packet.
	 */
	if (so->so_emu)
	   udp_emu(so, m);

	if(sosendto(so,m) == -1) {
	  m->m_len += iphlen;
	  m->m_data -= iphlen;
	  *ip=save_ip;
	  DEBUG_MISC((dfd,"udp tx errno = %d-%s\n",errno,strerror(errno)));
	  icmp_error(m, ICMP_UNREACH,ICMP_UNREACH_NET, 0,strerror(errno));
	}

	m_free(so->so_m);   /* used for ICMP if error on sorecvfrom */

	/* restore the orig mbuf packet */
	m->m_len += iphlen;
	m->m_data -= iphlen;
	*ip=save_ip;
	so->so_m=m;         /* ICMP backup */

	return;
bad:
	m_freem(m);
	/* if (opts) m_freem(opts); */
	return;
}
Exemple #5
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void
ip_input(struct mbuf *m)
{
    Slirp *slirp = m->slirp;
    struct ip *ip;
    int hlen;

    DEBUG_CALL("ip_input");
    DEBUG_ARG("m = %lx", (long)m);
    DEBUG_ARG("m_len = %d", m->m_len);

    if (m->m_len < sizeof (struct ip)) {
        return;
    }

    ip = mtod(m, struct ip *);

    if (ip->ip_v != IPVERSION) {
        goto bad;
    }

    hlen = ip->ip_hl << 2;
    if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
        goto bad;                                  /* or packet too short */
    }

    /* keep ip header intact for ICMP reply
    * ip->ip_sum = cksum(m, hlen);
     * if (ip->ip_sum) {
     */
    if(cksum(m,hlen)) {
        goto bad;
    }

    /*
     * Convert fields to host representation.
     */
    NTOHS(ip->ip_len);
    if (ip->ip_len < hlen) {
        goto bad;
    }
    NTOHS(ip->ip_id);
    NTOHS(ip->ip_off);

    /*
     * Check that the amount of data in the buffers
     * is as at least much as the IP header would have us expect.
     * Trim mbufs if longer than we expect.
     * Drop packet if shorter than we expect.
     */
    if (m->m_len < ip->ip_len) {
        goto bad;
    }

    if (slirp->restricted) {
        if ((ip->ip_dst.s_addr & slirp->vnetwork_mask.s_addr) ==
                slirp->vnetwork_addr.s_addr) {
            if (ip->ip_dst.s_addr == 0xffffffff && ip->ip_p != IPPROTO_UDP)
                goto bad;
        } else {
            uint32_t inv_mask = ~slirp->vnetwork_mask.s_addr;
            struct ex_list *ex_ptr;

            if ((ip->ip_dst.s_addr & inv_mask) == inv_mask) {
                goto bad;
            }
            for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
                if (ex_ptr->ex_addr.s_addr == ip->ip_dst.s_addr)
                    break;

            if (!ex_ptr)
                goto bad;
        }
    }

    /* Should drop packet if mbuf too long? hmmm... */
    if (m->m_len > ip->ip_len)
        m_adj(m, ip->ip_len - m->m_len);

    /* check ip_ttl for a correct ICMP reply */
    if(ip->ip_ttl==0 || ip->ip_ttl==1) {
        icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
        goto bad;
    }

    /*
     * If offset or IP_MF are set, must reassemble.
     * Otherwise, nothing need be done.
     * (We could look in the reassembly queue to see
     * if the packet was previously fragmented,
     * but it's not worth the time; just let them time out.)
     *
     * XXX This should fail, don't fragment yet
     */
    if (ip->ip_off &~ IP_DF) {
        struct ipq *fp;
        struct qlink *l;
        /*
         * Look for queue of fragments
         * of this datagram.
         */
        for (l = slirp->ipq.ip_link.next; l != &slirp->ipq.ip_link;
                l = l->next) {
            fp = container_of(l, struct ipq, ip_link);
            if (ip->ip_id == fp->ipq_id &&
                    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
                    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
                    ip->ip_p == fp->ipq_p)
                goto found;
        }
        fp = NULL;
found:

        /*
         * Adjust ip_len to not reflect header,
         * set ip_mff if more fragments are expected,
         * convert offset of this to bytes.
         */
        ip->ip_len -= hlen;
        if (ip->ip_off & IP_MF)
            ip->ip_tos |= 1;
        else
            ip->ip_tos &= ~1;

        ip->ip_off <<= 3;

        /*
         * If datagram marked as having more fragments
         * or if this is not the first fragment,
         * attempt reassembly; if it succeeds, proceed.
         */
        if (ip->ip_tos & 1 || ip->ip_off) {
            ip = ip_reass(slirp, ip, fp);
            if (ip == NULL)
                return;
            m = dtom(slirp, ip);
        } else if (fp)
            ip_freef(slirp, fp);

    } else
Exemple #6
0
/*
 * Do option processing on a datagram, possibly discarding it if bad options
 * are encountered, or forwarding it if source-routed.
 *
 * The pass argument is used when operating in the IPSTEALTH mode to tell
 * what options to process: [LS]SRR (pass 0) or the others (pass 1).  The
 * reason for as many as two passes is that when doing IPSTEALTH, non-routing
 * options should be processed only if the packet is for us.
 *
 * Returns 1 if packet has been forwarded/freed, 0 if the packet should be
 * processed further.
 */
int
ip_dooptions(struct mbuf *m, int pass)
{
	struct ip *ip = mtod(m, struct ip *);
	u_char *cp;
	struct in_ifaddr *ia;
	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
	struct in_addr *sin, dst;
	uint32_t ntime;
	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };

	/* Ignore or reject packets with IP options. */
	if (ip_doopts == 0)
		return 0;
	else if (ip_doopts == 2) {
		type = ICMP_UNREACH;
		code = ICMP_UNREACH_FILTER_PROHIB;
		goto bad;
	}

	dst = ip->ip_dst;
	cp = (u_char *)(ip + 1);
	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
	for (; cnt > 0; cnt -= optlen, cp += optlen) {
		opt = cp[IPOPT_OPTVAL];
		if (opt == IPOPT_EOL)
			break;
		if (opt == IPOPT_NOP)
			optlen = 1;
		else {
			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
				code = &cp[IPOPT_OLEN] - (u_char *)ip;
				goto bad;
			}
			optlen = cp[IPOPT_OLEN];
			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
				code = &cp[IPOPT_OLEN] - (u_char *)ip;
				goto bad;
			}
		}
		switch (opt) {

		default:
			break;

		/*
		 * Source routing with record.  Find interface with current
		 * destination address.  If none on this machine then drop if
		 * strictly routed, or do nothing if loosely routed.  Record
		 * interface address and bring up next address component.  If
		 * strictly routed make sure next address is on directly
		 * accessible net.
		 */
		case IPOPT_LSRR:
		case IPOPT_SSRR:
#ifdef IPSTEALTH
			if (V_ipstealth && pass > 0)
				break;
#endif
			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
				code = &cp[IPOPT_OLEN] - (u_char *)ip;
				goto bad;
			}
			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
				goto bad;
			}
			ipaddr.sin_addr = ip->ip_dst;
			if (ifa_ifwithaddr_check((struct sockaddr *)&ipaddr)
			    == 0) {
				if (opt == IPOPT_SSRR) {
					type = ICMP_UNREACH;
					code = ICMP_UNREACH_SRCFAIL;
					goto bad;
				}
				if (!ip_dosourceroute)
					goto nosourcerouting;
				/*
				 * Loose routing, and not at next destination
				 * yet; nothing to do except forward.
				 */
				break;
			}
			off--;			/* 0 origin */
			if (off > optlen - (int)sizeof(struct in_addr)) {
				/*
				 * End of source route.  Should be for us.
				 */
				if (!ip_acceptsourceroute)
					goto nosourcerouting;
				save_rte(m, cp, ip->ip_src);
				break;
			}
#ifdef IPSTEALTH
			if (V_ipstealth)
				goto dropit;
#endif
			if (!ip_dosourceroute) {
				if (V_ipforwarding) {
					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
					/*
					 * Acting as a router, so generate
					 * ICMP
					 */
nosourcerouting:
					strcpy(buf, inet_ntoa(ip->ip_dst));
					log(LOG_WARNING, 
					    "attempted source route from %s to %s\n",
					    inet_ntoa(ip->ip_src), buf);
					type = ICMP_UNREACH;
					code = ICMP_UNREACH_SRCFAIL;
					goto bad;
				} else {
					/*
					 * Not acting as a router, so
					 * silently drop.
					 */
#ifdef IPSTEALTH
dropit:
#endif
					IPSTAT_INC(ips_cantforward);
					m_freem(m);
					return (1);
				}
			}

			/*
			 * locate outgoing interface
			 */
			(void)memcpy(&ipaddr.sin_addr, cp + off,
			    sizeof(ipaddr.sin_addr));

			if (opt == IPOPT_SSRR) {
#define	INA	struct in_ifaddr *
#define	SA	struct sockaddr *
			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
				    ia = (INA)ifa_ifwithnet((SA)&ipaddr, 0);
			} else
/* XXX MRT 0 for routing */
				ia = ip_rtaddr(ipaddr.sin_addr, M_GETFIB(m));
			if (ia == NULL) {
				type = ICMP_UNREACH;
				code = ICMP_UNREACH_SRCFAIL;
				goto bad;
			}
			ip->ip_dst = ipaddr.sin_addr;
			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
			    sizeof(struct in_addr));
			ifa_free(&ia->ia_ifa);
			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
			/*
			 * Let ip_intr's mcast routing check handle mcast pkts
			 */
			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
			break;

		case IPOPT_RR:
#ifdef IPSTEALTH
			if (V_ipstealth && pass == 0)
				break;
#endif
			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
				goto bad;
			}
			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
				goto bad;
			}
			/*
			 * If no space remains, ignore.
			 */
			off--;			/* 0 origin */
			if (off > optlen - (int)sizeof(struct in_addr))
				break;
			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
			    sizeof(ipaddr.sin_addr));
			/*
			 * Locate outgoing interface; if we're the
			 * destination, use the incoming interface (should be
			 * same).
			 */
			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
			    (ia = ip_rtaddr(ipaddr.sin_addr, M_GETFIB(m))) == NULL) {
				type = ICMP_UNREACH;
				code = ICMP_UNREACH_HOST;
				goto bad;
			}
			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
			    sizeof(struct in_addr));
			ifa_free(&ia->ia_ifa);
			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
			break;

		case IPOPT_TS:
#ifdef IPSTEALTH
			if (V_ipstealth && pass == 0)
				break;
#endif
			code = cp - (u_char *)ip;
			if (optlen < 4 || optlen > 40) {
				code = &cp[IPOPT_OLEN] - (u_char *)ip;
				goto bad;
			}
			if ((off = cp[IPOPT_OFFSET]) < 5) {
				code = &cp[IPOPT_OLEN] - (u_char *)ip;
				goto bad;
			}
			if (off > optlen - (int)sizeof(int32_t)) {
				cp[IPOPT_OFFSET + 1] += (1 << 4);
				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
					goto bad;
				}
				break;
			}
			off--;				/* 0 origin */
			sin = (struct in_addr *)(cp + off);
			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {

			case IPOPT_TS_TSONLY:
				break;

			case IPOPT_TS_TSANDADDR:
				if (off + sizeof(uint32_t) +
				    sizeof(struct in_addr) > optlen) {
					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
					goto bad;
				}
				ipaddr.sin_addr = dst;
				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
							    m->m_pkthdr.rcvif);
				if (ia == NULL)
					continue;
				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
				    sizeof(struct in_addr));
				ifa_free(&ia->ia_ifa);
				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
				off += sizeof(struct in_addr);
				break;

			case IPOPT_TS_PRESPEC:
				if (off + sizeof(uint32_t) +
				    sizeof(struct in_addr) > optlen) {
					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
					goto bad;
				}
				(void)memcpy(&ipaddr.sin_addr, sin,
				    sizeof(struct in_addr));
				if (ifa_ifwithaddr_check((SA)&ipaddr) == 0)
					continue;
				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
				off += sizeof(struct in_addr);
				break;

			default:
				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
				goto bad;
			}
			ntime = iptime();
			(void)memcpy(cp + off, &ntime, sizeof(uint32_t));
			cp[IPOPT_OFFSET] += sizeof(uint32_t);
		}
	}
	if (forward && V_ipforwarding) {
		ip_forward(m, 1);
		return (1);
	}
	return (0);
bad:
	icmp_error(m, type, code, 0, 0);
	IPSTAT_INC(ips_badoptions);
	return (1);
}
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void
ip_input(PNATState pData, struct mbuf *m)
{
    register struct ip *ip;
    int hlen = 0;
    int mlen = 0;

