// Solves turning point equations via Phipps modified bordering // The first m columns of input_x and input_null store the RHS while // the last column stores df/dp, d(Jn)/dp respectively. Note however // input_param has only m columns (not m+1). result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-2; std::vector<int> index_input(m); std::vector<int> index_input_dp(m+1); std::vector<int> index_null(1); std::vector<int> index_dp(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_dp[0] = m; index_null[0] = m+1; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+1); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+2); // Create view of first m+1 columns of input_x, result_x Teuchos::RCP<NOX::Abstract::MultiVector> input_x_view = input_x.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_x_view = result_x.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||A B| = |F df/dp| // |v^T 0||a b| |0 0 | status = borderedSolver->applyInverse(params, input_x_view.get(), NULL, *result_x_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_x.subView(index_dp); double b = tmp_mat_1(0,m); // compute (Jv)_x[A B v] result_x[m+1] = *nullVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_x.clone(NOX::ShapeCopy); status = group->computeDJnDxaMulti(*nullVector, *JnVector, result_x, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute (Jv)_x[A B v] - [G d(Jn)/dp 0] tmp->update(-1.0, input_null, 1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||C D E| = |(Jv)_x A - G (Jv)_x B - d(Jv)/dp (Jv)_x v| // |v^T 0||c d e| | 0 0 0 | status = borderedSolver->applyInverse(params, tmp.get(), NULL, result_null, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_null.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_null.subView(index_null); double d = tmp_mat_2(0, m); double e = tmp_mat_2(0, m+1); // Fill coefficient arrays double M[9]; M[0] = s; M[1] = e; M[2] = -tpGroup->lTransNorm((*E)[0]); M[3] = 0.0; M[4] = s; M[5] = tpGroup->lTransNorm(*nullVector); M[6] = b; M[7] = -d; M[8] = tpGroup->lTransNorm((*D)[0]); // compute h + phi^T C tpGroup->lTransNorm(*C, result_param); result_param += input_param; double *R = new double[3*m]; for (int i=0; i<m; i++) { R[3*i] = tmp_mat_1(0,i); R[3*i+1] = -tmp_mat_2(0,i); R[3*i+2] = result_param(0,i); } // Solve M*P = R int three = 3; int piv[3]; int info; Teuchos::LAPACK<int,double> L; L.GESV(three, m, M, three, piv, R, three, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 3x3 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[3*i]; beta(0,i) = R[3*i+1]; result_param(0,i) = R[3*i+2]; } // compute A = A - B*z + v*alpha (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, alpha, 1.0); // compute C = -C + d*z - E*alpha + v*beta // (remember C is a sub-view of result_null) C->update(Teuchos::NO_TRANS, 1.0, *D, result_param, -1.0); C->update(Teuchos::NO_TRANS, -1.0, *E, alpha, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, beta, 1.0); delete [] R; return finalStatus; }
// Solves turning point equations via classic Salinger bordering // The first m columns of input_x and input_null store the RHS while // the last column stores df/dp, d(Jn)/dp respectively. Note however // input_param has only m columns (not m+1). result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTransposeContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTransposeContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-2; std::vector<int> index_input(m); std::vector<int> index_input_dp(m+1); std::vector<int> index_null(1); std::vector<int> index_dp(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_dp[0] = m; index_null[0] = m+1; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+1); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+2); // Create view of first m+1 columns of input_null, result_null Teuchos::RCP<NOX::Abstract::MultiVector> input_null_view = input_null.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_null_view = result_null.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J^T v||A B| = |G -phi| // |u^T 0||a b| |0 0 | status = transposeBorderedSolver->applyInverseTranspose(params, input_null_view.get(), NULL, *result_null_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_null.subView(index_dp); double b = tmp_mat_1(0,m); // compute (Jv)_x^T[A B u] result_null[m+1] = *uVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_null.clone(NOX::ShapeCopy); status = group->computeDwtJnDxMulti(result_null, *nullVector, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [F 0 0] - (Jv)_x^T[A B u] tmp->update(1.0, input_x, -1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J^T v||C D E| = |F - (Jv)_x^T A -(Jv)_x^T B -(Jv)_x^T u| // |u^T 0||c d e| | 0 0 0 | status = transposeBorderedSolver->applyInverseTranspose(params, tmp.get(), NULL, result_x, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_x.