Exemple #1
0
static int igraph_i_realize_directed_degree_sequence(
        igraph_t *graph,
        const igraph_vector_t *outdeg,
        const igraph_vector_t *indeg,
        igraph_realize_degseq_t method)
{
    long node_count = igraph_vector_size(outdeg);
    long edge_count = long(igraph_vector_sum(outdeg));

    if (igraph_vector_size(indeg) != node_count)
        IGRAPH_ERROR("In- and out-degree sequences must have the same length", IGRAPH_EINVAL);
    if (igraph_vector_sum(indeg) != edge_count)
        IGRAPH_ERROR("In- and out-degree sequences do not sum to the same value", IGRAPH_EINVAL);

    igraph_vector_t edges;
    IGRAPH_CHECK(igraph_vector_init(&edges, 2*edge_count));
    IGRAPH_FINALLY(igraph_vector_destroy, &edges);

    switch (method) {
    case IGRAPH_REALIZE_DEGSEQ_SMALLEST:
        IGRAPH_CHECK(igraph_i_kleitman_wang(outdeg, indeg, &edges, true));
        break;
    case IGRAPH_REALIZE_DEGSEQ_LARGEST:
        IGRAPH_CHECK(igraph_i_kleitman_wang(outdeg, indeg, &edges, false));
        break;
    case IGRAPH_REALIZE_DEGSEQ_INDEX:
        IGRAPH_CHECK(igraph_i_kleitman_wang_index(outdeg, indeg, &edges));
        break;
    default:
        IGRAPH_ERROR("Invalid bi-degree sequence realization method", IGRAPH_EINVAL);
    }

    igraph_create(graph, &edges, igraph_integer_t(node_count), true);

    igraph_vector_destroy(&edges);
    IGRAPH_FINALLY_CLEAN(1);

    return IGRAPH_SUCCESS;
}
Exemple #2
0
static int igraph_i_realize_undirected_degree_sequence(
        igraph_t *graph,
        const igraph_vector_t *deg,
        igraph_realize_degseq_t method)
{
    long node_count = igraph_vector_size(deg);
    long deg_sum = long(igraph_vector_sum(deg));

    if (deg_sum % 2 != 0)
        IGRAPH_ERROR("The sum of degrees must be even for an undirected graph", IGRAPH_EINVAL);

    igraph_vector_t edges;
    IGRAPH_CHECK(igraph_vector_init(&edges, deg_sum));
    IGRAPH_FINALLY(igraph_vector_destroy, &edges);

    switch (method) {
    case IGRAPH_REALIZE_DEGSEQ_SMALLEST:
        IGRAPH_CHECK(igraph_i_havel_hakimi(deg, &edges, false));
        break;
    case IGRAPH_REALIZE_DEGSEQ_LARGEST:
        IGRAPH_CHECK(igraph_i_havel_hakimi(deg, &edges, true));
        break;
    case IGRAPH_REALIZE_DEGSEQ_INDEX:
        IGRAPH_CHECK(igraph_i_havel_hakimi_index(deg, &edges));
        break;
    default:
        IGRAPH_ERROR("Invalid degree sequence realization method", IGRAPH_EINVAL);
    }

    igraph_create(graph, &edges, igraph_integer_t(node_count), false);

    igraph_vector_destroy(&edges);
    IGRAPH_FINALLY_CLEAN(1);

    return IGRAPH_SUCCESS;
}
Exemple #3
0
/*__________________________________________________________________________ MAIN CYCLE (FLTK CYCLE) ____*/
void mainidle_cb(void*){    //this routine updates the program.
                            //thus, it computes the EVOLUTION
    
    double shooted;
    double dens, err;
    double totdens, toterr, totimerr;
    char s[100];
    
    
    // ---- running controls AND PRINTING
    if(
       (amstepping==0 && runningcontrol==1 && graphisloaded==1 && ticks<=maxtime ) ||
       (amstepping==1 && runningcontrol==1 && graphisloaded==1 && ticks<=maxtime &&  tickstep<=step-1)
       )
    
    {
  
        Evolution(deltat);
        
        //PRINTS
        if((int)printdatabutton->value()==1){
            
            //if have steady state
            if(usesteady==1){
                
                igraph_matrix_t activation;
                igraph_matrix_init(&activation,nodesnumber,totrun);
                igraph_matrix_null(&activation);
                
                igraph_vector_t correlation;
                igraph_vector_init(&correlation,(nodesnumber*nodesnumber)); igraph_vector_null(&correlation);

                
                fprintf(output1,"%i ", ticks);
                fprintf(output2,"%i ", ticks);
                fprintf(output5,"%i ", ticks);
                fprintf(output6,"%i ", ticks);
                
                totdens=0; toterr=0;
                for(int i=0;i<nodesnumber;++i){
                    shooted=0;
                    dens=0;
                    err=0;
                    for(int j=0; j<totrun; ++j){
                        dens=dens+MATRIX(density,i,j);
                        err=err+((VECTOR(statstate)[i]-MATRIX(density,i,j))*(VECTOR(statstate)[i]-MATRIX(density,i,j)));
                        shooted=shooted+MATRIX(loss,i,j);

                        if(MATRIX(loss,i,j)!=0){++MATRIX(activation,i,j);}
                    }
                    
                    dens=dens/totrun;
                    err=sqrt(err)/totrun;
                    shooted=shooted/totrun;
                    totdens=totdens+dens;
                    toterr=toterr+err;
                    
                    fprintf(output1,"%f ",dens);
                    fprintf(output2,"%f ",err);
                    fprintf(output5,"%f ",shooted);
                }
                
                totdens=totdens/nodesnumber;
                toterr=toterr/nodesnumber;
                fprintf(output1,"%f ",totdens);
                fprintf(output2,"%f ",toterr);
                
