Exemple #1
0
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
{
	unsigned int hdrlen = 24;

	if (ieee80211_is_data(fc)) {
		if (ieee80211_has_a4(fc))
			hdrlen = 30;
		if (ieee80211_is_data_qos(fc)) {
			hdrlen += IEEE80211_QOS_CTL_LEN;
			if (ieee80211_has_order(fc))
				hdrlen += IEEE80211_HT_CTL_LEN;
		}
		goto out;
	}

	if (ieee80211_is_ctl(fc)) {
		/*
		 * ACK and CTS are 10 bytes, all others 16. To see how
		 * to get this condition consider
		 *   subtype mask:   0b0000000011110000 (0x00F0)
		 *   ACK subtype:    0b0000000011010000 (0x00D0)
		 *   CTS subtype:    0b0000000011000000 (0x00C0)
		 *   bits that matter:         ^^^      (0x00E0)
		 *   value of those: 0b0000000011000000 (0x00C0)
		 */
		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
			hdrlen = 10;
		else
			hdrlen = 16;
	}
out:
	return hdrlen;
}
Exemple #2
0
static unsigned int _rtl_rx_get_padding(struct ieee80211_hdr *hdr,
					unsigned int len)
{
#if NET_IP_ALIGN != 0
	unsigned int padding = 0;
#endif

	/* make function no-op when possible */
	if (NET_IP_ALIGN == 0 || len < sizeof(*hdr))
		return 0;

#if NET_IP_ALIGN != 0
	/* alignment calculation as in lbtf_rx() / carl9170_rx_copy_data() */
	/* TODO: deduplicate common code, define helper function instead? */

	if (ieee80211_is_data_qos(hdr->frame_control)) {
		u8 *qc = ieee80211_get_qos_ctl(hdr);

		padding ^= NET_IP_ALIGN;

		/* Input might be invalid, avoid accessing memory outside
		 * the buffer.
		 */
		if ((unsigned long)qc - (unsigned long)hdr < len &&
		    *qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
			padding ^= NET_IP_ALIGN;
	}

	if (ieee80211_has_a4(hdr->frame_control))
		padding ^= NET_IP_ALIGN;

	return padding;
#endif
}
Exemple #3
0
static struct sk_buff *carl9170_rx_copy_data(u8 *buf, int len)
{
	struct sk_buff *skb;
	int reserved = 0;
	struct ieee80211_hdr *hdr = (void *) buf;

	if (ieee80211_is_data_qos(hdr->frame_control)) {
		u8 *qc = ieee80211_get_qos_ctl(hdr);
		reserved += NET_IP_ALIGN;

		if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
			reserved += NET_IP_ALIGN;
	}

	if (ieee80211_has_a4(hdr->frame_control))
		reserved += NET_IP_ALIGN;

	reserved = 32 + (reserved & NET_IP_ALIGN);

	skb = dev_alloc_skb(len + reserved);
	if (likely(skb)) {
		skb_reserve(skb, reserved);
		memcpy(skb_put(skb, len), buf, len);
	}

	return skb;
}
int ath9k_cmn_padpos(__le16 frame_control)
{
	int padpos = 24;
	if (ieee80211_has_a4(frame_control)) {
		padpos += ETH_ALEN;
	}
	if (ieee80211_is_data_qos(frame_control)) {
		padpos += IEEE80211_QOS_CTL_LEN;
	}

	return padpos;
}
u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
			enum nl80211_iftype type)
{
	__le16 fc = hdr->frame_control;

	 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
	if (len < 16)
		return NULL;

	if (ieee80211_is_data(fc)) {
		if (len < 24) /* drop incorrect hdr len (data) */
			return NULL;

		if (ieee80211_has_a4(fc))
			return NULL;
		if (ieee80211_has_tods(fc))
			return hdr->addr1;
		if (ieee80211_has_fromds(fc))
			return hdr->addr2;

		return hdr->addr3;
	}

	if (ieee80211_is_mgmt(fc)) {
		if (len < 24) /* drop incorrect hdr len (mgmt) */
			return NULL;
		return hdr->addr3;
	}

	if (ieee80211_is_ctl(fc)) {
		if(ieee80211_is_pspoll(fc))
			return hdr->addr1;

