void r4300_init(void)
{
    current_instruction_table = cached_interpreter_table;

    delay_slot=0;
    stop = 0;
    rompause = 0;

    /* clear instruction counters */
#if defined(COUNT_INSTR)
    memset(instr_count, 0, 131 * sizeof(instr_count[0]));
#endif

    last_addr = 0xa4000040;
    next_interupt = 624999;
    init_interupt();

    if (r4300emu == CORE_PURE_INTERPRETER)
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Pure Interpreter");
        r4300emu = CORE_PURE_INTERPRETER;
        pure_interpreter_init();
    }
#if defined(DYNAREC)
    else if (r4300emu >= 2)
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Dynamic Recompiler");

        {
           r4300emu = CORE_DYNAREC;
           init_blocks();

#ifdef NEW_DYNAREC
           new_dynarec_init();
#elif !defined(NO_ASM) && defined(DYNAREC)
           dyna_start(dynarec_setup_code);
#endif
        }
    }
#endif
    else /* if (r4300emu == CORE_INTERPRETER) */
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Cached Interpreter");
        r4300emu = CORE_INTERPRETER;
        init_blocks();
        jump_to(0xa4000040);

        /* Prevent segfault on failed jump_to */
        if (!actual->block)
            return;

        last_addr = PC->addr;
    }
}
static void nmi_int_handler(void)
{
    // Non Maskable Interrupt -- remove interrupt event from queue
    remove_interupt_event();
    // setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR
    g_cp0_regs[CP0_STATUS_REG] = (g_cp0_regs[CP0_STATUS_REG] & ~UINT32_C(0x00380000)) | UINT32_C(0x00500004);
    g_cp0_regs[CP0_CAUSE_REG]  = 0x00000000;
    // simulate the soft reset code which would run from the PIF ROM
    r4300_reset_soft();
    // clear all interrupts, reset interrupt counters back to 0
    g_cp0_regs[CP0_COUNT_REG] = 0;
    g_gs_vi_counter = 0;
    init_interupt();
    // clear the audio status register so that subsequent write_ai() calls will work properly
    g_ai.regs[AI_STATUS_REG] = 0;
    // set ErrorEPC with the last instruction address
    g_cp0_regs[CP0_ERROREPC_REG] = PC->addr;
    // reset the r4300 internal state
    if (r4300emu != CORE_PURE_INTERPRETER)
    {
        // clear all the compiled instruction blocks and re-initialize
        free_blocks();
        init_blocks();
    }
    // adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags
    if(delay_slot==1 || delay_slot==3)
    {
        g_cp0_regs[CP0_ERROREPC_REG]-=4;
    }
    delay_slot = 0;
    dyna_interp = 0;
    // set next instruction address to reset vector
    last_addr = UINT32_C(0xa4000040);
    generic_jump_to(UINT32_C(0xa4000040));
}
Exemple #3
0
static void init_daemon(struct net_child_info *nci)
{
	init_log();
	init_blkdb();
	bp_utxo_set_init(&uset);
	init_blocks();
	init_orphans();
	readprep_blocks_file();
	init_nci(nci);
}
Exemple #4
0
int main(void)
{
        init_blocks();

        print_blocks();
        block_quick_sort(start, end+1, SORT_BY_ADDRESS);
        print_blocks();

        return 0;
}
Exemple #5
0
void Model::init_items(){
    QJsonObject json_obj= read_json_file(":/map/items_1.json");
    QJsonArray blocks_array = json_obj.value(QString("items")).toObject()["block"].toArray();
    init_blocks(blocks_array);
    QJsonArray coins_array = json_obj.value(QString("items")).toObject()["coins"].toArray();
    init_coins(coins_array);
    QJsonArray pipes_array = json_obj.value(QString("items")).toObject()["pipes"].toArray();
    init_pipes(pipes_array);
    QJsonArray decor_array = json_obj.value(QString("items")).toObject()["decor"].toArray();
    init_decor(decor_array);
}
Exemple #6
0
/* Initialize a new RECS structure */
struct RECS *initrecs(char recfm,int recl,unsigned char *hdr,int hdrsz)
{
    struct RECS *recs;

    recs=malloc(sizeof(struct RECS));
    recs->blocks=init_blocks(TAPE_BLOCKSIZE,TAPE_BLKSIZE_MODULO,hdr,hdrsz);
    recs->reccount=0;
    recs->recfm=recfm;
    recs->reclen=recl;
    recs->filesz=0;
    return recs;
}
Exemple #7
0
/*Ici les fantomes accélèrent de plus en plus
 * et le but est de tenir le plus longtemps
 * sans se faire dévorer*/
void survivor(int level, config *cfg)
{
	if(level>=NB_LEVEL) return;
	int selection, counter=SDL_GetTicks(), tmp=counter, elapsed;
	SAVE_ENABLE=0;
	play_menu(level);
	Pacman pac;
	Fantome ftm[NB_MAX_GHOSTS];
	score_message *msg_list = NULL;
	Input in;