                
               // printf("\n\n ACTIVATION MATRIX \n \n"); print_matrix_ur(&activation,stdout); printf("\n\n");
                
                
                
                // ---- CORRELATION ---
                
                igraph_vector_t meanactivation;
                igraph_vector_init(&meanactivation,nodesnumber);
                igraph_vector_null(&meanactivation);
                //calculate mean activation
                for (int j=0; j<totrun; ++j) {
                    for (int i=0; i<nodesnumber; ++i) {
                        VECTOR(meanactivation)[i]=VECTOR(meanactivation)[i]+MATRIX(activation,i,j);
                    }
                }
                igraph_vector_scale(&meanactivation,1./totrun);
                
                //calculate actual correlation
                for (int x=0; x<nodesnumber ; ++x) {
                    for(int y=0; y<nodesnumber; ++y){
                        
                        double prod=0;
                        for (int j=0; j<totrun; ++j) {
                            prod=prod+ ( MATRIX(activation,x,j)*MATRIX(activation,y,j) );
                        }
                        prod=prod/totrun;
                        
                        VECTOR(correlation)[(x*nodesnumber+y)] = prod - (VECTOR(meanactivation)[x]*VECTOR(meanactivation)[y]);
                        
                    }
                }
                
                igraph_vector_destroy(&meanactivation);
                
                for (int i=0; i<(nodesnumber*nodesnumber); ++i) {
                    fprintf(output6,"%f ",VECTOR(correlation)[i]);
                }
                
                
                
                //calculate error on run
                
                
                igraph_matrix_t distl1; igraph_matrix_t distimel1;
                igraph_matrix_init(&distl1,nodesnumber,totrun); igraph_matrix_init(&distimel1,nodesnumber,totrun);
                igraph_matrix_null(&distl1); igraph_matrix_null(&distimel1);
                
                igraph_vector_t rundistl1; igraph_vector_t rundistimel1;
                igraph_vector_init(&rundistl1,totrun); igraph_vector_init(&rundistimel1,totrun);
                igraph_vector_null(&rundistl1); igraph_vector_null(&rundistimel1);
                
                toterr=0; totimerr=0;
                //for every run
                for(int j=0;j<totrun;++j){
                    
                    //i evaluate the distance between the state and the stationary state (toterr) and the distance between old and new density (totimerr)
                    for(int i=0; i<nodesnumber; ++i)
                    {
                        //L1 DISTANCE WRT STATSTATE & DENSITY
                        MATRIX(distl1,i,j)=fabs(VECTOR(statstate)[i]-MATRIX(density,i,j));
                        
                        //L1 DISTANCE WRT OLD DENSITY & DENSITY
                        MATRIX(distimel1,i,j)=fabs(MATRIX(densityold,i,j)-MATRIX(density,i,j));
                    }
                    
                }
                
                igraph_matrix_rowsum(&distl1,&rundistl1); igraph_matrix_rowsum(&distimel1,&rundistimel1);
                igraph_vector_scale(&rundistl1,(1./nodesnumber)); igraph_vector_scale(&rundistimel1,(1./nodesnumber));
                
                toterr=  (double)( igraph_vector_sum(&rundistl1) )  /   (double)totrun ;
                totimerr= (double)( igraph_vector_sum(&rundistimel1)) / (double)totrun;
                
                igraph_vector_destroy(&rundistl1); igraph_vector_destroy(&rundistimel1);
                igraph_matrix_destroy(&distl1); igraph_matrix_destroy(&distimel1);
                
                fprintf(output2,"%f %f",toterr, totimerr);
                
                fprintf(output1,"\n");
                fprintf(output2,"\n");
                fprintf(output5,"\n");
                fprintf(output6,"\n");
                
                
                
                //if i have BRIDGES ("clustered" graph), I print the traffic on the BRIDGES, using "output3" file
                if(isclustered==1){
                    
                    //for each bridge
                    fprintf(output3,"%i ",ticks);
                    for(int nbri=0; nbri<igraph_matrix_ncol(&bridgeslinks); ++nbri){
                        for(int i=0; i<igraph_matrix_nrow(&bridgeslinks);++i){
                            double tfl=0;
                            for(int j=0; j<totrun; ++j){
                                int beid;
                                beid=(int)MATRIX(bridgeslinks,i,nbri);
                                tfl=tfl+MATRIX(flux,beid,j);
                            }
                            fprintf(output3,"%f ",tfl);
                        }
                        
                        
                    }
                    fprintf(output3,"\n");
                }
                
                
                
                
                
                igraph_matrix_destroy(&activation);
                igraph_vector_destroy(&correlation);
                
                
            }
            
            //if i HAVENT STEADY STATE
            else {
                
                fprintf(output1,"%i ", ticks);
                fprintf(output5,"%i ", ticks);
                
                for(int i=0;i<nodesnumber;++i){
                    shooted=0;
                    dens=0;
                    for(int j=0; j<totrun; ++j){
                        dens=dens+MATRIX(density,i,j);
                        shooted=shooted+MATRIX(loss,i,j);
                    }
                    dens=dens/totrun;
                    shooted=shooted/totrun;
                    
                    fprintf(output1,"%f " ,dens);
                    fprintf(output5,"%f " ,shooted);
                }
                
                fprintf(output1,"\n");
                fprintf(output5,"\n");
                
            }
            
            
        }
    }
    
    
    if((ticks==maxtime || tickstep==step) && runningcontrol==1){
        run();
    }
    
    
    // ---- no graph loaded
    if(graphisloaded==0 && rewrite==1) {
        runbutton->deactivate();
        sprintf(s,"No\nnetwork\nloaded");
        databuff->text(s);
    }
    