		if (ieee80211_is_back_req(fc)) {
			switch (type) {
			case NL80211_IFTYPE_STATION:
				return hdr->addr2;
			case NL80211_IFTYPE_AP:
			case NL80211_IFTYPE_AP_VLAN:
				return hdr->addr1;
			default:
				break; /* fall through to the return */
			}
		}
	}

	return NULL;
}
Exemple #6
0
static void ccmp_special_blocks(struct sk_buff *skb, u8 *pn, u8 *scratch,
				int encrypted)
{
	__le16 mask_fc;
	int a4_included;
	u8 qos_tid;
	u8 *b_0, *aad;
	u16 data_len, len_a;
	unsigned int hdrlen;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;

	b_0 = scratch + 3 * AES_BLOCK_LEN;
	aad = scratch + 4 * AES_BLOCK_LEN;

	/*
	 * Mask FC: zero subtype b4 b5 b6
	 * Retry, PwrMgt, MoreData; set Protected
	 */
	mask_fc = hdr->frame_control;
	mask_fc &= ~cpu_to_le16(0x0070 | IEEE80211_FCTL_RETRY |
				IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA);
	mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);

	hdrlen = ieee80211_hdrlen(hdr->frame_control);
	len_a = hdrlen - 2;
	a4_included = ieee80211_has_a4(hdr->frame_control);

	if (ieee80211_is_data_qos(hdr->frame_control))
		qos_tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
	else
		qos_tid = 0;

	data_len = skb->len - hdrlen - CCMP_HDR_LEN;
	if (encrypted)
		data_len -= CCMP_MIC_LEN;

	/* First block, b_0 */
	b_0[0] = 0x59; /* flags: Adata: 1, M: 011, L: 001 */
	/* Nonce: QoS Priority | A2 | PN */
	b_0[1] = qos_tid;
	memcpy(&b_0[2], hdr->addr2, ETH_ALEN);
	memcpy(&b_0[8], pn, CCMP_PN_LEN);
	/* l(m) */
	put_unaligned_be16(data_len, &b_0[14]);

	/* AAD (extra authenticate-only data) / masked 802.11 header
	 * FC | A1 | A2 | A3 | SC | [A4] | [QC] */
	put_unaligned_be16(len_a, &aad[0]);
	put_unaligned(mask_fc, (__le16 *)&aad[2]);
	memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN);

	/* Mask Seq#, leave Frag# */
	aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f;
	aad[23] = 0;

	if (a4_included) {
		memcpy(&aad[24], hdr->addr4, ETH_ALEN);
		aad[30] = qos_tid;
		aad[31] = 0;
	} else {
		memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN);
		aad[24] = qos_tid;
	}
}
Exemple #7
0
int vnt_generate_fifo_header(struct vnt_private *priv, u32 dma_idx,
			     struct vnt_tx_desc *head_td, struct sk_buff *skb)
{
	struct vnt_td_info *td_info = head_td->td_info;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct ieee80211_tx_rate *tx_rate = &info->control.rates[0];
	struct ieee80211_rate *rate;
	struct ieee80211_key_conf *tx_key;
	struct ieee80211_hdr *hdr;
	struct vnt_tx_fifo_head *tx_buffer_head =
			(struct vnt_tx_fifo_head *)td_info->buf;
	u16 tx_body_size = skb->len, current_rate;
	u8 pkt_type;
	bool is_pspoll = false;

	memset(tx_buffer_head, 0, sizeof(*tx_buffer_head));

	hdr = (struct ieee80211_hdr *)(skb->data);

	rate = ieee80211_get_tx_rate(priv->hw, info);

	current_rate = rate->hw_value;
	if (priv->wCurrentRate != current_rate &&
			!(priv->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)) {
		priv->wCurrentRate = current_rate;

		RFbSetPower(priv, priv->wCurrentRate,
			    priv->hw->conf.chandef.chan->hw_value);
	}

	if (current_rate > RATE_11M) {
		if (info->band == NL80211_BAND_5GHZ) {
			pkt_type = PK_TYPE_11A;
		} else {
			if (tx_rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
				pkt_type = PK_TYPE_11GB;
			else
				pkt_type = PK_TYPE_11GA;
		}
	} else {
		pkt_type = PK_TYPE_11B;
	}