	init_pacman(&pac, cfg);
	init_level();
	init_blocks();
	load_level(level);
	pac_restart(&pac);
	pac.nb_lives=1;
	init_ghosts(ftm, cfg);
	memset(&in,0,sizeof(in));
	DELAY = 40;
	while(pac.nb_lives && POINTS)
	{
		elapsed = SDL_GetTicks()-tmp;
		if(elapsed > 10000)
		{
			//On accélere les fantomes
			speed_up(ftm, 1);
			tmp=SDL_GetTicks();
		}
		UpdateEvents(&in);
		if(in.quit) //Si clique sur croix
		{
			delete(&pac, ftm);
			exit(EXIT_SUCCESS);
		}
		while(in.key[SDLK_ESCAPE])
		{
			selection=game_menu();
			if(selection==0) in.key[SDLK_ESCAPE]=0;
			else if(selection==2) //Retour menu principal
			{
				delete(&pac, ftm);
				return;
			}
		}
		jouer(&pac, ftm, in, cfg, level, &msg_list);
	}
	counter = SDL_GetTicks() - counter;
	fprintf(stderr, "Wouaw tu as tenu %d ms!\n", counter);
	if(pacmanIsHuman(cfg)) draw_result("data/survivor.txt", counter);
	delete(&pac, ftm);
}
Exemple #8
0
/*Permet de jouer un seul niveau
 * choisi dans la liste des niveaux
 * disponibles*/
void one_level(int level, config *cfg)
{
	if(level>=NB_LEVEL) return;
	int selection;
	SAVE_ENABLE=0;
	play_menu(level);
	Pacman pac;
	Fantome ftm[NB_MAX_GHOSTS];
	score_message *msg_list = NULL;
	Input in;

	init_pacman(&pac, cfg);
	init_level();
	init_blocks();
	load_level(level);
	pac_restart(&pac);
	init_ghosts(ftm, cfg);
	memset(&in,0,sizeof(in));
	DELAY = 40-level;
	while(POINTS) //Tant que l'on a pas mangé toutes les pac-gommes
	{
		UpdateEvents(&in);
		if(in.quit) //Si clique sur croix
		{
			delete(&pac, ftm);
			exit(EXIT_SUCCESS);
		}
		while(in.key[SDLK_ESCAPE])
		{
			selection=game_menu();
			if(selection==0) in.key[SDLK_ESCAPE]=0;
			else if(selection==2) //Retour menu principal
			{
				delete(&pac, ftm);
				return;
			}
		}
		if (in.key[SDLK_w]) POINTS=0; //cheat code for winning!!
		else if (in.key[SDLK_l] || !(pac.nb_lives)) //cheat code for loosing!!
		{
			lost_menu();
			delete(&pac, ftm);
			if(pacmanIsHuman(cfg)) draw_result("data/results.txt", pac.score);
			return;
		}
		jouer(&pac, ftm, in, cfg, level, &msg_list);
	}
	win_menu();
	if(pacmanIsHuman(cfg)) draw_result("data/results.txt", pac.score);
	delete(&pac, ftm);
}
static void nmi_int_handler(void)
{
   /* Non Maskable Interrupt -- remove interrupt event from queue */
   remove_interrupt_event();
   /* setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR */
   g_cp0_regs[CP0_STATUS_REG] = (g_cp0_regs[CP0_STATUS_REG] & ~(CP0_STATUS_SR | CP0_STATUS_TS | UINT32_C(0x00080000))) | (CP0_STATUS_ERL | CP0_STATUS_BEV | CP0_STATUS_SR);
   g_cp0_regs[CP0_CAUSE_REG]  = 0x00000000;
   /* simulate the soft reset code which would run from the PIF ROM */
   pifbootrom_hle_execute(&g_dev);
   /* clear all interrupts, reset interrupt counters back to 0 */
   g_cp0_regs[CP0_COUNT_REG] = 0;
   g_gs_vi_counter = 0;
   init_interrupt();

   g_dev.vi.delay = g_dev.vi.next_vi = 5000;
   add_interrupt_event_count(VI_INT, g_dev.vi.next_vi);

   /* clear the audio status register so that subsequent write_ai() calls will work properly */
   g_dev.ai.regs[AI_STATUS_REG] = 0;
   /* set ErrorEPC with the last instruction address */
   g_cp0_regs[CP0_ERROREPC_REG] = PC->addr;
   /* reset the r4300 internal state */
   if (r4300emu != CORE_PURE_INTERPRETER)
   {
      /* clear all the compiled instruction blocks and re-initialize */
      free_blocks();
      init_blocks();
   }
   /* adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags */
   if(g_dev.r4300.delay_slot==1 || g_dev.r4300.delay_slot==3)
   {
      g_cp0_regs[CP0_ERROREPC_REG]-=4;
   }
   g_dev.r4300.delay_slot = 0;
   dyna_interp = 0;
   /* set next instruction address to reset vector */
   last_addr = UINT32_C(0xa4000040);
   generic_jump_to(UINT32_C(0xa4000040));