    
    // ---- graph loaded
    else {
        runbutton->activate();
        
        if(islattice==1 && rewrite==1){
            if(istoro==1){
                sprintf(s,"Nodes=%i\nToroidal\nLattice\n%iD Side=%i",nodesnumber, latticedim, latticeside);
            }
            else{
                sprintf(s,"Nodes=%i\nLattice\n%iD Side=%i",nodesnumber, latticedim, latticeside);
            }
            
           databuff->text(s);
            
        }
        else if(rewrite==1){
            sprintf(s,"Nodes=%i",nodesnumber);
           databuff->text(s);
        }
        
    }
    
    
    
    //have path
    if(havepath==1 && rewrite==1){pathbuff->text(path); }
    else if(havepath==0 && rewrite==1){pathbuff->text("No Path");}
    
    
    if(error==1 && rewrite==1){
        sprintf(s,errorstring);
       databuff->text(s);
    }
    
    
    if (ticks<=maxtime){
    scene->redraw();
    datascene->redraw();
    }
    
 
    rewrite=0;
    
    //Fl::repeat_timeout(1.0, mainidle_cb);
    
}
int main() {

    igraph_t g;
    igraph_vector_t v, v2;
    int i, ret;

    igraph_barabasi_game(&g, 10, 2, 0, 0, 1);
    if (igraph_ecount(&g) != 18) {
        return 1;
    }
    if (igraph_vcount(&g) != 10) {
        return 2;
    }
    if (!igraph_is_directed(&g)) {
        return 3;
    }

    igraph_vector_init(&v, 0);
    igraph_get_edgelist(&g, &v, 0);
    for (i=0; i<igraph_ecount(&g); i++) {
        if (VECTOR(v)[2*i] <= VECTOR(v)[2*i+1]) {
            return 4;
        }
    }
    igraph_destroy(&g);

    /* out degree sequence */
    igraph_vector_resize(&v, 10);
    VECTOR(v)[0]=0;
    VECTOR(v)[1]=1;
    VECTOR(v)[2]=3;
    VECTOR(v)[3]=3;
    VECTOR(v)[4]=4;
    VECTOR(v)[5]=5;
    VECTOR(v)[6]=6;
    VECTOR(v)[7]=7;
    VECTOR(v)[8]=8;
    VECTOR(v)[9]=9;

    igraph_barabasi_game(&g, 10, 0, &v, 0, 1);
    if (igraph_ecount(&g) != igraph_vector_sum(&v)) {
        return 5;
    }
    igraph_vector_init(&v2, 0);
    igraph_degree(&g, &v2, igraph_vss_all(), IGRAPH_OUT, 1);
    for (i=0; i<igraph_vcount(&g); i++) {
        if (VECTOR(v)[i] != VECTOR(v2)[i]) {
            return 6;
        }
    }
    igraph_vector_destroy(&v);
    igraph_vector_destroy(&v2);
    igraph_destroy(&g);

    /* outpref, we cannot really test this quantitatively,
       would need to set random seed */
    igraph_barabasi_game(&g, 10, 2, 0, 1, 1);
    igraph_vector_init(&v, 0);
    igraph_get_edgelist(&g, &v, 0);
    for (i=0; i<igraph_ecount(&g); i++) {
        if (VECTOR(v)[2*i] <= VECTOR(v)[2*i+1]) {
            return 7;
        }
    }
    if (!igraph_is_directed(&g)) {
        return 8;
    }
    igraph_vector_destroy(&v);
    igraph_destroy(&g);

    /* Error tests */
    igraph_set_error_handler(igraph_error_handler_ignore);
    ret=igraph_barabasi_game(&g, -10, 1, 0, 0, 0);
    if (ret != IGRAPH_EINVAL) {
        return 9;
    }
    ret=igraph_barabasi_game(&g, 10, -2, 0, 0, 0);
    if (ret != IGRAPH_EINVAL) {
        return 10;
    }
    igraph_vector_init(&v, 9);
    ret=igraph_barabasi_game(&g, 10, 0, &v, 0, 0);
    if (ret != IGRAPH_EINVAL) {
        return 11;
    }
    igraph_vector_destroy(&v);

    return 0;
}
Exemple #5
0
/**
 * \ingroup communities
 * \function igraph_i_community_multilevel_step
 * \brief Performs a single step of the multi-level modularity optimization method
 *
 * This function implements a single step of the multi-level modularity optimization
 * algorithm for finding community structure, see VD Blondel, J-L Guillaume,
 * R Lambiotte and E Lefebvre: Fast unfolding of community hierarchies in large
 * networks, http://arxiv.org/abs/0803.0476 for the details.
 *
 * This function was contributed by Tom Gregorovic.
 *
 * \param graph   The input graph. It must be an undirected graph.
 * \param weights Numeric vector containing edge weights. If \c NULL, every edge
 *     has equal weight. The weights are expected to be non-negative.
 * \param membership The membership vector, the result is returned here.
 *     For each vertex it gives the ID of its community.
 * \param modularity The modularity of the partition is returned here.
 *     \c NULL means that the modularity is not needed.
 * \return Error code.
 *
 * Time complexity: in average near linear on sparse graphs.
 */
int igraph_i_community_multilevel_step(igraph_t *graph,
  igraph_vector_t *weights, igraph_vector_t *membership,
  igraph_real_t *modularity) {
  
  long int i, j;
  long int vcount = igraph_vcount(graph);
  long int ecount = igraph_ecount(graph);
  igraph_integer_t ffrom, fto;
  igraph_real_t q, pass_q;
  int pass;
  igraph_bool_t changed = 0;
  igraph_vector_t links_community;
  igraph_vector_t links_weight;
  igraph_vector_t edges;
  igraph_vector_t temp_membership;
  igraph_i_multilevel_community_list communities;