	/*Set fifo controls */
	if (pkt_type == PK_TYPE_11A)
		tx_buffer_head->fifo_ctl = 0;
	else if (pkt_type == PK_TYPE_11B)
		tx_buffer_head->fifo_ctl = cpu_to_le16(FIFOCTL_11B);
	else if (pkt_type == PK_TYPE_11GB)
		tx_buffer_head->fifo_ctl = cpu_to_le16(FIFOCTL_11GB);
	else if (pkt_type == PK_TYPE_11GA)
		tx_buffer_head->fifo_ctl = cpu_to_le16(FIFOCTL_11GA);

	/* generate interrupt */
	tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_GENINT);

	if (!ieee80211_is_data(hdr->frame_control)) {
		tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_TMOEN);
		tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_ISDMA0);
		tx_buffer_head->time_stamp =
			cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
	} else {
		tx_buffer_head->time_stamp =
			cpu_to_le16(DEFAULT_MSDU_LIFETIME_RES_64us);
	}

	if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))
		tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_NEEDACK);

	if (ieee80211_has_retry(hdr->frame_control))
		tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_LRETRY);

	if (tx_rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
		priv->byPreambleType = PREAMBLE_SHORT;
	else
		priv->byPreambleType = PREAMBLE_LONG;

	if (tx_rate->flags & IEEE80211_TX_RC_USE_RTS_CTS)
		tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_RTS);

	if (ieee80211_has_a4(hdr->frame_control)) {
		tx_buffer_head->fifo_ctl |= cpu_to_le16(FIFOCTL_LHEAD);
		priv->bLongHeader = true;
	}

	if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER)
		is_pspoll = true;

	tx_buffer_head->frag_ctl =
			cpu_to_le16(ieee80211_get_hdrlen_from_skb(skb) << 10);

	if (info->control.hw_key) {
		tx_key = info->control.hw_key;

		switch (info->control.hw_key->cipher) {
		case WLAN_CIPHER_SUITE_WEP40:
		case WLAN_CIPHER_SUITE_WEP104:
			tx_buffer_head->frag_ctl |= cpu_to_le16(FRAGCTL_LEGACY);
			break;
		case WLAN_CIPHER_SUITE_TKIP:
			tx_buffer_head->frag_ctl |= cpu_to_le16(FRAGCTL_TKIP);
			break;
		case WLAN_CIPHER_SUITE_CCMP:
			tx_buffer_head->frag_ctl |= cpu_to_le16(FRAGCTL_AES);
		default:
			break;
		}
	}

	tx_buffer_head->current_rate = cpu_to_le16(current_rate);

	/* legacy rates TODO use ieee80211_tx_rate */
	if (current_rate >= RATE_18M && ieee80211_is_data(hdr->frame_control)) {
		if (priv->byAutoFBCtrl == AUTO_FB_0)
			tx_buffer_head->fifo_ctl |=
						cpu_to_le16(FIFOCTL_AUTO_FB_0);
		else if (priv->byAutoFBCtrl == AUTO_FB_1)
			tx_buffer_head->fifo_ctl |=
						cpu_to_le16(FIFOCTL_AUTO_FB_1);
	}

	tx_buffer_head->frag_ctl |= cpu_to_le16(FRAGCTL_NONFRAG);

	s_cbFillTxBufHead(priv, pkt_type, (u8 *)tx_buffer_head,
			  dma_idx, head_td, is_pspoll);

	if (info->control.hw_key) {
		tx_key = info->control.hw_key;
		if (tx_key->keylen > 0)
			vnt_fill_txkey(hdr, tx_buffer_head->tx_key,
				tx_key, skb, tx_body_size, td_info->mic_hdr);
	}

	return 0;
}
Exemple #8
0
static void vnt_fill_txkey(struct ieee80211_hdr *hdr, u8 *key_buffer,
			   struct ieee80211_key_conf *tx_key,
			   struct sk_buff *skb,	u16 payload_len,
			   struct vnt_mic_hdr *mic_hdr)
{
	u64 pn64;
	u8 *iv = ((u8 *)hdr + ieee80211_get_hdrlen_from_skb(skb));