#ifdef NEW_DYNAREC
   if (r4300emu == CORE_DYNAREC)
   {
      g_cp0_regs[CP0_ERROREPC_REG]=(pcaddr&~3)-(pcaddr&1)*4;
      pcaddr = 0xa4000040;
      pending_exception = 1;
      invalidate_all_pages();
   }
#endif
}
void reset_hard(void)
{
   poweron_device(&g_dev);

   pifbootrom_hle_execute(&g_dev);
   last_addr = UINT32_C(0xa4000040);
   next_interrupt = 624999;
   init_interrupt();

   g_dev.vi.delay = g_dev.vi.next_vi = 5000;
   add_interrupt_event_count(VI_INT, g_dev.vi.next_vi);

   if(r4300emu != CORE_PURE_INTERPRETER)
   {
      free_blocks();
      init_blocks();
   }
   generic_jump_to(last_addr);
}
Exemple #11
0
int main(){
    char command[20],first[5],second[5];
    char *temp,*buf;
    int max,from,to;
    void (*func)(int, int, int);
    scanf("%d", &max);
    getchar();
    init_blocks(max);
    while(1){
        fgets(command,20,stdin);
        buf = command;
        if (strcmp(buf,"quit\n") == 0){
            break;
        }
        sscanf(buf,"%s %d %s %d", first, &from, second, &to);
        if(!checkvalid(from,to,max)){
            continue;
        }
        action(first, second, from, to, max);
    }
    output_blocks(max);
    return 0;
}
Exemple #12
0
void gen_interupt()
{

    if(!__emulation_run)
      stop = 1;
      
    if (stop == 1)
    {
        vi_counter = 0; // debug
        dyna_stop();
    }
    if (savestates_job & LOADSTATE) 
    {
        savestates_load();
        savestates_job &= ~LOADSTATE;
        return;
    }
   
    if (skip_jump)
    {
        if (q->count > Count || (Count - q->count) < 0x80000000)
            next_interupt = q->count;
        else
            next_interupt = 0;
        if (interpcore)
        {
             interp_addr = skip_jump;
             last_addr = interp_addr;
        }
        else
        {
            unsigned int dest = skip_jump;
            skip_jump=0;
            jump_to(dest);
            last_addr = PC->addr;
        }
        skip_jump=0;
        return;
    } 

    switch(q->type)
    {
        case SPECIAL_INT:
            if (Count > 0x10000000) return;
            remove_interupt_event();
            add_interupt_event_count(SPECIAL_INT, 0);
            return;
            break;
        case VI_INT:
            if(vi_counter < 60)
            {
                if (vi_counter == 0)
                    cheat_apply_cheats(ENTRY_BOOT);
                vi_counter++;
            }
            else
            {
                cheat_apply_cheats(ENTRY_VI);
            }
            updateScreen();
#ifdef WITH_LIRC
            lircCheckInput();
#endif
            SDL_PumpEvents();
            refresh_stat();

            // if paused, poll for input events
            if(rompause)
            {
                osd_render();  // draw Paused message in case updateScreen didn't do it
                SDL_GL_SwapBuffers();
                while(rompause)
                {
#ifdef __WIN32__
                    Sleep(10);
#else
                    struct timespec ts;
                    ts.tv_sec = 0;
                    ts.tv_nsec = 10000000;
                    nanosleep(&ts, NULL); // sleep for 10 milliseconds
#endif
                    SDL_PumpEvents();
#ifdef WITH_LIRC
                    lircCheckInput();
#endif //WITH_LIRC
                }
            }

            new_vi();
            if (vi_register.vi_v_sync == 0) vi_register.vi_delay = 500000;
            else vi_register.vi_delay = ((vi_register.vi_v_sync + 1)*1500);
            next_vi += vi_register.vi_delay;
            if (vi_register.vi_status&0x40) vi_field=1-vi_field;
            else vi_field=0;

            remove_interupt_event();
            add_interupt_event_count(VI_INT, next_vi);
    
            MI_register.mi_intr_reg |= 0x08;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case COMPARE_INT:
            remove_interupt_event();
            Count+=2;
            add_interupt_event_count(COMPARE_INT, Compare);
            Count-=2;
    
            Cause = (Cause | 0x8000) & 0xFFFFFF83;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case CHECK_INT:
            remove_interupt_event();
            break;
    
        case SI_INT:
#ifdef WITH_LIRC
            lircCheckInput();
#endif //WITH_LIRC
            SDL_PumpEvents();
            PIF_RAMb[0x3F] = 0x0;
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x02;
            si_register.si_stat |= 0x1000;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case PI_INT:
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x10;
            pi_register.read_pi_status_reg &= ~3;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case AI_INT:
            if (ai_register.ai_status & 0x80000000) // full
            {
                unsigned int ai_event = get_event(AI_INT);
                remove_interupt_event();
                ai_register.ai_status &= ~0x80000000;
                ai_register.current_delay = ai_register.next_delay;
                ai_register.current_len = ai_register.next_len;
                add_interupt_event_count(AI_INT, ai_event+ai_register.next_delay);
         
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            else
            {
                remove_interupt_event();
                ai_register.ai_status &= ~0x40000000;