  /* Initial sanity checks on the input parameters */
  if (igraph_is_directed(graph)) {
    IGRAPH_ERROR("multi-level community detection works for undirected graphs only",
        IGRAPH_UNIMPLEMENTED);
  }
  if (igraph_vector_size(weights) < igraph_ecount(graph))
    IGRAPH_ERROR("multi-level community detection: weight vector too short", IGRAPH_EINVAL);
  if (igraph_vector_any_smaller(weights, 0))
    IGRAPH_ERROR("weights must be positive", IGRAPH_EINVAL);

  /* Initialize data structures */
  IGRAPH_VECTOR_INIT_FINALLY(&links_community, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&links_weight, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&temp_membership, vcount);
  IGRAPH_CHECK(igraph_vector_resize(membership, vcount));
 
  /* Initialize list of communities from graph vertices */
  communities.vertices_no = vcount;
  communities.communities_no = vcount;
  communities.weights = weights;
  communities.weight_sum = 2 * igraph_vector_sum(weights);
  communities.membership = membership;
  communities.item = igraph_Calloc(vcount, igraph_i_multilevel_community);
  if (communities.item == 0) {
    IGRAPH_ERROR("multi-level community structure detection failed", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(igraph_free, communities.item);

  /* Still initializing the communities data structure */
  for (i=0; i < vcount; i++) {
    VECTOR(*communities.membership)[i] = i;
    communities.item[i].size = 1;
    communities.item[i].weight_inside = 0;
    communities.item[i].weight_all = 0;
  }

  /* Some more initialization :) */
  for (i = 0; i < ecount; i++) {
    igraph_real_t weight = 1;
    igraph_edge(graph, (igraph_integer_t) i, &ffrom, &fto);

    weight = VECTOR(*weights)[i];
    communities.item[(long int) ffrom].weight_all += weight;
    communities.item[(long int) fto].weight_all += weight;
    if (ffrom == fto)
      communities.item[(long int) ffrom].weight_inside += 2*weight;
  }

  q = igraph_i_multilevel_community_modularity(&communities);
  pass = 1;

  do { /* Pass begin */
    long int temp_communities_no = communities.communities_no;

    pass_q = q;
    changed = 0;
    
    /* Save the current membership, it will be restored in case of worse result */
    IGRAPH_CHECK(igraph_vector_update(&temp_membership, communities.membership));

    for (i = 0; i < vcount; i++) {
      /* Exclude vertex from its current community */
      igraph_real_t weight_all = 0;
      igraph_real_t weight_inside = 0;
      igraph_real_t weight_loop = 0;
      igraph_real_t max_q_gain = 0;
      igraph_real_t max_weight;
      long int old_id, new_id, n;

      igraph_i_multilevel_community_links(graph, &communities, 
					  (igraph_integer_t) i, &edges,
					  &weight_all, &weight_inside, 
					  &weight_loop, &links_community,
					  &links_weight);
      old_id = (long int)VECTOR(*(communities.membership))[i];
      new_id = old_id;

      /* Update old community */
      igraph_vector_set(communities.membership, i, -1);
      communities.item[old_id].size--;
      if (communities.item[old_id].size == 0) {communities.communities_no--;}
      communities.item[old_id].weight_all -= weight_all;
      communities.item[old_id].weight_inside -= 2*weight_inside + weight_loop;

      /* debug("Remove %ld all: %lf Inside: %lf\n", i, -weight_all, -2*weight_inside + weight_loop); */

      /* Find new community to join with the best modification gain */
      max_q_gain = 0;
      max_weight = weight_inside;
      n = igraph_vector_size(&links_community);
   
      igraph_vector_sort(&links_community);
    
      for (j = 0; j < n; j++) {
        long int c = (long int) VECTOR(links_community)[j];
        igraph_real_t w = VECTOR(links_weight)[j];

        igraph_real_t q_gain = 
	  igraph_i_multilevel_community_modularity_gain(&communities, 
							(igraph_integer_t) c, 
							(igraph_integer_t) i,
							weight_all, w);
        /* debug("Link %ld -> %ld weight: %lf gain: %lf\n", i, c, (double) w, (double) q_gain); */
        if (q_gain > max_q_gain) {
          new_id = c;
          max_q_gain = q_gain;
          max_weight = w;
        }
      }

      /* debug("Added vertex %ld to community %ld (gain %lf).\n", i, new_id, (double) max_q_gain); */

      /* Add vertex to "new" community and update it */
      igraph_vector_set(communities.membership, i, new_id);
      if (communities.item[new_id].size == 0) {communities.communities_no++;}
      communities.item[new_id].size++;
      communities.item[new_id].weight_all += weight_all;
      communities.item[new_id].weight_inside += 2*max_weight + weight_loop;

      if (new_id != old_id) {
        changed++;
      }
       
    }
        
    q = igraph_i_multilevel_community_modularity(&communities);

    if (changed && (q > pass_q)) { 
      /* debug("Pass %d (changed: %d) Communities: %ld Modularity from %lf to %lf\n",
        pass, changed, communities.communities_no, (double) pass_q, (double) q); */
      pass++;
    } else {
      /* No changes or the modularity became worse, restore last membership */
      IGRAPH_CHECK(igraph_vector_update(communities.membership, &temp_membership));
      communities.communities_no = temp_communities_no;
      break;
    }

    IGRAPH_ALLOW_INTERRUPTION();
  } while (changed && (q > pass_q)); /* Pass end */

  if (modularity) {
    *modularity = q;
  }

  /* debug("Result Communities: %ld Modularity: %lf\n",
    communities.communities_no, (double) q); */

  IGRAPH_CHECK(igraph_reindex_membership(membership, 0));

  /* Shrink the nodes of the graph according to the present community structure
   * and simplify the resulting graph */

  /* TODO: check if we really need to copy temp_membership */
  IGRAPH_CHECK(igraph_vector_update(&temp_membership, membership));
  IGRAPH_CHECK(igraph_i_multilevel_shrink(graph, &temp_membership));
  igraph_vector_destroy(&temp_membership);
  IGRAPH_FINALLY_CLEAN(1);  
  