	/* strip header and icv len from payload */
	payload_len -= ieee80211_get_hdrlen_from_skb(skb);
	payload_len -= tx_key->icv_len;

	switch (tx_key->cipher) {
	case WLAN_CIPHER_SUITE_WEP40:
	case WLAN_CIPHER_SUITE_WEP104:
		memcpy(key_buffer, iv, 3);
		memcpy(key_buffer + 3, tx_key->key, tx_key->keylen);

		if (tx_key->keylen == WLAN_KEY_LEN_WEP40) {
			memcpy(key_buffer + 8, iv, 3);
			memcpy(key_buffer + 11,
			       tx_key->key, WLAN_KEY_LEN_WEP40);
		}

		break;
	case WLAN_CIPHER_SUITE_TKIP:
		ieee80211_get_tkip_p2k(tx_key, skb, key_buffer);

		break;
	case WLAN_CIPHER_SUITE_CCMP:

		if (!mic_hdr)
			return;

		mic_hdr->id = 0x59;
		mic_hdr->payload_len = cpu_to_be16(payload_len);
		ether_addr_copy(mic_hdr->mic_addr2, hdr->addr2);

		pn64 = atomic64_read(&tx_key->tx_pn);
		mic_hdr->ccmp_pn[5] = pn64;
		mic_hdr->ccmp_pn[4] = pn64 >> 8;
		mic_hdr->ccmp_pn[3] = pn64 >> 16;
		mic_hdr->ccmp_pn[2] = pn64 >> 24;
		mic_hdr->ccmp_pn[1] = pn64 >> 32;
		mic_hdr->ccmp_pn[0] = pn64 >> 40;

		if (ieee80211_has_a4(hdr->frame_control))
			mic_hdr->hlen = cpu_to_be16(28);
		else
			mic_hdr->hlen = cpu_to_be16(22);

		ether_addr_copy(mic_hdr->addr1, hdr->addr1);
		ether_addr_copy(mic_hdr->addr2, hdr->addr2);
		ether_addr_copy(mic_hdr->addr3, hdr->addr3);

		mic_hdr->frame_control = cpu_to_le16(
			le16_to_cpu(hdr->frame_control) & 0xc78f);
		mic_hdr->seq_ctrl = cpu_to_le16(
				le16_to_cpu(hdr->seq_ctrl) & 0xf);

		if (ieee80211_has_a4(hdr->frame_control))
			ether_addr_copy(mic_hdr->addr4, hdr->addr4);

		memcpy(key_buffer, tx_key->key, WLAN_KEY_LEN_CCMP);

		break;
	default:
		break;
	}
}
Exemple #9
0
static void _rtl_usb_rx_process_agg(struct ieee80211_hw *hw,
                                    struct sk_buff *skb)
{
    struct rtl_priv *rtlpriv = rtl_priv(hw);
    u8 *rxdesc = skb->data;
    struct ieee80211_hdr *hdr;
    bool unicast = false;
    __le16 fc;
    struct ieee80211_rx_status rx_status = {0};
    struct rtl_stats stats = {
        .signal = 0,
        .rate = 0,
    };

    skb_pull(skb, RTL_RX_DESC_SIZE);
    rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, rxdesc, skb);
    skb_pull(skb, (stats.rx_drvinfo_size + stats.rx_bufshift));
    hdr = (struct ieee80211_hdr *)(skb->data);
    fc = hdr->frame_control;
    if (!stats.crc) {
        memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));

        if (is_broadcast_ether_addr(hdr->addr1)) {
            /*TODO*/;
        } else if (is_multicast_ether_addr(hdr->addr1)) {
            /*TODO*/
        } else {
            unicast = true;
            rtlpriv->stats.rxbytesunicast +=  skb->len;
        }

        if (ieee80211_is_data(fc)) {
            rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX);

            if (unicast)
                rtlpriv->link_info.num_rx_inperiod++;
        }
        /* static bcn for roaming */
        rtl_beacon_statistic(hw, skb);
    }
}