                //-------
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            break;

        case SP_INT:
            remove_interupt_event();
            sp_register.sp_status_reg |= 0x303;
            //sp_register.signal1 = 1;
            sp_register.signal2 = 1;
            sp_register.broke = 1;
            sp_register.halt = 1;
    
            if (!sp_register.intr_break) return;
            MI_register.mi_intr_reg |= 0x01;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case DP_INT:
            remove_interupt_event();
            dpc_register.dpc_status &= ~2;
            dpc_register.dpc_status |= 0x81;
            MI_register.mi_intr_reg |= 0x20;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;

        case HW2_INT:
            // Hardware Interrupt 2 -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS, and SR, set IM2
            Status = (Status & ~0x00380000) | 0x1000;
            Cause = (Cause | 0x1000) & 0xFFFFFF83;
            /* the exception_general() call below will jump to the interrupt vector (0x80000180) and setup the
             * interpreter or dynarec
             */
            break;

        case NMI_INT:
            // Non Maskable Interrupt -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR
            Status = (Status & ~0x00380000) | 0x00500004;
            Cause  = 0x00000000;
            // simulate the soft reset code which would run from the PIF ROM
            r4300_reset_soft();
            // clear all interrupts, reset interrupt counters back to 0
            Count = 0;
            vi_counter = 0;
            init_interupt();
            // clear the audio status register so that subsequent write_ai() calls will work properly
            ai_register.ai_status = 0;
            // reset the r4300 internal state
            if (interpcore) /* pure interpreter only */
            {
                // set ErrorEPC with last instruction address and set next instruction address to reset vector
                ErrorEPC = interp_addr;
                interp_addr = 0xa4000040;
                last_addr = interp_addr;
            }
            else  /* decode-cached interpreter or dynamic recompiler */
            {
                int i;
                // clear all the compiled instruction blocks
                for (i=0; i<0x100000; i++)
                {
                    if (blocks[i])
                    {
                        if (blocks[i]->block) { free(blocks[i]->block); blocks[i]->block = NULL; }
                        if (blocks[i]->code) { free(blocks[i]->code); blocks[i]->code = NULL; }
                        if (blocks[i]->jumps_table) { free(blocks[i]->jumps_table); blocks[i]->jumps_table = NULL; }
                        if (blocks[i]->riprel_table) { free(blocks[i]->riprel_table); blocks[i]->riprel_table = NULL; }
                        free(blocks[i]);
                        blocks[i] = NULL;
                    }
                }
                // re-initialize
                init_blocks();
                // jump to the start
                ErrorEPC = PC->addr;
                jump_to(0xa4000040);
                last_addr = PC->addr;
            }
            // adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags
            if(delay_slot==1 || delay_slot==3)
            {
                ErrorEPC-=4;
            }
            delay_slot = 0;
            dyna_interp = 0;
            return;

        default:
            remove_interupt_event();
            break;
    }

#ifdef NEW_DYNAREC
    EPC = pcaddr;
    pcaddr = 0x80000180;
    Status |= 2;
    Cause &= 0x7FFFFFFF;
    pending_exception=1;
#else
    exception_general();
#endif

    if (savestates_job & SAVESTATE) 
    {
        savestates_save();
        savestates_job &= ~SAVESTATE;
    }
}
Exemple #13
0
int main(int argc, char *argv[])
{
  FILE *parameterfile = NULL;
  int c, j, i, ix = 0, isample = 0, op_id = 0;
  char * filename = NULL;
  char datafilename[50];
  char parameterfilename[50];
  char conf_filename[50];
  char * input_filename = NULL;
  double plaquette_energy;
  struct stout_parameters params_smear;
  spinor **s, *s_;

#ifdef _KOJAK_INST
#pragma pomp inst init
#pragma pomp inst begin(main)
#endif
  

#if (defined SSE || defined SSE2 || SSE3)
  signal(SIGILL, &catch_ill_inst);
#endif

  DUM_DERI = 8;
  DUM_MATRIX = DUM_DERI + 5;
#if ((defined BGL && defined XLC) || defined _USE_TSPLITPAR)
  NO_OF_SPINORFIELDS = DUM_MATRIX + 3;
#else
  NO_OF_SPINORFIELDS = DUM_MATRIX + 3;
#endif

  verbose = 0;
  g_use_clover_flag = 0;

#ifdef MPI

#  ifdef OMP
  int mpi_thread_provided;
  MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &mpi_thread_provided);
#  else
  MPI_Init(&argc, &argv);
#  endif

  MPI_Comm_rank(MPI_COMM_WORLD, &g_proc_id);
#else
  g_proc_id = 0;
#endif

  while ((c = getopt(argc, argv, "h?vVf:o:")) != -1) {
    switch (c) {
      case 'f':
        input_filename = calloc(200, sizeof(char));
        strcpy(input_filename, optarg);
        break;
      case 'o':
        filename = calloc(200, sizeof(char));
        strcpy(filename, optarg);
        break;
      case 'v':
        verbose = 1;
        break;
      case 'V':
        fprintf(stdout,"%s %s\n",PACKAGE_STRING,git_hash);
        exit(0);
        break;
      case 'h':
      case '?':
      default:
        usage();
        break;
    }
  }
  if (input_filename == NULL) {
    input_filename = "invert.input";
  }
  if (filename == NULL) {
    filename = "output";
  }

  /* Read the input file */
  if( (j = read_input(input_filename)) != 0) {
    fprintf(stderr, "Could not find input file: %s\nAborting...\n", input_filename);
    exit(-1);
  }