  /* Update edge weights after shrinking and simplification */
  /* Here we reuse the edges vector as we don't need the previous contents anymore */
  /* TODO: can we use igraph_simplify here? */
  IGRAPH_CHECK(igraph_i_multilevel_simplify_multiple(graph, &edges));

  /* We reuse the links_weight vector to store the old edge weights */
  IGRAPH_CHECK(igraph_vector_update(&links_weight, weights));
  igraph_vector_fill(weights, 0);
   
  for (i = 0; i < ecount; i++) {
    VECTOR(*weights)[(long int)VECTOR(edges)[i]] += VECTOR(links_weight)[i];
  }

  igraph_free(communities.item);
  igraph_vector_destroy(&links_community);
  igraph_vector_destroy(&links_weight);
  igraph_vector_destroy(&edges);
  IGRAPH_FINALLY_CLEAN(4);
  
  return 0;
}
/**
 * \function igraph_community_fastgreedy
 * \brief Finding community structure by greedy optimization of modularity
 * 
 * This function implements the fast greedy modularity optimization
 * algorithm for finding community structure, see 
 * A Clauset, MEJ Newman, C Moore: Finding community structure in very
 * large networks, http://www.arxiv.org/abs/cond-mat/0408187 for the
 * details.
 *
 * </para><para>
 * Some improvements proposed in K Wakita, T Tsurumi: Finding community
 * structure in mega-scale social networks,
 * http://www.arxiv.org/abs/cs.CY/0702048v1 have also been implemented.
 *
 * \param graph The input graph. It must be a simple graph, i.e. a graph 
 *    without multiple and without loop edges. This is checked and an
 *    error message is given for non-simple graphs.
 * \param weights Potentially a numeric vector containing edge
 *    weights. Supply a null pointer here for unweighted graphs. The
 *    weights are expected to be non-negative.
 * \param merges Pointer to an initialized matrix or NULL, the result of the
 *    computation is stored here. The matrix has two columns and each
 *    merge corresponds to one merge, the ids of the two merged
 *    components are stored. The component ids are numbered from zero and 
 *    the first \c n components are the individual vertices, \c n is
 *    the number of vertices in the graph. Component \c n is created
 *    in the first merge, component \c n+1 in the second merge, etc.
 *    The matrix will be resized as needed. If this argument is NULL
 *    then it is ignored completely.
 * \param modularity Pointer to an initialized matrix or NULL pointer,
 *    in the former case the modularity scores along the stages of the
 *    computation are recorded here. The vector will be resized as
 *    needed.
 * \return Error code.
 *
 * \sa \ref igraph_community_walktrap(), \ref
 * igraph_community_edge_betweenness() for other community detection
 * algorithms, \ref igraph_community_to_membership() to convert the
 * dendrogram to a membership vector.
 *
 * Time complexity: O(|E||V|log|V|) in the worst case,
 * O(|E|+|V|log^2|V|) typically, |V| is the number of vertices, |E| is
 * the number of edges.
 */
int igraph_community_fastgreedy(const igraph_t *graph,
  const igraph_vector_t *weights,
  igraph_matrix_t *merges, igraph_vector_t *modularity) {
  long int no_of_edges, no_of_nodes, no_of_joins, total_joins;
  long int i, j, k, n, m, from, to, dummy;
  igraph_integer_t ffrom, fto;
  igraph_eit_t edgeit;
  igraph_i_fastgreedy_commpair *pairs, *p1, *p2;
  igraph_i_fastgreedy_community_list communities;
  igraph_vector_t a;
  igraph_real_t q, maxq, *dq, weight_sum;
  igraph_bool_t simple;

  /*long int join_order[] = { 16,5, 5,6, 6,0, 4,0, 10,0, 26,29, 29,33, 23,33, 27,33, 25,24, 24,31, 12,3, 21,1, 30,8, 8,32, 9,2, 17,1, 11,0, 7,3, 3,2, 13,2, 1,2, 28,31, 31,33, 22,32, 18,32, 20,32, 32,33, 15,33, 14,33, 0,19, 19,2, -1,-1 };*/
  /*long int join_order[] = { 43,42, 42,41, 44,41, 41,36, 35,36, 37,36, 36,29, 38,29, 34,29, 39,29, 33,29, 40,29, 32,29, 14,29, 30,29, 31,29, 6,18, 18,4, 23,4, 21,4, 19,4, 27,4, 20,4, 22,4, 26,4, 25,4, 24,4, 17,4, 0,13, 13,2, 1,2, 11,2, 8,2, 5,2, 3,2, 10,2, 9,2, 7,2, 2,28, 28,15, 12,15, 29,16, 4,15, -1,-1 };*/

  no_of_nodes = igraph_vcount(graph);
  no_of_edges = igraph_ecount(graph);
  
  if (igraph_is_directed(graph)) {
	IGRAPH_ERROR("fast greedy community detection works for undirected graphs only", IGRAPH_UNIMPLEMENTED);
  }
  
  total_joins=no_of_nodes-1;

  if (weights != 0) {
    if (igraph_vector_size(weights) < igraph_ecount(graph))
      IGRAPH_ERROR("fast greedy community detection: weight vector too short", IGRAPH_EINVAL);
    if (igraph_vector_any_smaller(weights, 0))
      IGRAPH_ERROR("weights must be positive", IGRAPH_EINVAL);
    weight_sum = igraph_vector_sum(weights);
  } else weight_sum = no_of_edges;

  IGRAPH_CHECK(igraph_is_simple(graph, &simple));
  if (!simple) {
    IGRAPH_ERROR("fast-greedy community finding works only on simple graphs", IGRAPH_EINVAL);
  }

  if (merges != 0) {
	IGRAPH_CHECK(igraph_matrix_resize(merges, total_joins, 2));
	igraph_matrix_null(merges);
  }
  if (modularity != 0) {
	IGRAPH_CHECK(igraph_vector_resize(modularity, total_joins+1));
  }