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_x.subView(index_null); double d = tmp_mat_2(0, m); double e = tmp_mat_2(0, m+1); // compute (Jv)_p^T*[A B u] NOX::Abstract::MultiVector::DenseMatrix t1(1,m+2); result_null.multiply(1.0, *dJndp, t1); // compute f_p^T*[C D E] NOX::Abstract::MultiVector::DenseMatrix t2(1,m+2); result_x.multiply(1.0, *dfdp, t2); // compute f_p^T*u double fptu = uVector->innerProduct((*dfdp)[0]); // Fill coefficient arrays double M[9]; M[0] = st; M[1] = -e; M[2] = t1(0,m+1) + t2(0,m+1); M[3] = 0.0; M[4] = st; M[5] = fptu; M[6] = -b; M[7] = -d; M[8] = t1(0,m) + t2(0,m); // Compute RHS double *R = new double[3*m]; for (int i=0; i<m; i++) { R[3*i] = tmp_mat_1(0,i); R[3*i+1] = tmp_mat_2(0,i); R[3*i+2] = result_param(0,i) - t1(0,i) - t2(0,i); } // Solve M*P = R int three = 3; int piv[3]; int info; Teuchos::LAPACK<int,double> L; L.GESV(three, m, M, three, piv, R, three, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 3x3 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[3*i]; beta(0,i) = R[3*i+1]; result_param(0,i) = R[3*i+2]; } // compute A = A + B*z + alpha*u (remember A is a sub-view of result_null) A->update(Teuchos::NO_TRANS, 1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *uMultiVector, alpha, 1.0); // compute C = C + D*z + alpha*E + beta*u // (remember C is a sub-view of result_x) C->update(Teuchos::NO_TRANS, 1.0, *D, result_param, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *E, alpha, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *uMultiVector, beta, 1.0); delete [] R; return finalStatus; }
// Solves pitchfork equations via Phipps modified bordering // The first m columns of input_x and input_null store the RHS, // column m+1 stores df/dp, d(Jn)/dp, column m+2 stores psi and 0, // and the last column provides space for solving (Jv_x) v. Note however // input_param has only m columns. result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::Pitchfork::MooreSpence::PhippsBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_slack, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_slack, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { string callingFunction = "LOCA::Pitchfork::MooreSpence::PhippsBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-3; vector<int> index_input(m); vector<int> index_input_dp(m+2); vector<int> index_null(1); vector<int> index_dp(1); vector<int> index_s(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_input_dp[m+1] = m+1; index_dp[0] = m; index_s[0] = m+1; index_null[0] = m+2; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+2); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+3); // Create view of first m+2 columns of input_x, result_x Teuchos::RCP<NOX::Abstract::MultiVector> input_x_view = input_x.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_x_view = result_x.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||A B C| = |F df/dp psi| // |v^T 0||a b c| |0 0 0 | status = borderedSolver->applyInverse(params, input_x_view.get(), NULL, *result_x_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_x.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_x.subView(index_s); double b = tmp_mat_1(0,m); double c = tmp_mat_1(0,m+1); // compute (Jv)_x[A B C v] result_x[m+2] = *nullVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_x.clone(NOX::ShapeCopy); status = group->computeDJnDxaMulti(*nullVector, *JnVector, result_x, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [G d(Jn)/dp 0 0] - (Jv)_x[A B C v] tmp->update(1.0, input_null, -1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||D E K L| = |G-(Jv)_xA d(Jv)/dp-(Jv)_xB -(Jv)_xC -(Jv)_xv| // |v^T 0||d e k l| | 0 0 0 0 | status = borderedSolver->applyInverse(params, tmp.get(), NULL, result_null, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_null.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> K = result_null.subView(index_s); Teuchos::RCP<NOX::Abstract::MultiVector> L = result_null.subView(index_null); double e = tmp_mat_2(0, m); double k = tmp_mat_2(0, m+1); double l = tmp_mat_2(0, m+2); double ltE = pfGroup->lTransNorm((*E)[0]); double ltK = pfGroup->lTransNorm((*K)[0]); double ltL = pfGroup->lTransNorm((*L)[0]); double ltv = pfGroup->lTransNorm(*nullVector); double ipv = group->innerProduct(*nullVector, *asymVector); double ipB = group->innerProduct((*B)[0], *asymVector); double ipC = group->innerProduct((*C)[0], *asymVector); // Fill coefficient arrays double M[16]; M[0] = sigma; M[1] = -l; M[2] = ipv; M[3] = ltL; M[4] = 0.0; M[5] = sigma; M[6] = 0.0; M[7] = ltv; M[8] = b; M[9] = e; M[10] = -ipB; M[11] = -ltE; M[12] = c; M[13] = k; M[14] = -ipC; M[15] = -ltK; // compute s - <A,psi> NOX::Abstract::MultiVector::DenseMatrix tmp_mat_3(1, m); group->innerProduct(*asymMultiVector, *A, tmp_mat_3); tmp_mat_3 -= input_slack; tmp_mat_3.scale(-1.0); // compute h - phi^T D NOX::Abstract::MultiVector::DenseMatrix tmp_mat_4(1, m); pfGroup->lTransNorm(*D, tmp_mat_4); tmp_mat_4 -= input_param; tmp_mat_4.scale(-1.0); double *R = new double[4*m]; for (int i=0; i<m; i++) { R[4*i] = tmp_mat_1(0,i); R[4*i+1] = tmp_mat_2(0,i); R[4*i+2] = tmp_mat_3(0,i); R[4*i+3] = tmp_mat_4(0,i); } // Solve M*P = R int piv[4]; int info; Teuchos::LAPACK<int,double> dlapack; dlapack.GESV(4, m, M, 4, piv, R, 4, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 4x4 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[4*i]; beta(0,i) = R[4*i+1]; result_param(0,i) = R[4*i+2]; result_slack(0,i) = R[4*i+3]; } // compute A = A - B*z -C*w + v*alpha (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, -1.0, *C, result_slack, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, alpha, 1.0); // compute D = D - E*z - K*w + L*alpha + v*beta // (remember D is a sub-view of result_null) D->update(Teuchos::NO_TRANS, -1.0, *E, result_param, 1.0); D->update(Teuchos::NO_TRANS, -1.0, *K, result_slack, 1.0); D->update(Teuchos::NO_TRANS, 1.0, *L, alpha, 1.0); D->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, beta, 1.0); delete [] R; return finalStatus; }