    STAM_PROFILE_START(&pData->StatIP_input, a);

    LogFlowFunc(("ENTER: m = %lx\n", (long)m));
    ip = mtod(m, struct ip *);
    Log2(("ip_dst=%RTnaipv4(len:%d) m_len = %d\n", ip->ip_dst, RT_N2H_U16(ip->ip_len), m->m_len));

    ipstat.ips_total++;
    {
        int rc;
        STAM_PROFILE_START(&pData->StatALIAS_input, b);
        rc = LibAliasIn(select_alias(pData, m), mtod(m, char *), m_length(m, NULL));
        STAM_PROFILE_STOP(&pData->StatALIAS_input, b);
        Log2(("NAT: LibAlias return %d\n", rc));
        if (m->m_len != RT_N2H_U16(ip->ip_len))
            m->m_len = RT_N2H_U16(ip->ip_len);
    }

    mlen = m->m_len;

    if (mlen < sizeof(struct ip))
    {
        ipstat.ips_toosmall++;
        goto bad_free_m;
    }

    ip = mtod(m, struct ip *);
    if (ip->ip_v != IPVERSION)
    {
        ipstat.ips_badvers++;
        goto bad_free_m;
    }

    hlen = ip->ip_hl << 2;
    if (   hlen < sizeof(struct ip)
        || hlen > m->m_len)
    {
        /* min header length */
        ipstat.ips_badhlen++;                     /* or packet too short */
        goto bad_free_m;
    }

    /* keep ip header intact for ICMP reply
     * ip->ip_sum = cksum(m, hlen);
     * if (ip->ip_sum) {
     */
    if (cksum(m, hlen))
    {
        ipstat.ips_badsum++;
        goto bad_free_m;
    }

    /*
     * Convert fields to host representation.
     */
    NTOHS(ip->ip_len);
    if (ip->ip_len < hlen)
    {
        ipstat.ips_badlen++;
        goto bad_free_m;
    }

    NTOHS(ip->ip_id);
    NTOHS(ip->ip_off);

    /*
     * Check that the amount of data in the buffers
     * is as at least much as the IP header would have us expect.
     * Trim mbufs if longer than we expect.
     * Drop packet if shorter than we expect.
     */
    if (mlen < ip->ip_len)
    {
        ipstat.ips_tooshort++;
        goto bad_free_m;
    }

    /* Should drop packet if mbuf too long? hmmm... */
    if (mlen > ip->ip_len)
        m_adj(m, ip->ip_len - m->m_len);

    /* check ip_ttl for a correct ICMP reply */
    if (ip->ip_ttl==0 || ip->ip_ttl == 1)
    {
        icmp_error(pData, m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, "ttl");
        goto no_free_m;
    }

    ip->ip_ttl--;
    /*
     * If offset or IP_MF are set, must reassemble.
     * Otherwise, nothing need be done.
     * (We could look in the reassembly queue to see
     * if the packet was previously fragmented,
     * but it's not worth the time; just let them time out.)
     *
     */
    if (ip->ip_off & (IP_MF | IP_OFFMASK))
    {
        m = ip_reass(pData, m);
        if (m == NULL)
            goto no_free_m;
        ip = mtod(m, struct ip *);
        hlen = ip->ip_hl << 2;
    }
Exemple #8
0
/*
 * recvfrom() a UDP socket
 */
void
sorecvfrom(struct socket *so)
{
	struct sockaddr_in addr;
	socklen_t addrlen = sizeof(struct sockaddr_in);

	DEBUG_CALL("sorecvfrom");
	DEBUG_ARG("so = %lx", (long)so);

	if (so->so_type == IPPROTO_ICMP) {   /* This is a "ping" reply */
	  char buff[256];
	  int len;

	  len = recvfrom(so->s, buff, 256, 0,
			 (struct sockaddr *)&addr, &addrlen);
	  /* XXX Check if reply is "correct"? */

	  if(len == -1 || len == 0) {
	    u_char code=ICMP_UNREACH_PORT;

	    if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
	    else if(errno == ENETUNREACH) code=ICMP_UNREACH_NET;

	    DEBUG_MISC((dfd," udp icmp rx errno = %d-%s\n",
			errno,strerror(errno)));
	    icmp_error(so->so_m, ICMP_UNREACH,code, 0,strerror(errno));
	  } else {
	    icmp_reflect(so->so_m);
            so->so_m = NULL; /* Don't m_free() it again! */
	  }
	  /* No need for this socket anymore, udp_detach it */
	  udp_detach(so);
	} else {                            	/* A "normal" UDP packet */
	  struct mbuf *m;
          int len;
#ifdef _WIN32
          unsigned long n;
#else
          int n;
#endif

	  m = m_get(so->slirp);
	  if (!m) {
	      return;
	  }
	  m->m_data += IF_MAXLINKHDR;

	  /*
	   * XXX Shouldn't FIONREAD packets destined for port 53,
	   * but I don't know the max packet size for DNS lookups
	   */
	  len = M_FREEROOM(m);
	  /* if (so->so_fport != htons(53)) { */
	  ioctlsocket(so->s, FIONREAD, &n);

	  if (n > len) {
	    n = (m->m_data - m->m_dat) + m->m_len + n + 1;
	    m_inc(m, n);
	    len = M_FREEROOM(m);
	  }
	  /* } */

	  m->m_len = recvfrom(so->s, m->m_data, len, 0,
			      (struct sockaddr *)&addr, &addrlen);
	  DEBUG_MISC((dfd, " did recvfrom %d, errno = %d-%s\n",
		      m->m_len, errno,strerror(errno)));
	  if(m->m_len<0) {
	    u_char code=ICMP_UNREACH_PORT;

	    if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
	    else if(errno == ENETUNREACH) code=ICMP_UNREACH_NET;

	    DEBUG_MISC((dfd," rx error, tx icmp ICMP_UNREACH:%i\n", code));
	    icmp_error(so->so_m, ICMP_UNREACH,code, 0,strerror(errno));
	    m_free(m);
	  } else {
	  /*
	   * Hack: domain name lookup will be used the most for UDP,
	   * and since they'll only be used once there's no need
	   * for the 4 minute (or whatever) timeout... So we time them
	   * out much quicker (10 seconds  for now...)
	   */
	    if (so->so_expire) {
	      if (so->so_fport == htons(53))
		so->so_expire = curtime + SO_EXPIREFAST;
	      else
		so->so_expire = curtime + SO_EXPIRE;
	    }

	    /*
	     * If this packet was destined for CTL_ADDR,
	     * make it look like that's where it came from, done by udp_output
	     */
	    udp_output(so, m, &addr);
	  } /* rx error */
	} /* if ping packet */
}
Exemple #9
0
void
icmp_input(struct mbuf *m, int hlen)
{
  register struct icmp *icp;
  register struct ip *ip=mtod(m, struct ip *);
  int icmplen=ip->ip_len;
  /* int code; */

  DEBUG_CALL("icmp_input");
  DEBUG_ARG("m = %lx", (long )m);
  DEBUG_ARG("m_len = %d", m->m_len);

  STAT(icmpstat.icps_received++);

  /*
   * Locate icmp structure in mbuf, and check
   * that its not corrupted and of at least minimum length.
   */
  if (icmplen < ICMP_MINLEN) {          /* min 8 bytes payload */
    STAT(icmpstat.icps_tooshort++);
  freeit:
    m_freem(m);
    goto end_error;
  }

  m->m_len -= hlen;
  m->m_data += hlen;
  icp = mtod(m, struct icmp *);
  if (cksum(m, icmplen)) {
    STAT(icmpstat.icps_checksum++);
    goto freeit;
  }
  m->m_len += hlen;
  m->m_data -= hlen;

  /*	icmpstat.icps_inhist[icp->icmp_type]++; */
  /* code = icp->icmp_code; */

  DEBUG_ARG("icmp_type = %d", icp->icmp_type);
  switch (icp->icmp_type) {
  case ICMP_ECHO:
    icp->icmp_type = ICMP_ECHOREPLY;
    ip->ip_len += hlen;	             /* since ip_input subtracts this */
    if (ip_geth(ip->ip_dst) == alias_addr_ip) {
      icmp_reflect(m);
    } else {
      struct socket *so;
      SockAddress  addr;
      uint32_t     addr_ip;
      uint16_t     addr_port;

      if ((so = socreate()) == NULL) goto freeit;
      if(udp_attach(so) == -1) {
	DEBUG_MISC((dfd,"icmp_input udp_attach errno = %d-%s\n",
		    errno,errno_str));
	sofree(so);
	m_free(m);
	goto end_error;
      }
      so->so_m = m;
      so->so_faddr_ip   = ip_geth(ip->ip_dst);
      so->so_faddr_port = 7;
      so->so_laddr_ip   = ip_geth(ip->ip_src);
      so->so_laddr_port = 9;
      so->so_iptos = ip->ip_tos;
      so->so_type = IPPROTO_ICMP;
      so->so_state = SS_ISFCONNECTED;

      /* Send the packet */
      if ((so->so_faddr_ip & 0xffffff00) == special_addr_ip) {
        /* It's an alias */
        int  low = so->so_faddr_ip & 0xff;

        if (low >= CTL_DNS && low < CTL_DNS + dns_addr_count)
            addr_ip = dns_addr[low - CTL_DNS];
        else
            addr_ip = loopback_addr_ip;
      } else {
            addr_ip = so->so_faddr_ip;
      }
      addr_port = so->so_faddr_port;

      sock_address_init_inet( &addr, addr_ip, addr_port );

      if(socket_sendto(so->s, icmp_ping_msg, strlen(icmp_ping_msg), &addr) < 0) {
        DEBUG_MISC((dfd,"icmp_input udp sendto tx errno = %d-%s\n",
                    errno,errno_str));
        icmp_error(m, ICMP_UNREACH,ICMP_UNREACH_NET, 0,errno_str);
        udp_detach(so);
      }
    } /* if ip->ip_dst.s_addr == alias_addr.s_addr */
    break;
  case ICMP_UNREACH:
    /* XXX? report error? close socket? */
  case ICMP_TIMXCEED:
  case ICMP_PARAMPROB:
  case ICMP_SOURCEQUENCH:
  case ICMP_TSTAMP:
  case ICMP_MASKREQ:
  case ICMP_REDIRECT:
    STAT(icmpstat.icps_notsupp++);
    m_freem(m);
    break;

  default:
    STAT(icmpstat.icps_badtype++);
    m_freem(m);
  } /* swith */

end_error:
  /* m is m_free()'d xor put in a socket xor or given to ip_send */
  return;
}
Exemple #10
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void
ip_input(struct mbuf *m)
{
    register struct ip *ip;
    int hlen;

    DEBUG_CALL("ip_input");
    DEBUG_ARG("m = %lx", (long)m);
    DEBUG_ARG("m_len = %d", m->m_len);

    STAT(ipstat.ips_total++);

    if (m->m_len < (int)sizeof (struct ip)) {
        STAT(ipstat.ips_toosmall++);
        return;
    }

    ip = mtod(m, struct ip *);

    if (ip->ip_v != IPVERSION) {
        STAT(ipstat.ips_badvers++);
        goto bad;
    }

    hlen = ip->ip_hl << 2;
    if (hlen < (int)sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
        STAT(ipstat.ips_badhlen++);                     /* or packet too short */
        goto bad;
    }

    /* keep ip header intact for ICMP reply
    * ip->ip_sum = cksum(m, hlen);
     * if (ip->ip_sum) {
     */
    if(cksum(m,hlen)) {
        STAT(ipstat.ips_badsum++);
        goto bad;
    }

    /*
     * Convert fields to host representation.
     */
    NTOHS(ip->ip_len);
    if (ip->ip_len < hlen) {
        STAT(ipstat.ips_badlen++);
        goto bad;
    }
    NTOHS(ip->ip_id);
    NTOHS(ip->ip_off);

    /*
     * Check that the amount of data in the buffers
     * is as at least much as the IP header would have us expect.
     * Trim mbufs if longer than we expect.
     * Drop packet if shorter than we expect.
     */
    if (m->m_len < ip->ip_len) {
        STAT(ipstat.ips_tooshort++);
        goto bad;
    }

    if (slirp_restrict) {
        if (ip_geth(ip->ip_dst) != special_addr_ip) {
            if (ip_getn(ip->ip_dst) == 0xffffffffu && ip->ip_p != IPPROTO_UDP)
                goto bad;
        } else {
            int host = ip_geth(ip->ip_dst) & 0xff;
            struct ex_list *ex_ptr;

            if (host == 0xff)
                goto bad;

            for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
                if (ex_ptr->ex_addr == host)
                    break;

            if (!ex_ptr)
                goto bad;
        }
    }

    /* Should drop packet if mbuf too long? hmmm... */
    if (m->m_len > ip->ip_len)
        m_adj(m, ip->ip_len - m->m_len);