#ifdef OMP
  if(omp_num_threads > 0) 
  {
     omp_set_num_threads(omp_num_threads);
  }
  else {
    if( g_proc_id == 0 )
      printf("# No value provided for OmpNumThreads, running in single-threaded mode!\n");

    omp_num_threads = 1;
    omp_set_num_threads(omp_num_threads);
  }

  init_omp_accumulators(omp_num_threads);
#endif

  /* this DBW2 stuff is not needed for the inversion ! */
  if (g_dflgcr_flag == 1) {
    even_odd_flag = 0;
  }
  g_rgi_C1 = 0;
  if (Nsave == 0) {
    Nsave = 1;
  }

  if (g_running_phmc) {
    NO_OF_SPINORFIELDS = DUM_MATRIX + 8;
  }

  tmlqcd_mpi_init(argc, argv);

  g_dbw2rand = 0;

  /* starts the single and double precision random number */
  /* generator                                            */
  start_ranlux(rlxd_level, random_seed);

  /* we need to make sure that we don't have even_odd_flag = 1 */
  /* if any of the operators doesn't use it                    */
  /* in this way even/odd can still be used by other operators */
  for(j = 0; j < no_operators; j++) if(!operator_list[j].even_odd_flag) even_odd_flag = 0;

#ifndef MPI
  g_dbw2rand = 0;
#endif

#ifdef _GAUGE_COPY
  j = init_gauge_field(VOLUMEPLUSRAND, 1);
#else
  j = init_gauge_field(VOLUMEPLUSRAND, 0);
#endif
  if (j != 0) {
    fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n");
    exit(-1);
  }
  j = init_geometry_indices(VOLUMEPLUSRAND);
  if (j != 0) {
    fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n");
    exit(-1);
  }
  if (no_monomials > 0) {
    if (even_odd_flag) {
      j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag);
    }
    else {
      j = init_monomials(VOLUMEPLUSRAND, even_odd_flag);
    }
    if (j != 0) {
      fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n");
      exit(-1);
    }
  }
  if (even_odd_flag) {
    j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS);
  }
  else {
    j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS);
  }
  if (j != 0) {
    fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n");
    exit(-1);
  }

  if (g_running_phmc) {
    j = init_chi_spinor_field(VOLUMEPLUSRAND / 2, 20);
    if (j != 0) {
      fprintf(stderr, "Not enough memory for PHMC Chi fields! Aborting...\n");
      exit(-1);
    }
  }

  g_mu = g_mu1;
  if (g_cart_id == 0) {
    /*construct the filenames for the observables and the parameters*/
    strcpy(datafilename, filename);
    strcat(datafilename, ".data");
    strcpy(parameterfilename, filename);
    strcat(parameterfilename, ".para");

    parameterfile = fopen(parameterfilename, "w");
    write_first_messages(parameterfile, 1);
    fclose(parameterfile);
  }

  /* define the geometry */
  geometry();

  /* define the boundary conditions for the fermion fields */
  boundary(g_kappa);

  phmc_invmaxev = 1.;

  init_operators();

  /* this could be maybe moved to init_operators */
#ifdef _USE_HALFSPINOR
  j = init_dirac_halfspinor();
  if (j != 0) {
    fprintf(stderr, "Not enough memory for halffield! Aborting...\n");
    exit(-1);
  }
  if (g_sloppy_precision_flag == 1) {
    j = init_dirac_halfspinor32();
    if (j != 0)
    {
      fprintf(stderr, "Not enough memory for 32-bit halffield! Aborting...\n");
      exit(-1);
    }
  }
#  if (defined _PERSISTENT)
  if (even_odd_flag)
    init_xchange_halffield();
#  endif
#endif

  for (j = 0; j < Nmeas; j++) {
    sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore);
    if (g_cart_id == 0) {
      printf("#\n# Trying to read gauge field from file %s in %s precision.\n",
            conf_filename, (gauge_precision_read_flag == 32 ? "single" : "double"));
      fflush(stdout);
    }
    if( (i = read_gauge_field(conf_filename)) !=0) {
      fprintf(stderr, "Error %d while reading gauge field from %s\n Aborting...\n", i, conf_filename);
      exit(-2);
    }


    if (g_cart_id == 0) {
      printf("# Finished reading gauge field.\n");
      fflush(stdout);
    }
#ifdef MPI
    xchange_gauge(g_gauge_field);
#endif

    /*compute the energy of the gauge field*/
    plaquette_energy = measure_gauge_action( (const su3**) g_gauge_field);

    if (g_cart_id == 0) {
      printf("# The computed plaquette value is %e.\n", plaquette_energy / (6.*VOLUME*g_nproc));
      fflush(stdout);
    }

    if (use_stout_flag == 1){
      params_smear.rho = stout_rho;
      params_smear.iterations = stout_no_iter;
/*       if (stout_smear((su3_tuple*)(g_gauge_field[0]), &params_smear, (su3_tuple*)(g_gauge_field[0])) != 0) */
/*         exit(1) ; */
      g_update_gauge_copy = 1;
      g_update_gauge_energy = 1;
      g_update_rectangle_energy = 1;
      plaquette_energy = measure_gauge_action( (const su3**) g_gauge_field);

      if (g_cart_id == 0) {
        printf("# The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc));
        fflush(stdout);
      }
    }

    if (reweighting_flag == 1) {
      reweighting_factor(reweighting_samples, nstore);
    }