  /* Create degree vector */
  IGRAPH_VECTOR_INIT_FINALLY(&a, no_of_nodes);
  if (weights) {
    debug("Calculating weighted degrees\n");
    for (i=0; i < no_of_edges; i++) {
      VECTOR(a)[(long int)IGRAPH_FROM(graph, i)] += VECTOR(*weights)[i];
      VECTOR(a)[(long int)IGRAPH_TO(graph, i)] += VECTOR(*weights)[i];
    }
  } else {
    debug("Calculating degrees\n");
    IGRAPH_CHECK(igraph_degree(graph, &a, igraph_vss_all(), IGRAPH_ALL, 0));
  }

  /* Create list of communities */
  debug("Creating community list\n");
  communities.n = no_of_nodes;
  communities.no_of_communities = no_of_nodes;
  communities.e = (igraph_i_fastgreedy_community*)calloc(no_of_nodes, sizeof(igraph_i_fastgreedy_community));
  if (communities.e == 0) {
	IGRAPH_ERROR("can't run fast greedy community detection", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(free, communities.e);
  communities.heap = (igraph_i_fastgreedy_community**)calloc(no_of_nodes, sizeof(igraph_i_fastgreedy_community*));
  if (communities.heap == 0) {
	IGRAPH_ERROR("can't run fast greedy community detection", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(free, communities.heap);
  communities.heapindex = (igraph_integer_t*)calloc(no_of_nodes, sizeof(igraph_integer_t));
  if (communities.heapindex == 0) {
	IGRAPH_ERROR("can't run fast greedy community detection", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY_CLEAN(2);
  IGRAPH_FINALLY(igraph_i_fastgreedy_community_list_destroy, &communities);
  for (i=0; i<no_of_nodes; i++) {
    igraph_vector_ptr_init(&communities.e[i].neis, 0);
    communities.e[i].id = i;
    communities.e[i].size = 1;
  }

  /* Create list of community pairs from edges */
  debug("Allocating dq vector\n");
  dq = (igraph_real_t*)calloc(no_of_edges, sizeof(igraph_real_t));
  if (dq == 0) {
	IGRAPH_ERROR("can't run fast greedy community detection", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(free, dq);
  debug("Creating community pair list\n");
  IGRAPH_CHECK(igraph_eit_create(graph, igraph_ess_all(0), &edgeit));
  IGRAPH_FINALLY(igraph_eit_destroy, &edgeit);
  pairs = (igraph_i_fastgreedy_commpair*)calloc(2*no_of_edges, sizeof(igraph_i_fastgreedy_commpair));
  if (pairs == 0) {
	IGRAPH_ERROR("can't run fast greedy community detection", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(free, pairs);
  i=j=0;
  while (!IGRAPH_EIT_END(edgeit)) {
    long int eidx = IGRAPH_EIT_GET(edgeit);
    igraph_edge(graph, eidx, &ffrom, &fto);
    
	/* Create the pairs themselves */
	from = (long int)ffrom; to = (long int)fto;
	if (from == to) {
	  IGRAPH_ERROR("loop edge detected, simplify the graph before starting community detection", IGRAPH_EINVAL);
	}

	if (from>to) {
	  dummy=from; from=to; to=dummy;
	}
    if (weights) {
      dq[j]=2*(VECTOR(*weights)[eidx]/(weight_sum*2.0) - VECTOR(a)[from]*VECTOR(a)[to]/(4.0*weight_sum*weight_sum));
    } else {
	  dq[j]=2*(1.0/(no_of_edges*2.0) - VECTOR(a)[from]*VECTOR(a)[to]/(4.0*no_of_edges*no_of_edges));
    }
	pairs[i].first = from;
	pairs[i].second = to;
    pairs[i].dq = &dq[j];
	pairs[i].opposite = &pairs[i+1];
	pairs[i+1].first = to;
	pairs[i+1].second = from;
	pairs[i+1].dq = pairs[i].dq;
	pairs[i+1].opposite = &pairs[i];
	/* Link the pair to the communities */
	igraph_vector_ptr_push_back(&communities.e[from].neis, &pairs[i]);
	igraph_vector_ptr_push_back(&communities.e[to].neis, &pairs[i+1]);
	/* Update maximums */
	if (communities.e[from].maxdq==0 || *communities.e[from].maxdq->dq < *pairs[i].dq)
	  communities.e[from].maxdq = &pairs[i];
	if (communities.e[to].maxdq==0 || *communities.e[to].maxdq->dq < *pairs[i+1].dq)
	  communities.e[to].maxdq = &pairs[i+1];

    /* Iterate */
	i+=2; j++;
    IGRAPH_EIT_NEXT(edgeit);
  }
  igraph_eit_destroy(&edgeit);
  IGRAPH_FINALLY_CLEAN(1);

  /* Sorting community neighbor lists by community IDs */
  debug("Sorting community neighbor lists\n");
  for (i=0, j=0; i<no_of_nodes; i++) {
	igraph_vector_ptr_sort(&communities.e[i].neis, igraph_i_fastgreedy_commpair_cmp);
    /* Isolated vertices won't be stored in the heap (to avoid maxdq == 0) */
    if (VECTOR(a)[i] > 0) {
	  communities.heap[j] = &communities.e[i];
      communities.heapindex[i] = j;
      j++;
    } else {
      communities.heapindex[i] = -1;
    }
  }
  communities.no_of_communities = j;

  /* Calculate proper vector a (see paper) and initial modularity */
  q=0;
  igraph_vector_scale(&a, 1.0/(2.0 * (weights ? weight_sum : no_of_edges)));
  for (i=0; i<no_of_nodes; i++)
	q -= VECTOR(a)[i]*VECTOR(a)[i];
  maxq=q;