static void _rtl_usb_rx_process_noagg(struct ieee80211_hw *hw,
                                      struct sk_buff *skb)
{
    struct rtl_priv *rtlpriv = rtl_priv(hw);
    u8 *rxdesc = skb->data;
    struct ieee80211_hdr *hdr;
    bool unicast = false;
    __le16 fc;
    struct ieee80211_rx_status rx_status = {0};
    struct rtl_stats stats = {
        .signal = 0,
        .rate = 0,
    };

    skb_pull(skb, RTL_RX_DESC_SIZE);
    rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, rxdesc, skb);
    skb_pull(skb, (stats.rx_drvinfo_size + stats.rx_bufshift));
    hdr = (struct ieee80211_hdr *)(skb->data);
    fc = hdr->frame_control;
    if (!stats.crc) {
        memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));

        if (is_broadcast_ether_addr(hdr->addr1)) {
            /*TODO*/;
        } else if (is_multicast_ether_addr(hdr->addr1)) {
            /*TODO*/
        } else {
            unicast = true;
            rtlpriv->stats.rxbytesunicast +=  skb->len;
        }

        if (ieee80211_is_data(fc)) {
            rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX);

            if (unicast)
                rtlpriv->link_info.num_rx_inperiod++;
        }

        /* static bcn for roaming */
        rtl_beacon_statistic(hw, skb);

        if (likely(rtl_action_proc(hw, skb, false)))
            ieee80211_rx(hw, skb);
        else
            dev_kfree_skb_any(skb);
    }
}

static void _rtl_rx_pre_process(struct ieee80211_hw *hw, struct sk_buff *skb)
{
    struct sk_buff *_skb;
    struct sk_buff_head rx_queue;
    struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));

    skb_queue_head_init(&rx_queue);
    if (rtlusb->usb_rx_segregate_hdl)
        rtlusb->usb_rx_segregate_hdl(hw, skb, &rx_queue);
    WARN_ON(skb_queue_empty(&rx_queue));
    while (!skb_queue_empty(&rx_queue)) {
        _skb = skb_dequeue(&rx_queue);
        _rtl_usb_rx_process_agg(hw, _skb);
        ieee80211_rx(hw, _skb);
    }
}

#define __RX_SKB_MAX_QUEUED	64

static void _rtl_rx_work(unsigned long param)
{
    struct rtl_usb *rtlusb = (struct rtl_usb *)param;
    struct ieee80211_hw *hw = usb_get_intfdata(rtlusb->intf);
    struct sk_buff *skb;

    while ((skb = skb_dequeue(&rtlusb->rx_queue))) {
        if (unlikely(IS_USB_STOP(rtlusb))) {
            dev_kfree_skb_any(skb);
            continue;
        }

        if (likely(!rtlusb->usb_rx_segregate_hdl)) {
            _rtl_usb_rx_process_noagg(hw, skb);
        } else {
            /* TO DO */
            _rtl_rx_pre_process(hw, skb);
            pr_err("rx agg not supported\n");
        }
    }
}

static unsigned int _rtl_rx_get_padding(struct ieee80211_hdr *hdr,
                                        unsigned int len)
{
#if NET_IP_ALIGN != 0
    unsigned int padding = 0;
#endif

    /* make function no-op when possible */
    if (NET_IP_ALIGN == 0 || len < sizeof(*hdr))
        return 0;

#if NET_IP_ALIGN != 0
    /* alignment calculation as in lbtf_rx() / carl9170_rx_copy_data() */
    /* TODO: deduplicate common code, define helper function instead? */

    if (ieee80211_is_data_qos(hdr->frame_control)) {
        u8 *qc = ieee80211_get_qos_ctl(hdr);

        padding ^= NET_IP_ALIGN;

        /* Input might be invalid, avoid accessing memory outside
         * the buffer.
         */
        if ((unsigned long)qc - (unsigned long)hdr < len &&
                *qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
            padding ^= NET_IP_ALIGN;
    }

    if (ieee80211_has_a4(hdr->frame_control))
        padding ^= NET_IP_ALIGN;

    return padding;
#endif
}

#define __RADIO_TAP_SIZE_RSV	32

static void _rtl_rx_completed(struct urb *_urb)
{
    struct rtl_usb *rtlusb = (struct rtl_usb *)_urb->context;
    struct ieee80211_hw *hw = usb_get_intfdata(rtlusb->intf);
    struct rtl_priv *rtlpriv = rtl_priv(hw);
    int err = 0;