    /* check ip_ttl for a correct ICMP reply */
    if(ip->ip_ttl==0 || ip->ip_ttl==1) {
        icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
        goto bad;
    }

    /*
     * Process options and, if not destined for us,
     * ship it on.  ip_dooptions returns 1 when an
     * error was detected (causing an icmp message
     * to be sent and the original packet to be freed).
     */
    /* We do no IP options */
    /*	if (hlen > sizeof (struct ip) && ip_dooptions(m))
     *		goto next;
     */
    /*
     * If offset or IP_MF are set, must reassemble.
     * Otherwise, nothing need be done.
     * (We could look in the reassembly queue to see
     * if the packet was previously fragmented,
     * but it's not worth the time; just let them time out.)
     *
     * XXX This should fail, don't fragment yet
     */
    if (ip->ip_off &~ IP_DF) {
        register struct ipq *fp;
        struct qlink *l;
        /*
         * Look for queue of fragments
         * of this datagram.
         */
        for (l = ipq.ip_link.next; l != &ipq.ip_link; l = l->next) {
            fp = container_of(l, struct ipq, ip_link);
            if (ip->ip_id == fp->ipq_id &&
                    ip_equal(ip->ip_src, fp->ipq_src) &&
                    ip_equal(ip->ip_dst, fp->ipq_dst) &&
                    ip->ip_p == fp->ipq_p)
                goto found;
        }
        fp = NULL;
found:

        /*
         * Adjust ip_len to not reflect header,
         * set ip_mff if more fragments are expected,
         * convert offset of this to bytes.
         */
        ip->ip_len -= hlen;
        if (ip->ip_off & IP_MF)
            ip->ip_tos |= 1;
        else
            ip->ip_tos &= ~1;

        ip->ip_off <<= 3;

        /*
         * If datagram marked as having more fragments
         * or if this is not the first fragment,
         * attempt reassembly; if it succeeds, proceed.
         */
        if (ip->ip_tos & 1 || ip->ip_off) {
            STAT(ipstat.ips_fragments++);
            ip = ip_reass(ip, fp);
            if (ip == NULL)
                return;
            STAT(ipstat.ips_reassembled++);
            m = dtom(ip);
        } else if (fp)
            ip_freef(fp);

    } else
Exemple #11
0
/*
 * Ip input routine.  Checksum and byte swap header.  If fragmented
 * try to reassemble.  Process options.  Pass to next level.
 */
void ip_input(struct mbuf *m)
{
	struct ip *ip;
	int hlen;
	
	DEBUG_CALL("ip_input");
	DEBUG_ARG("m = %lx", (long)m);
	DEBUG_ARG("m_len = %d", m->m_len);

	ipstat.ips_total++;
	
	if (m->m_len < sizeof (struct ip)) {
		ipstat.ips_toosmall++;
		return;
	}
	
	ip = mtod(m, struct ip *);
	
	if (ip->ip_v != IPVERSION) {
		ipstat.ips_badvers++;
		goto bad;
	}

	hlen = ip->ip_hl << 2;
	if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
	  ipstat.ips_badhlen++;                     /* or packet too short */
	  goto bad;
	}

        /* keep ip header intact for ICMP reply
	 * ip->ip_sum = cksum(m, hlen); 
	 * if (ip->ip_sum) { 
	 */
	if(cksum(m,hlen)) {
	  ipstat.ips_badsum++;
	  goto bad;
	}

	/*
	 * Convert fields to host representation.
	 */
	NTOHS(ip->ip_len);
	if (ip->ip_len < hlen) {
		ipstat.ips_badlen++;
		goto bad;
	}
	NTOHS(ip->ip_id);
	NTOHS(ip->ip_off);

	/*
	 * Check that the amount of data in the buffers
	 * is as at least much as the IP header would have us expect.
	 * Trim mbufs if longer than we expect.
	 * Drop packet if shorter than we expect.
	 */
	if (m->m_len < ip->ip_len) {
		ipstat.ips_tooshort++;
		goto bad;
	}
	/* Should drop packet if mbuf too long? hmmm... */
	if (m->m_len > ip->ip_len)
	   m_adj(m, ip->ip_len - m->m_len);

	/* check ip_ttl for a correct ICMP reply */
	if(ip->ip_ttl==0 || ip->ip_ttl==1) {
	  icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
	  goto bad;
	}

	/*
	 * Process options and, if not destined for us,
	 * ship it on.  ip_dooptions returns 1 when an
	 * error was detected (causing an icmp message
	 * to be sent and the original packet to be freed).
	 */
/* We do no IP options */
/*	if (hlen > sizeof (struct ip) && ip_dooptions(m))
 *		goto next;
 */
	/*
	 * If offset or IP_MF are set, must reassemble.
	 * Otherwise, nothing need be done.
	 * (We could look in the reassembly queue to see
	 * if the packet was previously fragmented,
	 * but it's not worth the time; just let them time out.)
	 * 
	 * XXX This should fail, don't fragment yet
	 */
	if (ip->ip_off &~ IP_DF) {
	  register struct ipq *fp;
		/*
		 * Look for queue of fragments
		 * of this datagram.
		 */
		for (fp = (struct ipq *) ipq.next; fp != &ipq;
		     fp = (struct ipq *) fp->next)
		  if (ip->ip_id == fp->ipq_id &&
		      ip->ip_src.s_addr == fp->ipq_src.s_addr &&
		      ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
		      ip->ip_p == fp->ipq_p)
		    goto found;
		fp = 0;
	found:

		/*
		 * Adjust ip_len to not reflect header,
		 * set ip_mff if more fragments are expected,
		 * convert offset of this to bytes.
		 */
		ip->ip_len -= hlen;
		if (ip->ip_off & IP_MF)
		  ((struct ipasfrag *)ip)->ipf_mff |= 1;
		else 
		  ((struct ipasfrag *)ip)->ipf_mff &= ~1;

		ip->ip_off <<= 3;

		/*
		 * If datagram marked as having more fragments
		 * or if this is not the first fragment,
		 * attempt reassembly; if it succeeds, proceed.
		 */
		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
			ipstat.ips_fragments++;
			ip = ip_reass((struct ipasfrag *)ip, fp);
			if (ip == 0)
				return;
			ipstat.ips_reassembled++;
			m = dtom(ip);
		} else
			if (fp)
		   	   ip_freef(fp);

	} else
		ip->ip_len -= hlen;

	/*
	 * Switch out to protocol's input routine.
	 */
	ipstat.ips_delivered++;
	switch (ip->ip_p) {
	 case IPPROTO_TCP:
		tcp_input(m, hlen, (struct socket *)NULL);
		break;
	 case IPPROTO_UDP:
		udp_input(m, hlen);
		break;
	 case IPPROTO_ICMP:
		icmp_input(m, hlen);
		break;
	 default:
		ipstat.ips_noproto++;
		m_free(m);
	}
	return;
bad:
	m_freem(m);
	return;
}
Exemple #12
0
/* m->m_data  points at ip packet header
 * m->m_len   length ip packet
 * ip->ip_len length data (IPDU)
 */
void
udp_input(PNATState pData, register struct mbuf *m, int iphlen)
{
    register struct ip *ip;
    register struct udphdr *uh;
    int len;
    struct ip save_ip;
    struct socket *so;
    int ret;
    int ttl;

    LogFlowFunc(("ENTER: m = %p, iphlen = %d\n", m, iphlen));
    ip = mtod(m, struct ip *);
    Log2(("%RTnaipv4 iphlen = %d\n", ip->ip_dst, iphlen));

    udpstat.udps_ipackets++;

    /*
     * Strip IP options, if any; should skip this,
     * make available to user, and use on returned packets,
     * but we don't yet have a way to check the checksum
     * with options still present.
     */
    if (iphlen > sizeof(struct ip))
    {
        ip_stripoptions(m, (struct mbuf *)0);
        iphlen = sizeof(struct ip);
    }

    /*
     * Get IP and UDP header together in first mbuf.
     */
    ip = mtod(m, struct ip *);
    uh = (struct udphdr *)((caddr_t)ip + iphlen);

    /*
     * Make mbuf data length reflect UDP length.
     * If not enough data to reflect UDP length, drop.
     */
    len = RT_N2H_U16((u_int16_t)uh->uh_ulen);
    Assert((ip->ip_len == len));
    Assert((ip->ip_len + iphlen == m_length(m, NULL)));

    if (ip->ip_len != len)
    {
        if (len > ip->ip_len)
        {
            udpstat.udps_badlen++;
            Log3(("NAT: IP(id: %hd) has bad size\n", ip->ip_id));
        }
        m_adj(m, len - ip->ip_len);
        ip->ip_len = len;
    }

    /*
     * Save a copy of the IP header in case we want restore it
     * for sending an ICMP error message in response.
     */
    save_ip = *ip;
    save_ip.ip_len+= iphlen;         /* tcp_input subtracts this */

    /*
     * Checksum extended UDP header and data.
     */
    if (udpcksum && uh->uh_sum)
    {
        memset(((struct ipovly *)ip)->ih_x1, 0, 9);
        ((struct ipovly *)ip)->ih_len = uh->uh_ulen;
#if 0
        /* keep uh_sum for ICMP reply */
        uh->uh_sum = cksum(m, len + sizeof (struct ip));
        if (uh->uh_sum)
        {

#endif
            if (cksum(m, len + iphlen))
            {
                udpstat.udps_badsum++;
                Log3(("NAT: IP(id: %hd) has bad (udp) cksum\n", ip->ip_id));
                goto bad_free_mbuf;
            }
        }
#if 0
    }
#endif

    /*
     *  handle DHCP/BOOTP
     */
    if (uh->uh_dport == RT_H2N_U16_C(BOOTP_SERVER))
    {
        bootp_input(pData, m);
        goto done_free_mbuf;
    }

    LogFunc(("uh src: %RTnaipv4:%d, dst: %RTnaipv4:%d\n", ip->ip_src, RT_H2N_U16_C(uh->uh_sport), ip->ip_dst, RT_H2N_U16_C(uh->uh_dport)));
    if (   pData->fUseHostResolver
        && uh->uh_dport == RT_H2N_U16_C(53)
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_DNS))
    {
        struct sockaddr_in dst, src;
        src.sin_addr.s_addr = ip->ip_dst.s_addr;
        src.sin_port = uh->uh_dport;
        dst.sin_addr.s_addr = ip->ip_src.s_addr;
        dst.sin_port = uh->uh_sport;

        slirpMbufTagService(pData, m, CTL_DNS);
        /* udp_output2() expects a pointer to the body of UDP packet. */
        m->m_data += sizeof(struct udpiphdr);
        m->m_len -= sizeof(struct udpiphdr);
        udp_output2(pData, NULL, m, &src, &dst, IPTOS_LOWDELAY);
        LogFlowFuncLeave();
        return;
    }
    /*
     *  handle TFTP
     */
    if (   uh->uh_dport == RT_H2N_U16_C(TFTP_SERVER)
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_TFTP))
    {
        if (pData->pvTftpSessions)
            slirpTftpInput(pData, m);
        goto done_free_mbuf;
    }

    /*
     * Locate pcb for datagram.
     */
    so = udp_last_so;
    if (   so->so_lport != uh->uh_sport
        || so->so_laddr.s_addr != ip->ip_src.s_addr)
    {
        struct socket *tmp;

        for (tmp = udb.so_next; tmp != &udb; tmp = tmp->so_next)
        {
            if (   tmp->so_lport        == uh->uh_sport
                && tmp->so_laddr.s_addr == ip->ip_src.s_addr)
            {
                so = tmp;
                break;
            }
        }
        if (tmp == &udb)
            so = NULL;
        else
        {
            udpstat.udpps_pcbcachemiss++;
            udp_last_so = so;
        }
    }

    if (so == NULL)
    {
        /*
         * If there's no socket for this packet,
         * create one
         */
        if ((so = socreate()) == NULL)
        {
            Log2(("NAT: IP(id: %hd) failed to create socket\n", ip->ip_id));
            goto bad_free_mbuf;
        }
        if (udp_attach(pData, so) <= 0)
        {
            Log2(("NAT: IP(id: %hd) udp_attach errno = %d (%s)\n",
                        ip->ip_id, errno, strerror(errno)));
            sofree(pData, so);
            goto bad_free_mbuf;
        }