    /* Compute minimal eigenvalues, if wanted */
    if (compute_evs != 0) {
      eigenvalues(&no_eigenvalues, 5000, eigenvalue_precision,
                  0, compute_evs, nstore, even_odd_flag);
    }
    if (phmc_compute_evs != 0) {
#ifdef MPI
      MPI_Finalize();
#endif
      return(0);
    }

    /* Compute the mode number or topological susceptibility using spectral projectors, if wanted*/

    if(compute_modenumber != 0 || compute_topsus !=0){
      
      s_ = calloc(no_sources_z2*VOLUMEPLUSRAND+1, sizeof(spinor));
      s  = calloc(no_sources_z2, sizeof(spinor*));
      if(s_ == NULL) { 
	printf("Not enough memory in %s: %d",__FILE__,__LINE__); exit(42); 
      }
      if(s == NULL) { 
	printf("Not enough memory in %s: %d",__FILE__,__LINE__); exit(42); 
      }
      
      
      for(i = 0; i < no_sources_z2; i++) {
#if (defined SSE3 || defined SSE2 || defined SSE)
        s[i] = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE)+i*VOLUMEPLUSRAND;
#else
        s[i] = s_+i*VOLUMEPLUSRAND;
#endif
	
        z2_random_spinor_field(s[i], VOLUME);
	
/* 	what is this here needed for?? */
/*         spinor *aux_,*aux; */
/* #if ( defined SSE || defined SSE2 || defined SSE3 ) */
/*         aux_=calloc(VOLUMEPLUSRAND+1, sizeof(spinor)); */
/*         aux = (spinor *)(((unsigned long int)(aux_)+ALIGN_BASE)&~ALIGN_BASE); */
/* #else */
/*         aux_=calloc(VOLUMEPLUSRAND, sizeof(spinor)); */
/*         aux = aux_; */
/* #endif */
	
        if(g_proc_id == 0) {
          printf("source %d \n", i);
        }
	
        if(compute_modenumber != 0){
          mode_number(s[i], mstarsq);
        }
	
        if(compute_topsus !=0) {
          top_sus(s[i], mstarsq);
        }
      }
      free(s);
      free(s_);
    }


    /* move to operators as well */
    if (g_dflgcr_flag == 1) {
      /* set up deflation blocks */
      init_blocks(nblocks_t, nblocks_x, nblocks_y, nblocks_z);

      /* the can stay here for now, but later we probably need */
      /* something like init_dfl_solver called somewhere else  */
      /* create set of approximate lowest eigenvectors ("global deflation subspace") */

      /*       g_mu = 0.; */
      /*       boundary(0.125); */
      generate_dfl_subspace(g_N_s, VOLUME);
      /*       boundary(g_kappa); */
      /*       g_mu = g_mu1; */

      /* Compute little Dirac operators */
      /*       alt_block_compute_little_D(); */
      if (g_debug_level > 0) {
        check_projectors();
        check_local_D();
      }
      if (g_debug_level > 1) {
        check_little_D_inversion();
      }

    }
    if(SourceInfo.type == 1) {
      index_start = 0;
      index_end = 1;
    }

    g_precWS=NULL;
    if(use_preconditioning == 1){
      /* todo load fftw wisdom */
#if (defined HAVE_FFTW ) && !( defined MPI)
      loadFFTWWisdom(g_spinor_field[0],g_spinor_field[1],T,LX);
#else
      use_preconditioning=0;
#endif
    }

    if (g_cart_id == 0) {
      fprintf(stdout, "#\n"); /*Indicate starting of the operator part*/
    }
    for(op_id = 0; op_id < no_operators; op_id++) {
      boundary(operator_list[op_id].kappa);
      g_kappa = operator_list[op_id].kappa; 
      g_mu = 0.;

      if(use_preconditioning==1 && PRECWSOPERATORSELECT[operator_list[op_id].solver]!=PRECWS_NO ){
        printf("# Using preconditioning with treelevel preconditioning operator: %s \n",
              precWSOpToString(PRECWSOPERATORSELECT[operator_list[op_id].solver]));
        /* initial preconditioning workspace */
        operator_list[op_id].precWS=(spinorPrecWS*)malloc(sizeof(spinorPrecWS));
        spinorPrecWS_Init(operator_list[op_id].precWS,
                  operator_list[op_id].kappa,
                  operator_list[op_id].mu/2./operator_list[op_id].kappa,
                  -(0.5/operator_list[op_id].kappa-4.),
                  PRECWSOPERATORSELECT[operator_list[op_id].solver]);
        g_precWS = operator_list[op_id].precWS;

        if(PRECWSOPERATORSELECT[operator_list[op_id].solver] == PRECWS_D_DAGGER_D) {
          fitPrecParams(op_id);
        }
      }

      for(isample = 0; isample < no_samples; isample++) {
        for (ix = index_start; ix < index_end; ix++) {
          if (g_cart_id == 0) {
            fprintf(stdout, "#\n"); /*Indicate starting of new index*/
          }
          /* we use g_spinor_field[0-7] for sources and props for the moment */
          /* 0-3 in case of 1 flavour  */
          /* 0-7 in case of 2 flavours */
          prepare_source(nstore, isample, ix, op_id, read_source_flag, source_location);
          operator_list[op_id].inverter(op_id, index_start);
        }
      }