    if (unlikely(IS_USB_STOP(rtlusb)))
        goto free;

    if (likely(0 == _urb->status)) {
        unsigned int padding;
        struct sk_buff *skb;
        unsigned int qlen;
        unsigned int size = _urb->actual_length;
        struct ieee80211_hdr *hdr;

        if (size < RTL_RX_DESC_SIZE + sizeof(struct ieee80211_hdr)) {
            RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG,
                     "Too short packet from bulk IN! (len: %d)\n",
                     size);
            goto resubmit;
        }

        qlen = skb_queue_len(&rtlusb->rx_queue);
        if (qlen >= __RX_SKB_MAX_QUEUED) {
            RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG,
                     "Pending RX skbuff queue full! (qlen: %d)\n",
                     qlen);
            goto resubmit;
        }

        hdr = (void *)(_urb->transfer_buffer + RTL_RX_DESC_SIZE);
        padding = _rtl_rx_get_padding(hdr, size - RTL_RX_DESC_SIZE);

        skb = dev_alloc_skb(size + __RADIO_TAP_SIZE_RSV + padding);
        if (!skb) {
            RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG,
                     "Can't allocate skb for bulk IN!\n");
            goto resubmit;
        }

        _rtl_install_trx_info(rtlusb, skb, rtlusb->in_ep);

        /* Make sure the payload data is 4 byte aligned. */
        skb_reserve(skb, padding);

        /* reserve some space for mac80211's radiotap */
        skb_reserve(skb, __RADIO_TAP_SIZE_RSV);

        memcpy(skb_put(skb, size), _urb->transfer_buffer, size);

        skb_queue_tail(&rtlusb->rx_queue, skb);
        tasklet_schedule(&rtlusb->rx_work_tasklet);

        goto resubmit;
    }

    switch (_urb->status) {
    /* disconnect */
    case -ENOENT:
    case -ECONNRESET:
    case -ENODEV:
    case -ESHUTDOWN:
        goto free;
    default:
        break;
    }

resubmit:
    usb_anchor_urb(_urb, &rtlusb->rx_submitted);
    err = usb_submit_urb(_urb, GFP_ATOMIC);
    if (unlikely(err)) {
        usb_unanchor_urb(_urb);
        goto free;
    }
    return;

free:
    /* On some architectures, usb_free_coherent must not be called from
     * hardirq context. Queue urb to cleanup list.
     */
    usb_anchor_urb(_urb, &rtlusb->rx_cleanup_urbs);
}

#undef __RADIO_TAP_SIZE_RSV

static void _rtl_usb_cleanup_rx(struct ieee80211_hw *hw)
{
    struct rtl_priv *rtlpriv = rtl_priv(hw);
    struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
    struct urb *urb;

    usb_kill_anchored_urbs(&rtlusb->rx_submitted);

    tasklet_kill(&rtlusb->rx_work_tasklet);
    cancel_work_sync(&rtlpriv->works.lps_change_work);

    flush_workqueue(rtlpriv->works.rtl_wq);
    destroy_workqueue(rtlpriv->works.rtl_wq);

    skb_queue_purge(&rtlusb->rx_queue);

    while ((urb = usb_get_from_anchor(&rtlusb->rx_cleanup_urbs))) {
        usb_free_coherent(urb->dev, urb->transfer_buffer_length,
                          urb->transfer_buffer, urb->transfer_dma);
        usb_free_urb(urb);
    }
}

static int _rtl_usb_receive(struct ieee80211_hw *hw)
{
    struct urb *urb;
    int err;
    int i;
    struct rtl_priv *rtlpriv = rtl_priv(hw);
    struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));