        /*
         * Setup fields
         */
        /* udp_last_so = so; */
        so->so_laddr = ip->ip_src;
        so->so_lport = uh->uh_sport;

        so->so_iptos = ip->ip_tos;

        /*
         * XXXXX Here, check if it's in udpexec_list,
         * and if it is, do the fork_exec() etc.
         */
    }

    so->so_faddr = ip->ip_dst;   /* XXX */
    so->so_fport = uh->uh_dport; /* XXX */
    Assert(so->so_type == IPPROTO_UDP);

    /*
     * DNS proxy
     */
    if (   pData->fUseDnsProxy
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_DNS)
        && (uh->uh_dport == RT_H2N_U16_C(53)))
    {
        dnsproxy_query(pData, so, m, iphlen);
        goto done_free_mbuf;
    }

    iphlen += sizeof(struct udphdr);
    m->m_len -= iphlen;
    m->m_data += iphlen;

    ttl = ip->ip_ttl = save_ip.ip_ttl;
    ret = setsockopt(so->s, IPPROTO_IP, IP_TTL, (const char*)&ttl, sizeof(ttl));
    if (ret < 0)
        LogRel(("NAT: Error (%s) occurred while setting TTL(%d) attribute "
                "of IP packet to socket %R[natsock]\n", strerror(errno), ip->ip_ttl, so));

    if (   sosendto(pData, so, m) == -1
        && (   !soIgnorableErrorCode(errno)
            && errno != ENOTCONN))
    {
        m->m_len += iphlen;
        m->m_data -= iphlen;
        *ip = save_ip;
        Log2(("NAT: UDP tx errno = %d (%s) on sent to %RTnaipv4\n",
              errno, strerror(errno), ip->ip_dst));
#if 0
        /* ICMP_SOURCEQUENCH haven't got any effect, the idea here
         * inform guest about the exosting NAT resources with assumption that
         * that guest reduce traffic. But it doesn't work
         */
        if(    errno == EAGAIN
            || errno == EWOULDBLOCK
            || errno == EINPROGRESS
            || errno == ENOTCONN)
            icmp_error(pData, m, ICMP_SOURCEQUENCH, 0, 1, strerror(errno));
        else
#endif
            icmp_error(pData, m, ICMP_UNREACH, ICMP_UNREACH_NET, 0, strerror(errno));
        so->so_m = NULL;
        LogFlowFuncLeave();
        return;
    }

    if (so->so_m)
        m_freem(pData, so->so_m);   /* used for ICMP if error on sorecvfrom */

    /* restore the orig mbuf packet */
    m->m_len += iphlen;
    m->m_data -= iphlen;
    *ip = save_ip;
    so->so_m = m;         /* ICMP backup */
    LogFlowFuncLeave();
    return;

bad_free_mbuf:
    Log2(("NAT: UDP(id: %hd) datagram to %RTnaipv4 with size(%d) claimed as bad\n",
        ip->ip_id, &ip->ip_dst, ip->ip_len));

done_free_mbuf:
    /* some services like bootp(built-in), dns(buildt-in) and dhcp don't need sockets
     * and create new m'buffers to send them to guest, so we'll free their incomming
     * buffers here.
     */
    m_freem(pData, m);
    LogFlowFuncLeave();
    return;
}
Exemple #13
0
/*
 * Process a received ICMP message.
 */
void icmp_input(struct mbuf *m, int hlen)
{
  register struct icmp *icp;
  register struct ip *ip=mtod(m, struct ip *);
  int icmplen=ip->ip_len;
  /* int code; */
	
  DEBUG_CALL("icmp_input");
  DEBUG_ARG("m = %p", m);
  DEBUG_ARG("m_len = %d", m->m_len);

  icmpstat.icps_received++;
	
  /*
   * Locate icmp structure in mbuf, and check
   * that its not corrupted and of at least minimum length.
   */
  if (icmplen < ICMP_MINLEN) {          /* min 8 bytes payload */
    icmpstat.icps_tooshort++;
  freeit:
    m_freem(m);
    goto end_error;
  }

  m->m_len -= hlen;
  m->m_data += hlen;
  icp = mtod(m, struct icmp *);
  if (cksum(m, icmplen)) {
    icmpstat.icps_checksum++;
    goto freeit;
  }
  m->m_len += hlen;
  m->m_data -= hlen;
  
  /*	icmpstat.icps_inhist[icp->icmp_type]++; */
  /* code = icp->icmp_code; */

  DEBUG_ARG("icmp_type = %d", icp->icmp_type);
  switch (icp->icmp_type) {
  case ICMP_ECHO:
    icp->icmp_type = ICMP_ECHOREPLY;
    ip->ip_len += hlen;	             /* since ip_input subtracts this */
    if (ip->ip_dst.s_addr == alias_addr.s_addr) {
      icmp_reflect(m);
    } else {
      struct socket *so;
      struct sockaddr_in addr;
      if ((so = socreate()) == NULL) goto freeit;
      if (icmp_send(so, m, hlen) == 0)
        return;
      if(udp_attach(so) == -1) {
	DEBUG_MISC(("icmp_input udp_attach errno = %d-%s\n", 
		    errno,strerror(errno)));
	sofree(so);
	m_free(m);
	goto end_error;
      }
      so->so_m = m;
      so->so_faddr = ip->ip_dst;
      so->so_fport = htons(7);
      so->so_laddr = ip->ip_src;
      so->so_lport = htons(9);
      so->so_iptos = ip->ip_tos;
      so->so_type = IPPROTO_ICMP;
      so->so_state = SS_ISFCONNECTED;
      
      /* Send the packet */
      addr.sin_family = AF_INET;
      if ((so->so_faddr.s_addr & htonl(0xffffff00)) == special_addr.s_addr) {
	/* It's an alias */
	switch(ntohl(so->so_faddr.s_addr) & 0xff) {
	case CTL_DNS:
	  addr.sin_addr = dns_addr;
	  break;
	case CTL_ALIAS:
	default:
	  addr.sin_addr = loopback_addr;
	  break;
	}
      } else {
	addr.sin_addr = so->so_faddr;
      }
      addr.sin_port = so->so_fport;
      if(sendto(so->s, icmp_ping_msg, strlen(icmp_ping_msg), 0,
		(struct sockaddr *)&addr, sizeof(addr)) == -1) {
	DEBUG_MISC(("icmp_input udp sendto tx errno = %d-%s\n",
		    errno,strerror(errno)));
	icmp_error(m, ICMP_UNREACH,ICMP_UNREACH_NET, 0,strerror(errno)); 
	udp_detach(so);
      }
    } /* if ip->ip_dst.s_addr == alias_addr.s_addr */
    break;
  case ICMP_UNREACH:
    /* XXX? report error? close socket? */
  case ICMP_TIMXCEED:
  case ICMP_PARAMPROB:
  case ICMP_SOURCEQUENCH:
  case ICMP_TSTAMP:
  case ICMP_MASKREQ:
  case ICMP_REDIRECT:
    icmpstat.icps_notsupp++;
    m_freem(m);
    break;
    
  default:
    icmpstat.icps_badtype++;
    m_freem(m);
  } /* swith */

end_error:
  /* m is m_free()'d xor put in a socket xor or given to ip_send */
  return;
}
Exemple #14
0
void
udp_input(struct mbuf *m, int off)
{
	int iphlen = off;
	struct ip *ip;
	struct udphdr *uh;
	struct ifnet *ifp;
	struct inpcb *inp;
	uint16_t len, ip_len;
	struct inpcbinfo *pcbinfo;
	struct ip save_ip;
	struct sockaddr_in udp_in;
	struct m_tag *fwd_tag;
	int cscov_partial;
	uint8_t pr;

	ifp = m->m_pkthdr.rcvif;
	UDPSTAT_INC(udps_ipackets);

	/*
	 * Strip IP options, if any; should skip this, make available to
	 * user, and use on returned packets, but we don't yet have a way to
	 * check the checksum with options still present.
	 */
	if (iphlen > sizeof (struct ip)) {
		ip_stripoptions(m);
		iphlen = sizeof(struct ip);
	}

	/*
	 * Get IP and UDP header together in first mbuf.
	 */
	ip = mtod(m, struct ip *);
	if (m->m_len < iphlen + sizeof(struct udphdr)) {
		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
			UDPSTAT_INC(udps_hdrops);
			return;
		}
		ip = mtod(m, struct ip *);
	}
	uh = (struct udphdr *)((caddr_t)ip + iphlen);
	pr = ip->ip_p;
	cscov_partial = (pr == IPPROTO_UDPLITE) ? 1 : 0;

	/*
	 * Destination port of 0 is illegal, based on RFC768.
	 */
	if (uh->uh_dport == 0)
		goto badunlocked;

	/*
	 * Construct sockaddr format source address.  Stuff source address
	 * and datagram in user buffer.
	 */
	bzero(&udp_in, sizeof(udp_in));
	udp_in.sin_len = sizeof(udp_in);
	udp_in.sin_family = AF_INET;
	udp_in.sin_port = uh->uh_sport;
	udp_in.sin_addr = ip->ip_src;

	/*
	 * Make mbuf data length reflect UDP length.  If not enough data to
	 * reflect UDP length, drop.
	 */
	len = ntohs((u_short)uh->uh_ulen);
	ip_len = ntohs(ip->ip_len) - iphlen;
	if (pr == IPPROTO_UDPLITE && len == 0) {
		/* Zero means checksum over the complete packet. */
		len = ip_len;
		cscov_partial = 0;
	}
	if (ip_len != len) {
		if (len > ip_len || len < sizeof(struct udphdr)) {
			UDPSTAT_INC(udps_badlen);
			goto badunlocked;
		}
		if (pr == IPPROTO_UDP)
			m_adj(m, len - ip_len);
	}

	/*
	 * Save a copy of the IP header in case we want restore it for
	 * sending an ICMP error message in response.
	 */
	if (!V_udp_blackhole)
		save_ip = *ip;
	else
		memset(&save_ip, 0, sizeof(save_ip));

	/*
	 * Checksum extended UDP header and data.
	 */
	if (uh->uh_sum) {
		u_short uh_sum;

		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
		    !cscov_partial) {
			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
				uh_sum = m->m_pkthdr.csum_data;
			else
				uh_sum = in_pseudo(ip->ip_src.s_addr,
				    ip->ip_dst.s_addr, htonl((u_short)len +
				    m->m_pkthdr.csum_data + pr));
			uh_sum ^= 0xffff;
		} else {
			char b[9];

			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
			bzero(((struct ipovly *)ip)->ih_x1, 9);
			((struct ipovly *)ip)->ih_len = (pr == IPPROTO_UDP) ?
			    uh->uh_ulen : htons(ip_len);
			uh_sum = in_cksum(m, len + sizeof (struct ip));
			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
		}
		if (uh_sum) {
			UDPSTAT_INC(udps_badsum);
			m_freem(m);
			return;
		}
	} else
		UDPSTAT_INC(udps_nosum);

	pcbinfo = get_inpcbinfo(pr);
	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
	    in_broadcast(ip->ip_dst, ifp)) {
		struct inpcb *last;
		struct inpcbhead *pcblist;
		struct ip_moptions *imo;

		INP_INFO_RLOCK(pcbinfo);
		pcblist = get_pcblist(pr);
		last = NULL;
		LIST_FOREACH(inp, pcblist, inp_list) {
			if (inp->inp_lport != uh->uh_dport)
				continue;
#ifdef INET6
			if ((inp->inp_vflag & INP_IPV4) == 0)
				continue;
#endif
			if (inp->inp_laddr.s_addr != INADDR_ANY &&
			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
				continue;
			if (inp->inp_faddr.s_addr != INADDR_ANY &&
			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
				continue;
			if (inp->inp_fport != 0 &&
			    inp->inp_fport != uh->uh_sport)
				continue;

			INP_RLOCK(inp);

			/*
			 * XXXRW: Because we weren't holding either the inpcb
			 * or the hash lock when we checked for a match
			 * before, we should probably recheck now that the
			 * inpcb lock is held.
			 */