      if(use_preconditioning==1 && operator_list[op_id].precWS!=NULL ){
        /* free preconditioning workspace */
        spinorPrecWS_Free(operator_list[op_id].precWS);
        free(operator_list[op_id].precWS);
      }

      if(operator_list[op_id].type == OVERLAP){
        free_Dov_WS();
      }

    }
    nstore += Nsave;
  }

#ifdef MPI
  MPI_Finalize();
#endif
#ifdef OMP
  free_omp_accumulators();
#endif
  free_blocks();
  free_dfl_subspace();
  free_gauge_field();
  free_geometry_indices();
  free_spinor_field();
  free_moment_field();
  free_chi_spinor_field();
  return(0);
#ifdef _KOJAK_INST
#pragma pomp inst end(main)
#endif
}
Exemple #14
0
void gen_interupt(void)
{
    if (stop == 1)
    {
        vi_counter = 0; // debug
        dyna_stop();
    }

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_load)
        {
            savestates_load();
            return;
        }

        if (reset_hard_job)
        {
            reset_hard();
            reset_hard_job = 0;
            return;
        }
    }
   
    if (skip_jump)
    {
        unsigned int dest = skip_jump;
        skip_jump = 0;

        if (q->count > Count || (Count - q->count) < 0x80000000)
            next_interupt = q->count;
        else
            next_interupt = 0;
        
        last_addr = dest;
        generic_jump_to(dest);
        return;
    } 

    switch(q->type)
    {
        case SPECIAL_INT:
            if (Count > 0x10000000) return;
            remove_interupt_event();
            add_interupt_event_count(SPECIAL_INT, 0);
            return;
            break;
        case VI_INT:
            if(vi_counter < 60)
            {
                if (vi_counter == 0)
                    cheat_apply_cheats(ENTRY_BOOT);
                vi_counter++;
            }
            else
            {
                cheat_apply_cheats(ENTRY_VI);
            }
            gfx.updateScreen();
#ifdef WITH_LIRC
            lircCheckInput();
#endif
            SDL_PumpEvents();

            refresh_stat();

            // if paused, poll for input events
            if(rompause)
            {
                osd_render();  // draw Paused message in case gfx.updateScreen didn't do it
                VidExt_GL_SwapBuffers();
                while(rompause)
                {
                    SDL_Delay(10);
                    SDL_PumpEvents();
#ifdef WITH_LIRC
                    lircCheckInput();
#endif //WITH_LIRC
                }
            }

            new_vi();
            if (vi_register.vi_v_sync == 0) vi_register.vi_delay = 500000;
            else vi_register.vi_delay = ((vi_register.vi_v_sync + 1)*1500);
            next_vi += vi_register.vi_delay;
            if (vi_register.vi_status&0x40) vi_field=1-vi_field;
            else vi_field=0;

            remove_interupt_event();
            add_interupt_event_count(VI_INT, next_vi);
    
            MI_register.mi_intr_reg |= 0x08;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case COMPARE_INT:
            remove_interupt_event();
            Count+=count_per_op;
            add_interupt_event_count(COMPARE_INT, Compare);
            Count-=count_per_op;
    
            Cause = (Cause | 0x8000) & 0xFFFFFF83;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case CHECK_INT:
            remove_interupt_event();
            break;
    
        case SI_INT:
#ifdef WITH_LIRC
            lircCheckInput();
#endif //WITH_LIRC
            SDL_PumpEvents();
            PIF_RAMb[0x3F] = 0x0;
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x02;
            si_register.si_stat |= 0x1000;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case PI_INT:
            remove_interupt_event();
            MI_register.mi_intr_reg |= 0x10;
            pi_register.read_pi_status_reg &= ~3;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case AI_INT:
            if (ai_register.ai_status & 0x80000000) // full
            {
                unsigned int ai_event = get_event(AI_INT);
                remove_interupt_event();
                ai_register.ai_status &= ~0x80000000;
                ai_register.current_delay = ai_register.next_delay;
                ai_register.current_len = ai_register.next_len;
                add_interupt_event_count(AI_INT, ai_event+ai_register.next_delay);
         
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            else
            {
                remove_interupt_event();
                ai_register.ai_status &= ~0x40000000;

                //-------
                MI_register.mi_intr_reg |= 0x04;
                if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                    Cause = (Cause | 0x400) & 0xFFFFFF83;
                else
                    return;
                if ((Status & 7) != 1) return;
                if (!(Status & Cause & 0xFF00)) return;
            }
            break;

        case SP_INT:
            remove_interupt_event();
            sp_register.sp_status_reg |= 0x203;
            // sp_register.sp_status_reg |= 0x303;
    
            if (!(sp_register.sp_status_reg & 0x40)) return; // !intr_on_break
            MI_register.mi_intr_reg |= 0x01;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;
    
        case DP_INT:
            remove_interupt_event();
            dpc_register.dpc_status &= ~2;
            dpc_register.dpc_status |= 0x81;
            MI_register.mi_intr_reg |= 0x20;
            if (MI_register.mi_intr_reg & MI_register.mi_intr_mask_reg)
                Cause = (Cause | 0x400) & 0xFFFFFF83;
            else
                return;
            if ((Status & 7) != 1) return;
            if (!(Status & Cause & 0xFF00)) return;
            break;