  /* Initializing community heap */
  debug("Initializing community heap\n");
  igraph_i_fastgreedy_community_list_build_heap(&communities);

  debug("Initial modularity: %.4f\n", q);

  /* Let's rock ;) */
  no_of_joins=0;
  while (no_of_joins<total_joins) {
    IGRAPH_ALLOW_INTERRUPTION();
	IGRAPH_PROGRESS("fast greedy community detection", no_of_joins*100.0/total_joins, 0);
    
	/* Store the modularity */
	if (modularity) VECTOR(*modularity)[no_of_joins] = q;
    
	/* Some debug info if needed */
	/* igraph_i_fastgreedy_community_list_check_heap(&communities); */
#ifdef DEBUG
	debug("===========================================\n");
	for (i=0; i<communities.n; i++) {
	  if (communities.e[i].maxdq == 0) {
	    debug("Community #%ld: PASSIVE\n", i);
	    continue;
	  }
      debug("Community #%ld\n ", i);
	  for (j=0; j<igraph_vector_ptr_size(&communities.e[i].neis); j++) {
	    p1=(igraph_i_fastgreedy_commpair*)VECTOR(communities.e[i].neis)[j];
	    debug(" (%ld,%ld,%.4f)", p1->first, p1->second, *p1->dq);
	  }
	  p1=communities.e[i].maxdq;
	  debug("\n  Maxdq: (%ld,%ld,%.4f)\n", p1->first, p1->second, *p1->dq);
    }
	debug("Global maxdq is: (%ld,%ld,%.4f)\n", communities.heap[0]->maxdq->first,
	    communities.heap[0]->maxdq->second, *communities.heap[0]->maxdq->dq);
    for (i=0; i<communities.no_of_communities; i++)
	  debug("(%ld,%ld,%.4f) ", communities.heap[i]->maxdq->first, communities.heap[i]->maxdq->second, *communities.heap[0]->maxdq->dq);
	debug("\n");
#endif
	if (communities.heap[0] == 0) break; /* no more communities */
	if (communities.heap[0]->maxdq == 0) break; /* there are only isolated comms */
    to=communities.heap[0]->maxdq->second;
	from=communities.heap[0]->maxdq->first;

	debug("Q[%ld] = %.7f\tdQ = %.7f\t |H| = %ld\n",
	  no_of_joins, q, *communities.heap[0]->maxdq->dq, no_of_nodes-no_of_joins-1);

	/* DEBUG */
	/* from=join_order[no_of_joins*2]; to=join_order[no_of_joins*2+1];
	if (to == -1) break;
    for (i=0; i<igraph_vector_ptr_size(&communities.e[to].neis); i++) {
      p1=(igraph_i_fastgreedy_commpair*)VECTOR(communities.e[to].neis)[i];
	  if (p1->second == from) communities.maxdq = p1;
	} */

	n = igraph_vector_ptr_size(&communities.e[to].neis);
	m = igraph_vector_ptr_size(&communities.e[from].neis);
	/*if (n>m) {
	  dummy=n; n=m; m=dummy;
	  dummy=to; to=from; from=dummy;
	}*/
	debug("  joining: %ld <- %ld\n", to, from);
    q += *communities.heap[0]->maxdq->dq; 
	
	/* Merge the second community into the first */
	i = j = 0;
	while (i<n && j<m) {
	  p1 = (igraph_i_fastgreedy_commpair*)VECTOR(communities.e[to].neis)[i];
	  p2 = (igraph_i_fastgreedy_commpair*)VECTOR(communities.e[from].neis)[j];
	  debug("Pairs: %ld-%ld and %ld-%ld\n", p1->first, p1->second,
		  p2->first, p2->second);
	  if (p1->second < p2->second) {
		/* Considering p1 from now on */
		debug("    Considering: %ld-%ld\n", p1->first, p1->second);
	    if (p1->second == from) {
		  debug("    WILL REMOVE: %ld-%ld\n", to, from);
	    } else {
		  /* chain, case 1 */
		  debug("    CHAIN(1): %ld-%ld %ld, now=%.7f, adding=%.7f, newdq(%ld,%ld)=%.7f\n",
		    to, p1->second, from, *p1->dq, -2*VECTOR(a)[from]*VECTOR(a)[p1->second], p1->first, p1->second, *p1->dq-2*VECTOR(a)[from]*VECTOR(a)[p1->second]);
		  igraph_i_fastgreedy_community_update_dq(&communities, p1, *p1->dq - 2*VECTOR(a)[from]*VECTOR(a)[p1->second]);
		}
		i++;
	  } else if (p1->second == p2->second) {
	    /* p1->first, p1->second and p2->first form a triangle */
		debug("    Considering: %ld-%ld and %ld-%ld\n", p1->first, p1->second,
		  p2->first, p2->second);
		/* Update dq value */
		debug("    TRIANGLE: %ld-%ld-%ld, now=%.7f, adding=%.7f, newdq(%ld,%ld)=%.7f\n",
		  to, p1->second, from, *p1->dq, *p2->dq, p1->first, p1->second, *p1->dq+*p2->dq);
		igraph_i_fastgreedy_community_update_dq(&communities, p1, *p1->dq + *p2->dq);
        igraph_i_fastgreedy_community_remove_nei(&communities, p1->second, from);
		i++;
		j++;
	  } else {
		debug("    Considering: %ld-%ld\n", p2->first, p2->second);
		if (p2->second == to) {
		  debug("    WILL REMOVE: %ld-%ld\n", p2->second, p2->first);
		} else {
		  /* chain, case 2 */
		  debug("    CHAIN(2): %ld %ld-%ld, newdq(%ld,%ld)=%.7f\n",
		    to, p2->second, from, to, p2->second, *p2->dq-2*VECTOR(a)[to]*VECTOR(a)[p2->second]);
		  p2->opposite->second=to;
	      /* need to re-sort community nei list `p2->second` */
	      /* TODO: quicksort is O(n*logn), although we could do a deletion and
	       * insertion which can be done in O(logn) if deletion is O(1) */
	      debug("    Re-sorting community %ld\n", p2->second);
	      igraph_vector_ptr_sort(&communities.e[p2->second].neis, igraph_i_fastgreedy_commpair_cmp);
		  /* link from.neis[j] to the current place in to.neis if
		   * from.neis[j] != to */
		  p2->first=to;
		  IGRAPH_CHECK(igraph_vector_ptr_insert(&communities.e[to].neis,i,p2));
		  n++; i++;
		  if (*p2->dq > *communities.e[to].maxdq->dq) {
		    communities.e[to].maxdq = p2;
            k=igraph_i_fastgreedy_community_list_find_in_heap(&communities, to);
		    igraph_i_fastgreedy_community_list_sift_up(&communities, k);
		  }
		  igraph_i_fastgreedy_community_update_dq(&communities, p2, *p2->dq - 2*VECTOR(a)[to]*VECTOR(a)[p2->second]);
		}
		j++;
	  }
	}