			/*
			 * Handle socket delivery policy for any-source
			 * and source-specific multicast. [RFC3678]
			 */
			imo = inp->inp_moptions;
			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
				struct sockaddr_in	 group;
				int			 blocked;
				if (imo == NULL) {
					INP_RUNLOCK(inp);
					continue;
				}
				bzero(&group, sizeof(struct sockaddr_in));
				group.sin_len = sizeof(struct sockaddr_in);
				group.sin_family = AF_INET;
				group.sin_addr = ip->ip_dst;

				blocked = imo_multi_filter(imo, ifp,
					(struct sockaddr *)&group,
					(struct sockaddr *)&udp_in);
				if (blocked != MCAST_PASS) {
					if (blocked == MCAST_NOTGMEMBER)
						IPSTAT_INC(ips_notmember);
					if (blocked == MCAST_NOTSMEMBER ||
					    blocked == MCAST_MUTED)
						UDPSTAT_INC(udps_filtermcast);
					INP_RUNLOCK(inp);
					continue;
				}
			}
			if (last != NULL) {
				struct mbuf *n;

				n = m_copy(m, 0, M_COPYALL);
				udp_append(last, ip, n, iphlen, &udp_in);
				INP_RUNLOCK(last);
			}
			last = inp;
			/*
			 * Don't look for additional matches if this one does
			 * not have either the SO_REUSEPORT or SO_REUSEADDR
			 * socket options set.  This heuristic avoids
			 * searching through all pcbs in the common case of a
			 * non-shared port.  It assumes that an application
			 * will never clear these options after setting them.
			 */
			if ((last->inp_socket->so_options &
			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
				break;
		}

		if (last == NULL) {
			/*
			 * No matching pcb found; discard datagram.  (No need
			 * to send an ICMP Port Unreachable for a broadcast
			 * or multicast datgram.)
			 */
			UDPSTAT_INC(udps_noportbcast);
			if (inp)
				INP_RUNLOCK(inp);
			INP_INFO_RUNLOCK(pcbinfo);
			goto badunlocked;
		}
		udp_append(last, ip, m, iphlen, &udp_in);
		INP_RUNLOCK(last);
		INP_INFO_RUNLOCK(pcbinfo);
		return;
	}

	/*
	 * Locate pcb for datagram.
	 */

	/*
	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
	 */
	if ((m->m_flags & M_IP_NEXTHOP) &&
	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
		struct sockaddr_in *next_hop;

		next_hop = (struct sockaddr_in *)(fwd_tag + 1);

		/*
		 * Transparently forwarded. Pretend to be the destination.
		 * Already got one like this?
		 */
		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
		if (!inp) {
			/*
			 * It's new.  Try to find the ambushing socket.
			 * Because we've rewritten the destination address,
			 * any hardware-generated hash is ignored.
			 */
			inp = in_pcblookup(pcbinfo, ip->ip_src,
			    uh->uh_sport, next_hop->sin_addr,
			    next_hop->sin_port ? htons(next_hop->sin_port) :
			    uh->uh_dport, INPLOOKUP_WILDCARD |
			    INPLOOKUP_RLOCKPCB, ifp);
		}
		/* Remove the tag from the packet. We don't need it anymore. */
		m_tag_delete(m, fwd_tag);
		m->m_flags &= ~M_IP_NEXTHOP;
	} else
		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
		    INPLOOKUP_RLOCKPCB, ifp, m);
	if (inp == NULL) {
		if (udp_log_in_vain) {
			char buf[4*sizeof "123"];

			strcpy(buf, inet_ntoa(ip->ip_dst));
			log(LOG_INFO,
			    "Connection attempt to UDP %s:%d from %s:%d\n",
			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
			    ntohs(uh->uh_sport));
		}
		UDPSTAT_INC(udps_noport);
		if (m->m_flags & (M_BCAST | M_MCAST)) {
			UDPSTAT_INC(udps_noportbcast);
			goto badunlocked;
		}
		if (V_udp_blackhole)
			goto badunlocked;
		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
			goto badunlocked;
		*ip = save_ip;
		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
		return;
	}

	/*
	 * Check the minimum TTL for socket.
	 */
	INP_RLOCK_ASSERT(inp);
	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
		INP_RUNLOCK(inp);
		m_freem(m);
		return;
	}
	if (cscov_partial) {
		struct udpcb *up;

		up = intoudpcb(inp);
		if (up->u_rxcslen > len) {
			INP_RUNLOCK(inp);
			m_freem(m);
			return;
		}
	}

	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
	udp_append(inp, ip, m, iphlen, &udp_in);
	INP_RUNLOCK(inp);
	return;

badunlocked:
	m_freem(m);
}
/* m->m_data  points at ip packet header
 * m->m_len   length ip packet
 * ip->ip_len length data (IPDU)
 */
void
udp_input(PNATState pData, register struct mbuf *m, int iphlen)
{
    register struct ip *ip;
    register struct udphdr *uh;
    int len;
    struct ip save_ip;
    struct socket *so;
    int ret;
    int ttl, tos;

    LogFlowFunc(("ENTER: m = %p, iphlen = %d\n", m, iphlen));
    ip = mtod(m, struct ip *);
    Log2(("%RTnaipv4 iphlen = %d\n", ip->ip_dst, iphlen));

    udpstat.udps_ipackets++;

    /*
     * Strip IP options, if any; should skip this,
     * make available to user, and use on returned packets,
     * but we don't yet have a way to check the checksum
     * with options still present.
     */
    if (iphlen > sizeof(struct ip))
    {
        ip_stripoptions(m, (struct mbuf *)0);
        iphlen = sizeof(struct ip);
    }

    /*
     * Get IP and UDP header together in first mbuf.
     */
    ip = mtod(m, struct ip *);
    uh = (struct udphdr *)((caddr_t)ip + iphlen);

    /*
     * Make mbuf data length reflect UDP length.
     * If not enough data to reflect UDP length, drop.
     */
    len = RT_N2H_U16((u_int16_t)uh->uh_ulen);
    Assert(ip->ip_len + iphlen == (ssize_t)m_length(m, NULL));

    if (ip->ip_len != len)
    {
        if (len > ip->ip_len)
        {
            udpstat.udps_badlen++;
            Log3(("NAT: IP(id: %hd) has bad size\n", ip->ip_id));
            goto bad_free_mbuf;
        }
        m_adj(m, len - ip->ip_len);
        ip->ip_len = len;
    }

    /*
     * Save a copy of the IP header in case we want restore it
     * for sending an ICMP error message in response.
     */
    save_ip = *ip;
    save_ip.ip_len+= iphlen;         /* tcp_input subtracts this */

    /*
     * Checksum extended UDP header and data.
     */
    if (udpcksum && uh->uh_sum)
    {
        memset(((struct ipovly *)ip)->ih_x1, 0, 9);
        ((struct ipovly *)ip)->ih_len = uh->uh_ulen;
#if 0
        /* keep uh_sum for ICMP reply */
        uh->uh_sum = cksum(m, len + sizeof (struct ip));
        if (uh->uh_sum)
        {

#endif
            if (cksum(m, len + iphlen))
            {
                udpstat.udps_badsum++;
                Log3(("NAT: IP(id: %hd) has bad (udp) cksum\n", ip->ip_id));
                goto bad_free_mbuf;
            }
        }
#if 0
    }
#endif

    /*
     *  handle DHCP/BOOTP
     */
    if (uh->uh_dport == RT_H2N_U16_C(BOOTP_SERVER))
    {
        bootp_input(pData, m);
        goto done_free_mbuf;
    }

    LogFunc(("uh src: %RTnaipv4:%d, dst: %RTnaipv4:%d\n",
             ip->ip_src.s_addr, RT_N2H_U16(uh->uh_sport),
             ip->ip_dst.s_addr, RT_N2H_U16(uh->uh_dport)));

    /*
     * handle DNS host resolver without creating a socket
     */
    if (   pData->fUseHostResolver
        && uh->uh_dport == RT_H2N_U16_C(53)
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_DNS))
    {
        struct sockaddr_in dst, src;

        src.sin_addr.s_addr = ip->ip_dst.s_addr;
        src.sin_port = uh->uh_dport;
        dst.sin_addr.s_addr = ip->ip_src.s_addr;
        dst.sin_port = uh->uh_sport;

        m_adj(m, sizeof(struct udpiphdr));

        m = hostresolver(pData, m, ip->ip_src.s_addr, uh->uh_sport);
        if (m == NULL)
            goto done_free_mbuf;

        slirpMbufTagService(pData, m, CTL_DNS);

        udp_output2(pData, NULL, m, &src, &dst, IPTOS_LOWDELAY);
        LogFlowFuncLeave();
        return;
    }

    /*
     *  handle TFTP
     */
    if (   uh->uh_dport == RT_H2N_U16_C(TFTP_SERVER)
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_TFTP))
    {
        if (pData->pvTftpSessions)
            slirpTftpInput(pData, m);
        goto done_free_mbuf;
    }

    /*
     * XXX: DNS proxy currently relies on the fact that each socket
     * only serves one request.
     */
    if (   pData->fUseDnsProxy
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_DNS)
        && (uh->uh_dport == RT_H2N_U16_C(53)))
    {
        so = NULL;
        goto new_socket;
    }

    /*
     * Locate pcb for datagram.
     */
    so = udp_last_so;
    if (   so->so_lport != uh->uh_sport
        || so->so_laddr.s_addr != ip->ip_src.s_addr)
    {
        struct socket *tmp;

        for (tmp = udb.so_next; tmp != &udb; tmp = tmp->so_next)
        {
            if (   tmp->so_lport        == uh->uh_sport
                && tmp->so_laddr.s_addr == ip->ip_src.s_addr)
            {
                so = tmp;
                break;
            }
        }
        if (tmp == &udb)
            so = NULL;
        else
        {
            udpstat.udpps_pcbcachemiss++;
            udp_last_so = so;
        }
    }

  new_socket:
    if (so == NULL)
    {
        /*
         * If there's no socket for this packet,
         * create one
         */
        if ((so = socreate()) == NULL)
        {
            Log2(("NAT: IP(id: %hd) failed to create socket\n", ip->ip_id));
            goto bad_free_mbuf;
        }

        /*
         * Setup fields
         */
        so->so_laddr = ip->ip_src;
        so->so_lport = uh->uh_sport;
        so->so_iptos = ip->ip_tos;

        if (udp_attach(pData, so) <= 0)
        {
            Log2(("NAT: IP(id: %hd) udp_attach errno = %d (%s)\n",
                        ip->ip_id, errno, strerror(errno)));
            sofree(pData, so);
            goto bad_free_mbuf;
        }

        /* udp_last_so = so; */
        /*
         * XXXXX Here, check if it's in udpexec_list,
         * and if it is, do the fork_exec() etc.
         */
    }

    so->so_faddr = ip->ip_dst;   /* XXX */
    so->so_fport = uh->uh_dport; /* XXX */
    Assert(so->so_type == IPPROTO_UDP);

    /*
     * DNS proxy
     */
    if (   pData->fUseDnsProxy
        && CTL_CHECK(ip->ip_dst.s_addr, CTL_DNS)
        && (uh->uh_dport == RT_H2N_U16_C(53)))
    {
        dnsproxy_query(pData, so, m, iphlen);
        goto done_free_mbuf;
    }

    iphlen += sizeof(struct udphdr);
    m->m_len -= iphlen;
    m->m_data += iphlen;

    ttl = ip->ip_ttl = save_ip.ip_ttl;
    if (ttl != so->so_sottl) {
        ret = setsockopt(so->s, IPPROTO_IP, IP_TTL,
                         (char *)&ttl, sizeof(ttl));
        if (RT_LIKELY(ret == 0))
            so->so_sottl = ttl;
    }

    tos = save_ip.ip_tos;
    if (tos != so->so_sotos) {
        ret = setsockopt(so->s, IPPROTO_IP, IP_TOS,
                         (char *)&tos, sizeof(tos));
        if (RT_LIKELY(ret == 0))
            so->so_sotos = tos;
    }

    {
        /*
         * Different OSes have different socket options for DF.  We
         * can't use IP_HDRINCL here as it's only valid for SOCK_RAW.
         */
#     define USE_DF_OPTION(_Optname) \
        const int dfopt = _Optname
#if   defined(IP_MTU_DISCOVER)
        USE_DF_OPTION(IP_MTU_DISCOVER);
#elif defined(IP_DONTFRAG)      /* Solaris 11+, FreeBSD */
        USE_DF_OPTION(IP_DONTFRAG);
#elif defined(IP_DONTFRAGMENT)  /* Windows */
        USE_DF_OPTION(IP_DONTFRAGMENT);
#else
        USE_DF_OPTION(0);
#endif
        if (dfopt) {
            int df = (save_ip.ip_off & IP_DF) != 0;
#if defined(IP_MTU_DISCOVER)
            df = df ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
#endif
            if (df != so->so_sodf) {
                ret = setsockopt(so->s, IPPROTO_IP, dfopt,
                                 (char *)&df, sizeof(df));
                if (RT_LIKELY(ret == 0))
                    so->so_sodf = df;
            }
        }
    }

    if (   sosendto(pData, so, m) == -1
        && (   !soIgnorableErrorCode(errno)
            && errno != ENOTCONN))
    {
        m->m_len += iphlen;
        m->m_data -= iphlen;
        *ip = save_ip;
        Log2(("NAT: UDP tx errno = %d (%s) on sent to %RTnaipv4\n",
              errno, strerror(errno), ip->ip_dst));
        icmp_error(pData, m, ICMP_UNREACH, ICMP_UNREACH_NET, 0, strerror(errno));
        so->so_m = NULL;
        LogFlowFuncLeave();
        return;
    }

    if (so->so_m)
        m_freem(pData, so->so_m);   /* used for ICMP if error on sorecvfrom */