    WARN_ON(0 == rtlusb->rx_urb_num);
    /* 1600 == 1514 + max WLAN header + rtk info */
    WARN_ON(rtlusb->rx_max_size < 1600);

    for (i = 0; i < rtlusb->rx_urb_num; i++) {
        err = -ENOMEM;
        urb = usb_alloc_urb(0, GFP_KERNEL);
        if (!urb) {
            RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG,
                     "Failed to alloc URB!!\n");
            goto err_out;
        }

        err = _rtl_prep_rx_urb(hw, rtlusb, urb, GFP_KERNEL);
        if (err < 0) {
            RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG,
                     "Failed to prep_rx_urb!!\n");
            usb_free_urb(urb);
            goto err_out;
        }

        usb_anchor_urb(urb, &rtlusb->rx_submitted);
        err = usb_submit_urb(urb, GFP_KERNEL);
        if (err)
            goto err_out;
        usb_free_urb(urb);
    }
    return 0;

err_out:
    usb_kill_anchored_urbs(&rtlusb->rx_submitted);
    _rtl_usb_cleanup_rx(hw);
    return err;
}

static int rtl_usb_start(struct ieee80211_hw *hw)
{
    int err;
    struct rtl_priv *rtlpriv = rtl_priv(hw);
    struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
    struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));

    err = rtlpriv->cfg->ops->hw_init(hw);
    if (!err) {
        rtl_init_rx_config(hw);

        /* Enable software */
        SET_USB_START(rtlusb);
        /* should after adapter start and interrupt enable. */
        set_hal_start(rtlhal);

        /* Start bulk IN */
        err = _rtl_usb_receive(hw);
    }

    return err;
}
Exemple #10
0
static void ccmp_special_blocks(struct ieee80211_hdr *hdr, size_t hdrlen,
				const u64 pn, u8 *b_0, u8 *aad)
{
	__le16 mask_fc;
	int a4_included, mgmt;
	u8 qos_tid;
	u16 len_a;

	/* Mask FC: zero subtype b4 b5 b6 (if not mgmt)
	 * Retry, PwrMgt, MoreData; set Protected
	 */
	mgmt = ieee80211_is_mgmt(hdr->frame_control);
	mask_fc = hdr->frame_control;
	mask_fc &= ~cpu_to_le16(IEEE80211_FCTL_RETRY |
				IEEE80211_FCTL_PM | IEEE80211_FCTL_MOREDATA);
	if (!mgmt)
		mask_fc &= ~cpu_to_le16(0x0070);
	mask_fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);

	len_a = hdrlen - 2;
	a4_included = ieee80211_has_a4(hdr->frame_control);

	if (ieee80211_is_data_qos(hdr->frame_control))
		qos_tid = *ieee80211_get_qos_ctl(hdr) &
			IEEE80211_QOS_CTL_TID_MASK;
	else
		qos_tid = 0;

	/* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC
	 * mode authentication are not allowed to collide, yet both are derived
	 * from this vector b_0. We only set L := 1 here to indicate that the
	 * data size can be represented in (L+1) bytes. The CCM layer will take
	 * care of storing the data length in the top (L+1) bytes and setting
	 * and clearing the other bits as is required to derive the two IVs.
	 */
	b_0[0] = 0x1;

	/* Nonce: Nonce Flags | A2 | PN
	 * Nonce Flags: Priority (b0..b3) | Management (b4) | Reserved (b5..b7)
	 */
	b_0[1] = qos_tid | (mgmt << 4);
	ether_addr_copy(&b_0[2], hdr->addr2);
	b_0[8]  = pn >> 40;
	b_0[9]  = pn >> 32;
	b_0[10] = pn >> 24;
	b_0[11] = pn >> 16;
	b_0[12] = pn >> 8;
	b_0[13] = pn;

	/* AAD (extra authenticate-only data) / masked 802.11 header
	 * FC | A1 | A2 | A3 | SC | [A4] | [QC]
	 */
	put_unaligned_be16(len_a, &aad[0]);
	put_unaligned(mask_fc, (__le16 *)&aad[2]);
	memcpy(&aad[4], &hdr->addr1, 3 * ETH_ALEN);

	/* Mask Seq#, leave Frag# */
	aad[22] = *((u8 *) &hdr->seq_ctrl) & 0x0f;
	aad[23] = 0;

	if (a4_included) {
		ether_addr_copy(&aad[24], hdr->addr4);
		aad[30] = qos_tid;
		aad[31] = 0;
	} else {
		memset(&aad[24], 0, ETH_ALEN + IEEE80211_QOS_CTL_LEN);
		aad[24] = qos_tid;
	}
}