	while (i<n) {
	  p1 = (igraph_i_fastgreedy_commpair*)VECTOR(communities.e[to].neis)[i];
	  if (p1->second == from) {
	    debug("    WILL REMOVE: %ld-%ld\n", p1->first, from);
	  } else {
	    /* chain, case 1 */
	    debug("    CHAIN(1): %ld-%ld %ld, now=%.7f, adding=%.7f, newdq(%ld,%ld)=%.7f\n",
	      to, p1->second, from, *p1->dq, -2*VECTOR(a)[from]*VECTOR(a)[p1->second], p1->first, p1->second, *p1->dq-2*VECTOR(a)[from]*VECTOR(a)[p1->second]);
	    igraph_i_fastgreedy_community_update_dq(&communities, p1, *p1->dq - 2*VECTOR(a)[from]*VECTOR(a)[p1->second]);
	  }
	  i++;
	}
	while (j<m) {
	  p2 = (igraph_i_fastgreedy_commpair*)VECTOR(communities.e[from].neis)[j];
      if (to == p2->second) { j++; continue; }
	  /* chain, case 2 */
	  debug("    CHAIN(2): %ld %ld-%ld, newdq(%ld,%ld)=%.7f\n",
	    to, p2->second, from, p1->first, p2->second, *p2->dq-2*VECTOR(a)[to]*VECTOR(a)[p2->second]);
	  p2->opposite->second=to;
	  /* need to re-sort community nei list `p2->second` */
	  /* TODO: quicksort is O(n*logn), although we could do a deletion and
	   * insertion which can be done in O(logn) if deletion is O(1) */
	  debug("    Re-sorting community %ld\n", p2->second);
	  igraph_vector_ptr_sort(&communities.e[p2->second].neis, igraph_i_fastgreedy_commpair_cmp);
	  /* link from.neis[j] to the current place in to.neis if
	   * from.neis[j] != to */
	  p2->first=to;
	  IGRAPH_CHECK(igraph_vector_ptr_push_back(&communities.e[to].neis,p2));
	  if (*p2->dq > *communities.e[to].maxdq->dq) {
	    communities.e[to].maxdq = p2;
        k=igraph_i_fastgreedy_community_list_find_in_heap(&communities, to);
		igraph_i_fastgreedy_community_list_sift_up(&communities, k);
	  }
	  igraph_i_fastgreedy_community_update_dq(&communities, p2, *p2->dq-2*VECTOR(a)[to]*VECTOR(a)[p2->second]);
	  j++;
	}

	/* Now, remove community `from` from the neighbors of community `to` */
	if (communities.no_of_communities > 2) {
	  debug("    REMOVING: %ld-%ld\n", to, from);
	  igraph_i_fastgreedy_community_remove_nei(&communities, to, from);
	  i=igraph_i_fastgreedy_community_list_find_in_heap(&communities, from);
	  igraph_i_fastgreedy_community_list_remove(&communities, i);
    }
	communities.e[from].maxdq=0;

    /* Update community sizes */
    communities.e[to].size += communities.e[from].size;
    communities.e[from].size = 0;

	/* record what has been merged */
	/* igraph_vector_ptr_clear is not enough here as it won't free
	 * the memory consumed by communities.e[from].neis. Thanks
	 * to Tom Gregorovic for pointing that out. */
	igraph_vector_ptr_destroy(&communities.e[from].neis);
	if (merges) {
	  MATRIX(*merges, no_of_joins, 0) = communities.e[to].id;
	  MATRIX(*merges, no_of_joins, 1) = communities.e[from].id;
	  communities.e[to].id = no_of_nodes+no_of_joins;
    }

	/* Update vector a */
	VECTOR(a)[to] += VECTOR(a)[from];
	VECTOR(a)[from] = 0.0;
	
	no_of_joins++;
  }
  /* TODO: continue merging when some isolated communities remained. Always
   * joining the communities with the least number of nodes results in the
   * smallest decrease in modularity every step. Now we're simply deleting
   * the excess rows from the merge matrix */
  if (no_of_joins < total_joins) {
    long int *ivec;
    ivec=igraph_Calloc(igraph_matrix_nrow(merges), long int);
    if (ivec == 0)
      IGRAPH_ERROR("can't run fast greedy community detection", IGRAPH_ENOMEM);
    IGRAPH_FINALLY(free, ivec);
    for (i=0; i<no_of_joins; i++) ivec[i] = i+1;
    igraph_matrix_permdelete_rows(merges, ivec, total_joins-no_of_joins);
    free(ivec);
    IGRAPH_FINALLY_CLEAN(1);
  }