    /* restore the orig mbuf packet */
    m->m_len += iphlen;
    m->m_data -= iphlen;
    *ip = save_ip;
    so->so_m = m;         /* ICMP backup */
    LogFlowFuncLeave();
    return;

bad_free_mbuf:
    Log2(("NAT: UDP(id: %hd) datagram to %RTnaipv4 with size(%d) claimed as bad\n",
        ip->ip_id, &ip->ip_dst, ip->ip_len));

done_free_mbuf:
    /* some services like bootp(built-in), dns(buildt-in) and dhcp don't need sockets
     * and create new m'buffers to send them to guest, so we'll free their incomming
     * buffers here.
     */
    if (m != NULL)
        m_freem(pData, m);
    LogFlowFuncLeave();
    return;
}
Exemple #16
0
int
udp_input(struct mbuf **mp, int *offp, int proto)
{
	struct sockaddr_in udp_in = { sizeof udp_in, AF_INET };
	int iphlen;
	struct ip *ip;
	struct udphdr *uh;
	struct inpcb *inp;
	struct mbuf *m;
	struct mbuf *opts = NULL;
	int len, off;
	struct ip save_ip;
	struct inpcbinfo *pcbinfo = &udbinfo[mycpuid];

	off = *offp;
	m = *mp;
	*mp = NULL;

	iphlen = off;
	udp_stat.udps_ipackets++;

	/*
	 * Strip IP options, if any; should skip this,
	 * make available to user, and use on returned packets,
	 * but we don't yet have a way to check the checksum
	 * with options still present.
	 */
	if (iphlen > sizeof(struct ip)) {
		ip_stripoptions(m);
		iphlen = sizeof(struct ip);
	}

	/*
	 * IP and UDP headers are together in first mbuf.
	 * Already checked and pulled up in ip_demux().
	 */
	KASSERT(m->m_len >= iphlen + sizeof(struct udphdr),
	    ("UDP header not in one mbuf"));

	ip = mtod(m, struct ip *);
	uh = (struct udphdr *)((caddr_t)ip + iphlen);

	/* destination port of 0 is illegal, based on RFC768. */
	if (uh->uh_dport == 0)
		goto bad;

	/*
	 * Make mbuf data length reflect UDP length.
	 * If not enough data to reflect UDP length, drop.
	 */
	len = ntohs((u_short)uh->uh_ulen);
	if (ip->ip_len != len) {
		if (len > ip->ip_len || len < sizeof(struct udphdr)) {
			udp_stat.udps_badlen++;
			goto bad;
		}
		m_adj(m, len - ip->ip_len);
		/* ip->ip_len = len; */
	}
	/*
	 * Save a copy of the IP header in case we want restore it
	 * for sending an ICMP error message in response.
	 */
	save_ip = *ip;

	/*
	 * Checksum extended UDP header and data.
	 */
	if (uh->uh_sum) {
		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
				uh->uh_sum = m->m_pkthdr.csum_data;
			else
				uh->uh_sum = in_pseudo(ip->ip_src.s_addr,
				    ip->ip_dst.s_addr, htonl((u_short)len +
				    m->m_pkthdr.csum_data + IPPROTO_UDP));
			uh->uh_sum ^= 0xffff;
		} else {
			char b[9];

			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
			bzero(((struct ipovly *)ip)->ih_x1, 9);
			((struct ipovly *)ip)->ih_len = uh->uh_ulen;
			uh->uh_sum = in_cksum(m, len + sizeof(struct ip));
			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
		}
		if (uh->uh_sum) {
			udp_stat.udps_badsum++;
			m_freem(m);
			return(IPPROTO_DONE);
		}
	} else
		udp_stat.udps_nosum++;

	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
	    	struct inpcbhead *connhead;
		struct inpcontainer *ic, *ic_marker;
		struct inpcontainerhead *ichead;
		struct udp_mcast_arg arg;
		struct inpcb *last;
		int error;

		/*
		 * Deliver a multicast or broadcast datagram to *all* sockets
		 * for which the local and remote addresses and ports match
		 * those of the incoming datagram.  This allows more than
		 * one process to receive multi/broadcasts on the same port.
		 * (This really ought to be done for unicast datagrams as
		 * well, but that would cause problems with existing
		 * applications that open both address-specific sockets and
		 * a wildcard socket listening to the same port -- they would
		 * end up receiving duplicates of every unicast datagram.
		 * Those applications open the multiple sockets to overcome an
		 * inadequacy of the UDP socket interface, but for backwards
		 * compatibility we avoid the problem here rather than
		 * fixing the interface.  Maybe 4.5BSD will remedy this?)
		 */

		/*
		 * Construct sockaddr format source address.
		 */
		udp_in.sin_port = uh->uh_sport;
		udp_in.sin_addr = ip->ip_src;
		arg.udp_in = &udp_in;
		/*
		 * Locate pcb(s) for datagram.
		 * (Algorithm copied from raw_intr().)
		 */
		last = NULL;
		arg.iphlen = iphlen;

		connhead = &pcbinfo->hashbase[
		    INP_PCBCONNHASH(ip->ip_src.s_addr, uh->uh_sport,
		    ip->ip_dst.s_addr, uh->uh_dport, pcbinfo->hashmask)];
		LIST_FOREACH(inp, connhead, inp_hash) {
#ifdef INET6
			if (!INP_ISIPV4(inp))
				continue;
#endif
			if (!in_hosteq(inp->inp_faddr, ip->ip_src) ||
			    !in_hosteq(inp->inp_laddr, ip->ip_dst) ||
			    inp->inp_fport != uh->uh_sport ||
			    inp->inp_lport != uh->uh_dport)
				continue;

			arg.inp = inp;
			arg.last = last;
			arg.ip = ip;
			arg.m = m;

			error = udp_mcast_input(&arg);
			if (error == ERESTART)
				continue;
			last = arg.last;

			if (error == EJUSTRETURN)
				goto done;
		}

		ichead = &pcbinfo->wildcardhashbase[
		    INP_PCBWILDCARDHASH(uh->uh_dport,
		    pcbinfo->wildcardhashmask)];
		ic_marker = in_pcbcontainer_marker(mycpuid);

		GET_PCBINFO_TOKEN(pcbinfo);
		LIST_INSERT_HEAD(ichead, ic_marker, ic_list);
		while ((ic = LIST_NEXT(ic_marker, ic_list)) != NULL) {
			LIST_REMOVE(ic_marker, ic_list);
			LIST_INSERT_AFTER(ic, ic_marker, ic_list);

			inp = ic->ic_inp;
			if (inp->inp_flags & INP_PLACEMARKER)
				continue;
#ifdef INET6
			if (!INP_ISIPV4(inp))
				continue;
#endif
			if (inp->inp_lport != uh->uh_dport)
				continue;
			if (inp->inp_laddr.s_addr != INADDR_ANY &&
			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
				continue;

			arg.inp = inp;
			arg.last = last;
			arg.ip = ip;
			arg.m = m;

			error = udp_mcast_input(&arg);
			if (error == ERESTART)
				continue;
			last = arg.last;

			if (error == EJUSTRETURN)
				break;
		}
		LIST_REMOVE(ic_marker, ic_list);
		REL_PCBINFO_TOKEN(pcbinfo);
done:
		if (last == NULL) {
			/*
			 * No matching pcb found; discard datagram.
			 * (No need to send an ICMP Port Unreachable
			 * for a broadcast or multicast datgram.)
			 */
			udp_stat.udps_noportbcast++;
			goto bad;
		}
#ifdef IPSEC
		/* check AH/ESP integrity. */
		if (ipsec4_in_reject_so(m, last->inp_socket)) {
			ipsecstat.in_polvio++;
			goto bad;
		}
#endif /*IPSEC*/
#ifdef FAST_IPSEC
		/* check AH/ESP integrity. */
		if (ipsec4_in_reject(m, last))
			goto bad;
#endif /*FAST_IPSEC*/
		udp_append(last, ip, m, iphlen + sizeof(struct udphdr),
		    &udp_in);
		return(IPPROTO_DONE);
	}
	/*
	 * Locate pcb for datagram.
	 */
	inp = in_pcblookup_pkthash(pcbinfo, ip->ip_src, uh->uh_sport,
	    ip->ip_dst, uh->uh_dport, TRUE, m->m_pkthdr.rcvif,
	    udp_reuseport_ext ? m : NULL);
	if (inp == NULL) {
		if (log_in_vain) {
			char buf[sizeof "aaa.bbb.ccc.ddd"];

			strcpy(buf, inet_ntoa(ip->ip_dst));
			log(LOG_INFO,
			    "Connection attempt to UDP %s:%d from %s:%d\n",
			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
			    ntohs(uh->uh_sport));
		}
		udp_stat.udps_noport++;
		if (m->m_flags & (M_BCAST | M_MCAST)) {
			udp_stat.udps_noportbcast++;
			goto bad;
		}
		if (blackhole)
			goto bad;
#ifdef ICMP_BANDLIM
		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
			goto bad;
#endif
		*ip = save_ip;
		ip->ip_len += iphlen;
		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
		return(IPPROTO_DONE);
	}
	KASSERT(INP_ISIPV4(inp), ("not inet inpcb"));
#ifdef IPSEC
	if (ipsec4_in_reject_so(m, inp->inp_socket)) {
		ipsecstat.in_polvio++;
		goto bad;
	}
#endif /*IPSEC*/
#ifdef FAST_IPSEC
	if (ipsec4_in_reject(m, inp))
		goto bad;
#endif /*FAST_IPSEC*/
	/*
	 * Check the minimum TTL for socket.
	 */
	if (ip->ip_ttl < inp->inp_ip_minttl)
		goto bad;

	/*
	 * Construct sockaddr format source address.
	 * Stuff source address and datagram in user buffer.
	 */
	udp_in.sin_port = uh->uh_sport;
	udp_in.sin_addr = ip->ip_src;
	if ((inp->inp_flags & INP_CONTROLOPTS) ||
	    (inp->inp_socket->so_options & SO_TIMESTAMP))
		ip_savecontrol(inp, &opts, ip, m);
	m_adj(m, iphlen + sizeof(struct udphdr));

	lwkt_gettoken(&inp->inp_socket->so_rcv.ssb_token);
	if (ssb_appendaddr(&inp->inp_socket->so_rcv,
	    (struct sockaddr *)&udp_in, m, opts) == 0) {
		lwkt_reltoken(&inp->inp_socket->so_rcv.ssb_token);
		udp_stat.udps_fullsock++;
		goto bad;
	}
	lwkt_reltoken(&inp->inp_socket->so_rcv.ssb_token);
	sorwakeup(inp->inp_socket);
	return(IPPROTO_DONE);
bad:
	m_freem(m);
	if (opts)
		m_freem(opts);
	return(IPPROTO_DONE);
}
Exemple #17
0
/*
 * Process a received ICMP message.
 */
void
icmp_input(struct mbuf *m, int hlen)
{
  register struct icmp *icp;
  register struct ip *ip=mtod(m, struct ip *);
  int icmplen=ip->ip_len;
  Slirp *slirp = m->slirp;

  DEBUG_CALL("icmp_input");
  DEBUG_ARG("m = %lx", (long )m);
  DEBUG_ARG("m_len = %d", m->m_len);

  /*
   * Locate icmp structure in mbuf, and check
   * that its not corrupted and of at least minimum length.
   */
  if (icmplen < ICMP_MINLEN) {          /* min 8 bytes payload */
  freeit:
    m_free(m);
    goto end_error;
  }

  m->m_len -= hlen;
  m->m_data += hlen;
  icp = mtod(m, struct icmp *);
  if (cksum(m, icmplen)) {
    goto freeit;
  }
  m->m_len += hlen;
  m->m_data -= hlen;

  DEBUG_ARG("icmp_type = %d", icp->icmp_type);
  switch (icp->icmp_type) {
  case ICMP_ECHO:
    ip->ip_len += hlen;	             /* since ip_input subtracts this */
    if (ip->ip_dst.s_addr == slirp->vhost_addr.s_addr) {
      icmp_reflect(m);
    } else if (slirp->restricted) {
        goto freeit;
    } else {
      struct socket *so;
      struct sockaddr_in addr;
      if ((so = socreate(slirp)) == NULL) goto freeit;
      if (icmp_send(so, m, hlen) == 0) {
        return;
      }
      if(udp_attach(so) == -1) {
	DEBUG_MISC((dfd,"icmp_input udp_attach errno = %d-%s\n",
		    errno,strerror(errno)));
	sofree(so);
	m_free(m);
	goto end_error;
      }
      so->so_m = m;
      so->so_faddr = ip->ip_dst;
      so->so_fport = htons(7);
      so->so_laddr = ip->ip_src;
      so->so_lport = htons(9);
      so->so_iptos = ip->ip_tos;
      so->so_type = IPPROTO_ICMP;
      so->so_state = SS_ISFCONNECTED;

      /* Send the packet */
      addr.sin_family = AF_INET;
      if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) ==
          slirp->vnetwork_addr.s_addr) {
	/* It's an alias */
	if (so->so_faddr.s_addr == slirp->vnameserver_addr.s_addr) {
	  if (get_dns_addr(&addr.sin_addr) < 0)
	    addr.sin_addr = loopback_addr;
	} else {
	  addr.sin_addr = loopback_addr;
	}
      } else {
	addr.sin_addr = so->so_faddr;
      }
      addr.sin_port = so->so_fport;
      if(sendto(so->s, icmp_ping_msg, strlen(icmp_ping_msg), 0,
		(struct sockaddr *)&addr, sizeof(addr)) == -1) {
	DEBUG_MISC((dfd,"icmp_input udp sendto tx errno = %d-%s\n",
		    errno,strerror(errno)));
	icmp_error(m, ICMP_UNREACH,ICMP_UNREACH_NET, 0,strerror(errno));
	udp_detach(so);
      }
    } /* if ip->ip_dst.s_addr == alias_addr.s_addr */
    break;
  case ICMP_UNREACH:
    /* XXX? report error? close socket? */
  case ICMP_TIMXCEED:
  case ICMP_PARAMPROB:
  case ICMP_SOURCEQUENCH:
  case ICMP_TSTAMP:
  case ICMP_MASKREQ:
  case ICMP_REDIRECT:
    m_free(m);
    break;

  default:
    m_free(m);
  } /* swith */

end_error:
  /* m is m_free()'d xor put in a socket xor or given to ip_send */
  return;
}
Exemple #18
0
static int 
ip_fw_chk(struct ip **pip, int hlen,
	struct ifnet *oif, int ignport, struct mbuf **m)
{
	struct ip_fw_chain *chain;
	struct ip_fw *rule = NULL;
	struct ip *ip = *pip;
	struct ifnet *const rif = (*m)->m_pkthdr.rcvif;
	u_short offset = (ip->ip_off & IP_OFFMASK);
	u_short src_port, dst_port;

	/*
	 * Go down the chain, looking for enlightment
	 */
	for (chain=ip_fw_chain.lh_first; chain; chain = chain->chain.le_next) {
		register struct ip_fw *const f = chain->rule;

		/* Check direction inbound */
		if (!oif && !(f->fw_flg & IP_FW_F_IN))
			continue;

		/* Check direction outbound */
		if (oif && !(f->fw_flg & IP_FW_F_OUT))
			continue;

		/* Fragments */
		if ((f->fw_flg & IP_FW_F_FRAG) && !(ip->ip_off & IP_OFFMASK))
			continue;

		/* If src-addr doesn't match, not this rule. */
		if (((f->fw_flg & IP_FW_F_INVSRC) != 0) ^ ((ip->ip_src.s_addr
		    & f->fw_smsk.s_addr) != f->fw_src.s_addr))
			continue;

		/* If dest-addr doesn't match, not this rule. */
		if (((f->fw_flg & IP_FW_F_INVDST) != 0) ^ ((ip->ip_dst.s_addr
		    & f->fw_dmsk.s_addr) != f->fw_dst.s_addr))
			continue;

		/* Interface check */
		if ((f->fw_flg & IF_FW_F_VIAHACK) == IF_FW_F_VIAHACK) {
			struct ifnet *const iface = oif ? oif : rif;

			/* Backwards compatibility hack for "via" */
			if (!iface || !iface_match(iface,
			    &f->fw_in_if, f->fw_flg & IP_FW_F_OIFNAME))
				continue;
		} else {
			/* Check receive interface */
			if ((f->fw_flg & IP_FW_F_IIFACE)
			    && (!rif || !iface_match(rif,
			      &f->fw_in_if, f->fw_flg & IP_FW_F_IIFNAME)))
				continue;
			/* Check outgoing interface */
			if ((f->fw_flg & IP_FW_F_OIFACE)
			    && (!oif || !iface_match(oif,
			      &f->fw_out_if, f->fw_flg & IP_FW_F_OIFNAME)))
				continue;
		}

		/* Check IP options */
		if (f->fw_ipopt != f->fw_ipnopt && !ipopts_match(ip, f))
			continue;

		/* Check protocol; if wildcard, match */
		if (f->fw_prot == IPPROTO_IP)
			goto got_match;

		/* If different, don't match */
		if (ip->ip_p != f->fw_prot) 
			continue;

#define PULLUP_TO(len)	do {						\
			    if ((*m)->m_len < (len)			\
				&& (*m = m_pullup(*m, (len))) == 0) {	\
				    goto bogusfrag;			\
			    }						\
			    *pip = ip = mtod(*m, struct ip *);		\
			    offset = (ip->ip_off & IP_OFFMASK);		\
			} while (0)

		/* Protocol specific checks */
		switch (ip->ip_p) {
		case IPPROTO_TCP:
		    {
			struct tcphdr *tcp;

			if (offset == 1)	/* cf. RFC 1858 */
				goto bogusfrag;
			if (offset != 0) {
				/*
				 * TCP flags and ports aren't available in this
				 * packet -- if this rule specified either one,
				 * we consider the rule a non-match.
				 */
				if (f->fw_nports != 0 ||
				    f->fw_tcpf != f->fw_tcpnf)
					continue;

				break;
			}
			PULLUP_TO(hlen + 14);
			tcp = (struct tcphdr *) ((u_long *)ip + ip->ip_hl);
			if (f->fw_tcpf != f->fw_tcpnf && !tcpflg_match(tcp, f))
				continue;
			src_port = ntohs(tcp->th_sport);
			dst_port = ntohs(tcp->th_dport);
			goto check_ports;
		    }

		case IPPROTO_UDP:
		    {
			struct udphdr *udp;

			if (offset != 0) {
				/*
				 * Port specification is unavailable -- if this
				 * rule specifies a port, we consider the rule
				 * a non-match.
				 */
				if (f->fw_nports != 0)
					continue;

				break;
			}
			PULLUP_TO(hlen + 4);
			udp = (struct udphdr *) ((u_long *)ip + ip->ip_hl);
			src_port = ntohs(udp->uh_sport);
			dst_port = ntohs(udp->uh_dport);
check_ports:
			if (!port_match(&f->fw_pts[0],
			    IP_FW_GETNSRCP(f), src_port,
			    f->fw_flg & IP_FW_F_SRNG))
				continue;
			if (!port_match(&f->fw_pts[IP_FW_GETNSRCP(f)],
			    IP_FW_GETNDSTP(f), dst_port,
			    f->fw_flg & IP_FW_F_DRNG)) 
				continue;
			break;
		    }

		case IPPROTO_ICMP:
		    {
			struct icmp *icmp;

			if (offset != 0)	/* Type isn't valid */
				break;
			PULLUP_TO(hlen + 2);
			icmp = (struct icmp *) ((u_long *)ip + ip->ip_hl);
			if (!icmptype_match(icmp, f))
				continue;
			break;
		    }
#undef PULLUP_TO

bogusfrag:
			if (fw_verbose)
				ipfw_report(NULL, ip, rif, oif);
			goto dropit;
		}

got_match:
		/* Ignore divert/tee rule if socket port is "ignport" */
		switch (f->fw_flg & IP_FW_F_COMMAND) {
		case IP_FW_F_DIVERT:
		case IP_FW_F_TEE:
			if (f->fw_divert_port == ignport)
				continue;       /* ignore this rule */
			break;
		}

		/* Update statistics */
		f->fw_pcnt += 1;
		f->fw_bcnt += ip->ip_len;
		f->timestamp = rtems_bsdnet_seconds_since_boot();

		/* Log to console if desired */
		if ((f->fw_flg & IP_FW_F_PRN) && fw_verbose)
			ipfw_report(f, ip, rif, oif);

		/* Take appropriate action */
		switch (f->fw_flg & IP_FW_F_COMMAND) {
		case IP_FW_F_ACCEPT:
			return(0);
		case IP_FW_F_COUNT:
			continue;
		case IP_FW_F_DIVERT:
			return(f->fw_divert_port);
		case IP_FW_F_TEE:
			/*
			 * XXX someday tee packet here, but beware that you
			 * can't use m_copym() or m_copypacket() because
			 * the divert input routine modifies the mbuf
			 * (and these routines only increment reference
			 * counts in the case of mbuf clusters), so need
			 * to write custom routine.
			 */
			continue;
		case IP_FW_F_SKIPTO:
#ifdef DIAGNOSTIC
			while (chain->chain.le_next
			    && chain->chain.le_next->rule->fw_number
				< f->fw_skipto_rule)
#else
			while (chain->chain.le_next->rule->fw_number
			    < f->fw_skipto_rule)
#endif
				chain = chain->chain.le_next;
			continue;
		}

		/* Deny/reject this packet using this rule */
		rule = f;
		break;
	}

#ifdef DIAGNOSTIC
	/* Rule 65535 should always be there and should always match */
	if (!chain)
		panic("ip_fw: chain");
#endif

	/*
	 * At this point, we're going to drop the packet.
	 * Send a reject notice if all of the following are true:
	 *
	 * - The packet matched a reject rule
	 * - The packet is not an ICMP packet
	 * - The packet is not a multicast or broadcast packet
	 */
	if ((rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_REJECT
	    && ip->ip_p != IPPROTO_ICMP
	    && !((*m)->m_flags & (M_BCAST|M_MCAST))
	    && !IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
		switch (rule->fw_reject_code) {
		case IP_FW_REJECT_RST:
		  {
			struct tcphdr *const tcp =
				(struct tcphdr *) ((u_long *)ip + ip->ip_hl);
			struct tcpiphdr ti, *const tip = (struct tcpiphdr *) ip;

			if (offset != 0 || (tcp->th_flags & TH_RST))
				break;
			ti.ti_i = *((struct ipovly *) ip);
			ti.ti_t = *tcp;
			bcopy(&ti, ip, sizeof(ti));
			NTOHL(tip->ti_seq);
			NTOHL(tip->ti_ack);
			tip->ti_len = ip->ip_len - hlen - (tip->ti_off << 2);
			if (tcp->th_flags & TH_ACK) {
				tcp_respond(NULL, tip, *m,
				    (tcp_seq)0, ntohl(tcp->th_ack), TH_RST);
			} else {
				if (tcp->th_flags & TH_SYN)
					tip->ti_len++;
				tcp_respond(NULL, tip, *m, tip->ti_seq
				    + tip->ti_len, (tcp_seq)0, TH_RST|TH_ACK);
			}
			*m = NULL;
			break;
		  }
		default:	/* Send an ICMP unreachable using code */
			icmp_error(*m, ICMP_UNREACH,
			    rule->fw_reject_code, 0L, 0);
			*m = NULL;
			break;
		}
	}

dropit:
	/*
	 * Finally, drop the packet.
	 */
	if (*m) {
		m_freem(*m);
		*m = NULL;
	}
	return(0);
}
Exemple #19
0
static int 
ip_fw_chk(struct ip **pip, int hlen,
	struct ifnet *oif, u_int16_t *cookie, struct mbuf **m,
	struct ip_fw_chain **flow_id)
{
	struct ip_fw_chain *chain;
	struct ip_fw *rule = NULL;
	struct ip *ip = NULL ;
	struct ifnet *const rif = (*m)->m_pkthdr.rcvif;
	u_short offset ;
	u_short src_port, dst_port;
#ifdef	IPFW_DIVERT_RESTART
	u_int16_t skipto = *cookie;
#else
	u_int16_t ignport = ntohs(*cookie);
#endif

	if (pip) { /* normal ip packet */
	    ip = *pip;
	    offset = (ip->ip_off & IP_OFFMASK);
	} else { /* bridged or non-ip packet */
	    struct ether_header *eh = mtod(*m, struct ether_header *);
	    switch (ntohs(eh->ether_type)) {
	    case ETHERTYPE_IP :
		if ((*m)->m_len<sizeof(struct ether_header) + sizeof(struct ip))
		    goto non_ip ;
		ip = (struct ip *)(eh + 1 );
		if (ip->ip_v != IPVERSION)
		    goto non_ip ;
		hlen = ip->ip_hl << 2;
		if (hlen < sizeof(struct ip)) /* minimum header length */
		    goto non_ip ;
		if ((*m)->m_len < 14 + hlen + 14) {
		    printf("-- m_len %d, need more...\n", (*m)->m_len);
		    goto non_ip ;
		}
		offset = (ip->ip_off & IP_OFFMASK);
		break ;
	    default :
non_ip:		ip = NULL ;
		break ;
	    }
	}

	if (*flow_id) {
	    if (fw_one_pass)
		return 0 ; /* accept if passed first test */
	    /*
	     * pkt has already been tagged. Look for the next rule
	     * to restart processing
	     */
	    if ( (chain = (*flow_id)->rule->next_rule_ptr) == NULL )
		chain = (*flow_id)->rule->next_rule_ptr =
			lookup_next_rule(*flow_id) ;
		if (!chain)
		    goto dropit;
	} else {
	    chain=LIST_FIRST(&ip_fw_chain);
#ifdef IPFW_DIVERT_RESTART
	    if ( skipto ) {
		/*
		 * If we've been asked to start at a given rule immediatly,
		 * do so.
		 */
                if (skipto >= 65535)
                        goto dropit;
                while (chain && (chain->rule->fw_number <= skipto)) {
                        chain = LIST_NEXT(chain, chain);
                }
                if (! chain)
		    goto dropit;
	    }
#endif /* IPFW_DIVERT_RESTART */
        }
	*cookie = 0;
	for (; chain; chain = LIST_NEXT(chain, chain)) {
		register struct ip_fw *f;
again:
		f = chain->rule;

		if (oif) {
			/* Check direction outbound */
			if (!(f->fw_flg & IP_FW_F_OUT))
				continue;
		} else {
			/* Check direction inbound */
			if (!(f->fw_flg & IP_FW_F_IN))
				continue;
		}

		if (ip == NULL ) {
		    /*
		     * do relevant checks for non-ip packets:
		     * after this, only goto got_match or continue
		     */
		    struct ether_header *eh = mtod(*m, struct ether_header *);
		    int i, h, l ;
#if 0
		    printf("-- ip_fw: rule %d(%d) for %6D <- %6D type 0x%04x\n",
			    f->fw_number, IP_FW_GETNSRCP(f),
			    eh->ether_dhost, ".", eh->ether_shost, ".",
			    ntohs(eh->ether_type) );
#endif
		    /*
		     * make default rule always match or we have a panic
		     */
		    if (f->fw_number == 65535)
			goto got_match ;

		    /*
		     * temporary hack: 
		     *   udp from 0.0.0.0 means this rule applies.
		     *   1 src port is match ether type
		     *   2 src ports (interval) is match ether type
		     *   3 src ports is match ether address
		     */
		    if (f->fw_src.s_addr != 0 || f->fw_prot != IPPROTO_UDP)
			continue ;
		    switch (IP_FW_GETNSRCP(f)) {
		    case 1: /* match one type */
			if (  /* ( (f->fw_flg & IP_FW_F_INVSRC) != 0) ^ */
			      ( f->fw_pts[0] == ntohs(eh->ether_type) )  ) {
			    printf("match!\n");
			    goto got_match ;
			}
		    default:
			break ;
		    }
		    continue;
		}
		/* Fragments */
		if ((f->fw_flg & IP_FW_F_FRAG) && !(ip->ip_off & IP_OFFMASK))
			continue;

		/* If src-addr doesn't match, not this rule. */
		if (((f->fw_flg & IP_FW_F_INVSRC) != 0) ^ ((ip->ip_src.s_addr
		    & f->fw_smsk.s_addr) != f->fw_src.s_addr))
			continue;

		/* If dest-addr doesn't match, not this rule. */
		if (((f->fw_flg & IP_FW_F_INVDST) != 0) ^ ((ip->ip_dst.s_addr
		    & f->fw_dmsk.s_addr) != f->fw_dst.s_addr))
			continue;

		/* Interface check */
		if ((f->fw_flg & IF_FW_F_VIAHACK) == IF_FW_F_VIAHACK) {
			struct ifnet *const iface = oif ? oif : rif;

			/* Backwards compatibility hack for "via" */
			if (!iface || !iface_match(iface,
			    &f->fw_in_if, f->fw_flg & IP_FW_F_OIFNAME))
				continue;
		} else {
			/* Check receive interface */
			if ((f->fw_flg & IP_FW_F_IIFACE)
			    && (!rif || !iface_match(rif,
			      &f->fw_in_if, f->fw_flg & IP_FW_F_IIFNAME)))
				continue;
			/* Check outgoing interface */
			if ((f->fw_flg & IP_FW_F_OIFACE)
			    && (!oif || !iface_match(oif,
			      &f->fw_out_if, f->fw_flg & IP_FW_F_OIFNAME)))
				continue;
		}

		/* Check IP options */
		if (f->fw_ipopt != f->fw_ipnopt && !ipopts_match(ip, f))
			continue;

		/* Check protocol; if wildcard, match */
		if (f->fw_prot == IPPROTO_IP)
			goto got_match;

		/* If different, don't match */
		if (ip->ip_p != f->fw_prot) 
			continue;

#define PULLUP_TO(len)	do {						\
			    if ((*m)->m_len < (len) ) {			\
				if ( (*m = m_pullup(*m, (len))) == 0) 	\
				    goto bogusfrag;			\
				*pip = ip = mtod(*m, struct ip *);	\
				offset = (ip->ip_off & IP_OFFMASK);	\
			    }						\
			} while (0)

		/* Protocol specific checks */
		switch (ip->ip_p) {
		case IPPROTO_TCP:
		    {
			struct tcphdr *tcp;

			if (offset == 1)	/* cf. RFC 1858 */
				goto bogusfrag;
			if (offset != 0) {
				/*
				 * TCP flags and ports aren't available in this
				 * packet -- if this rule specified either one,
				 * we consider the rule a non-match.
				 */
				if (f->fw_nports != 0 ||
				    f->fw_tcpf != f->fw_tcpnf)
					continue;

				break;
			}
			PULLUP_TO(hlen + 14);
			tcp = (struct tcphdr *) ((u_long *)ip + ip->ip_hl);
			if (f->fw_tcpf != f->fw_tcpnf && !tcpflg_match(tcp, f))
				continue;
			src_port = ntohs(tcp->th_sport);
			dst_port = ntohs(tcp->th_dport);
			goto check_ports;
		    }

		case IPPROTO_UDP:
		    {
			struct udphdr *udp;

			if (offset != 0) {
				/*
				 * Port specification is unavailable -- if this
				 * rule specifies a port, we consider the rule
				 * a non-match.
				 */
				if (f->fw_nports != 0)
					continue;

				break;
			}
			PULLUP_TO(hlen + 4);
			udp = (struct udphdr *) ((u_long *)ip + ip->ip_hl);
			src_port = ntohs(udp->uh_sport);
			dst_port = ntohs(udp->uh_dport);
check_ports:
			if (!port_match(&f->fw_pts[0],
			    IP_FW_GETNSRCP(f), src_port,
			    f->fw_flg & IP_FW_F_SRNG))
				continue;
			if (!port_match(&f->fw_pts[IP_FW_GETNSRCP(f)],
			    IP_FW_GETNDSTP(f), dst_port,
			    f->fw_flg & IP_FW_F_DRNG)) 
				continue;
			break;
		    }

		case IPPROTO_ICMP:
		    {
			struct icmp *icmp;

			if (offset != 0)	/* Type isn't valid */
				break;
			PULLUP_TO(hlen + 2);
			icmp = (struct icmp *) ((u_long *)ip + ip->ip_hl);
			if (!icmptype_match(icmp, f))
				continue;
			break;
		    }
#undef PULLUP_TO

bogusfrag:
			if (fw_verbose)
				ipfw_report(NULL, ip, rif, oif);
			goto dropit;
		}

got_match:
		*flow_id = chain ; /* XXX set flow id */
#ifndef IPFW_DIVERT_RESTART
		/* Ignore divert/tee rule if socket port is "ignport" */
		switch (f->fw_flg & IP_FW_F_COMMAND) {
		case IP_FW_F_DIVERT:
		case IP_FW_F_TEE:
			if (f->fw_divert_port == ignport)
				continue;       /* ignore this rule */
			break;
		}

#endif /* IPFW_DIVERT_RESTART */
		/* Update statistics */
		f->fw_pcnt += 1;
		/*
		 * note -- bridged-ip packets still have some fields
		 * in network order, including ip_len
		 */
		if (ip) {
		    if (pip)
			f->fw_bcnt += ip->ip_len;
		    else
			f->fw_bcnt += ntohs(ip->ip_len);
		}
		f->timestamp = time.tv_sec;

		/* Log to console if desired */
		if ((f->fw_flg & IP_FW_F_PRN) && fw_verbose)
			ipfw_report(f, ip, rif, oif);

		/* Take appropriate action */
		switch (f->fw_flg & IP_FW_F_COMMAND) {
		case IP_FW_F_ACCEPT:
			return(0);
		case IP_FW_F_COUNT:
			continue;
#ifdef IPDIVERT
		case IP_FW_F_DIVERT:
#ifdef IPFW_DIVERT_RESTART
			*cookie = f->fw_number;
#else
			*cookie = htons(f->fw_divert_port);
#endif /* IPFW_DIVERT_RESTART */
			return(f->fw_divert_port);
#endif
		case IP_FW_F_TEE:
			/*
			 * XXX someday tee packet here, but beware that you
			 * can't use m_copym() or m_copypacket() because
			 * the divert input routine modifies the mbuf
			 * (and these routines only increment reference
			 * counts in the case of mbuf clusters), so need
			 * to write custom routine.
			 */
			continue;
		case IP_FW_F_SKIPTO: /* XXX check */
		    if ( f->next_rule_ptr )
			chain = f->next_rule_ptr ;
		    else
			chain = lookup_next_rule(chain) ;
		    if (!chain)
			goto dropit;
		    goto again ;
#ifdef DUMMYNET
		case IP_FW_F_PIPE:
			return(f->fw_pipe_nr | 0x10000 );
#endif
		}

		/* Deny/reject this packet using this rule */
		rule = f;
		break;
	}

#ifdef DIAGNOSTIC
	/* Rule 65535 should always be there and should always match */
	if (!chain)
		panic("ip_fw: chain");
#endif

	/*
	 * At this point, we're going to drop the packet.
	 * Send a reject notice if all of the following are true:
	 *
	 * - The packet matched a reject rule
	 * - The packet is not an ICMP packet, or is an ICMP query packet
	 * - The packet is not a multicast or broadcast packet
	 */
	if ((rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_REJECT
	    && ip
	    && (ip->ip_p != IPPROTO_ICMP || is_icmp_query(ip))
	    && !((*m)->m_flags & (M_BCAST|M_MCAST))
	    && !IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
		switch (rule->fw_reject_code) {
		case IP_FW_REJECT_RST:
		  {
			struct tcphdr *const tcp =
				(struct tcphdr *) ((u_long *)ip + ip->ip_hl);
			struct tcpiphdr ti, *const tip = (struct tcpiphdr *) ip;

			if (offset != 0 || (tcp->th_flags & TH_RST))
				break;
			ti.ti_i = *((struct ipovly *) ip);
			ti.ti_t = *tcp;
			bcopy(&ti, ip, sizeof(ti));
			NTOHL(tip->ti_seq);
			NTOHL(tip->ti_ack);
			tip->ti_len = ip->ip_len - hlen - (tip->ti_off << 2);
			if (tcp->th_flags & TH_ACK) {
				tcp_respond(NULL, tip, *m,
				    (tcp_seq)0, ntohl(tcp->th_ack), TH_RST);
			} else {
				if (tcp->th_flags & TH_SYN)
					tip->ti_len++;
				tcp_respond(NULL, tip, *m, tip->ti_seq
				    + tip->ti_len, (tcp_seq)0, TH_RST|TH_ACK);
			}
			*m = NULL;
			break;
		  }
		default:	/* Send an ICMP unreachable using code */
			icmp_error(*m, ICMP_UNREACH,
			    rule->fw_reject_code, 0L, 0);
			*m = NULL;
			break;
		}
	}

dropit:
	/*
	 * Finally, drop the packet.
	 */
	if (*m) {
		m_freem(*m);
		*m = NULL;
	}
	return(0);
}