        case HW2_INT:
            // Hardware Interrupt 2 -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS, and SR, set IM2
            Status = (Status & ~0x00380000) | 0x1000;
            Cause = (Cause | 0x1000) & 0xFFFFFF83;
            /* the exception_general() call below will jump to the interrupt vector (0x80000180) and setup the
             * interpreter or dynarec
             */
            break;

        case NMI_INT:
            // Non Maskable Interrupt -- remove interrupt event from queue
            remove_interupt_event();
            // setup r4300 Status flags: reset TS and SR, set BEV, ERL, and SR
            Status = (Status & ~0x00380000) | 0x00500004;
            Cause  = 0x00000000;
            // simulate the soft reset code which would run from the PIF ROM
            r4300_reset_soft();
            // clear all interrupts, reset interrupt counters back to 0
            Count = 0;
            vi_counter = 0;
            init_interupt();
            // clear the audio status register so that subsequent write_ai() calls will work properly
            ai_register.ai_status = 0;
            // set ErrorEPC with the last instruction address
            ErrorEPC = PC->addr;
            // reset the r4300 internal state
            if (r4300emu != CORE_PURE_INTERPRETER)
            {
                // clear all the compiled instruction blocks and re-initialize
                free_blocks();
                init_blocks();
            }
            // adjust ErrorEPC if we were in a delay slot, and clear the delay_slot and dyna_interp flags
            if(delay_slot==1 || delay_slot==3)
            {
                ErrorEPC-=4;
            }
            delay_slot = 0;
            dyna_interp = 0;
            // set next instruction address to reset vector
            last_addr = 0xa4000040;
            generic_jump_to(0xa4000040);
            return;

        default:
            DebugMessage(M64MSG_ERROR, "Unknown interrupt queue event type %.8X.", q->type);
            remove_interupt_event();
            break;
    }

#ifdef NEW_DYNAREC
    if (r4300emu == CORE_DYNAREC) {
        EPC = pcaddr;
        pcaddr = 0x80000180;
        Status |= 2;
        Cause &= 0x7FFFFFFF;
        pending_exception=1;
    } else {
        exception_general();
    }
#else
    exception_general();
#endif

    if (!interupt_unsafe_state)
    {
        if (savestates_get_job() == savestates_job_save)
        {
            savestates_save();
            return;
        }
    }
}
Exemple #15
0
void init_grids(int32_t rank) {
#if defined(NUMA_AWARE)
  int32_t cbi, cbj, cbk, cbn;
#if !defined(COLLABORATIVE_THREADING)
  int32_t coreBlock[3], coreBlockMin[3], coreBlockMax[3];

  cbn = 0;

  for (cbi=0; cbi < numCoreBlocks_x; cbi++) {
    for (cbj=0; cbj < numCoreBlocks_y; cbj++) {
      for (cbk=0; cbk < numCoreBlocks_z; cbk++) {
	if (((cbn/numCoreBlocksPerChunk) % numThreads) == rank) {
	  coreBlock[0] = cbi;
	  coreBlock[1] = cbj;
	  coreBlock[2] = cbk;
	  coreBlockMin[0] = realMin_x + coreBlock[0] * numCoreBlockCells_x;
	  coreBlockMax[0] = coreBlockMin[0] + numCoreBlockCells_x;
	  coreBlockMin[1] = realMin_y + coreBlock[1] * numCoreBlockCells_y;
	  coreBlockMax[1] = coreBlockMin[1] + numCoreBlockCells_y;
	  coreBlockMin[2] = realMin_z + coreBlock[2] * numCoreBlockCells_z;
	  coreBlockMax[2] = coreBlockMin[2] + numCoreBlockCells_z;

	  init_blocks(coreBlock, coreBlockMin, coreBlockMax);

#if defined(DEBUG)
	  printf("Thread %d: coreBlock = [%d, %d, %d]\n", rank, coreBlock[0], coreBlock[1], coreBlock[2]);
	  printf("Thread %d: coreBlockMin = [%d, %d, %d]\n", rank, coreBlockMin[0], coreBlockMin[1], coreBlockMin[2]);
	  printf("Thread %d: coreBlockMax = [%d, %d, %d]\n", rank, coreBlockMax[0], coreBlockMax[1], coreBlockMax[2]);
#endif
	}
	cbn++;
      }
    }
  }
#else
  int32_t threadBlock[3], threadBlockMin[3], threadBlockMax[3];
  int32_t tbj, tbk, tbn;

  cbn = 0;

  for (cbi=0; cbi < numCoreBlocks_x; cbi++) {
    threadBlock[0] = cbi;
    threadBlockMin[0] = realMin_x + threadBlock[0] * numCoreBlockCells_x;
    threadBlockMax[0] = threadBlockMin[0] + numCoreBlockCells_x;
    for (cbj=0; cbj < numCoreBlocks_y; cbj++) {
      for (cbk=0; cbk < numCoreBlocks_z; cbk++) {
	if (((cbn/numCoreBlocksPerChunk) % (numThreads/numThreadBlocksPerCoreBlock)) == (rank/numThreadBlocksPerCoreBlock)) {
	  tbn = 0;
	  
	  for (tbj=0; tbj < numThreadBlocksPerCoreBlock_y; tbj++) {
	    for (tbk=0; tbk < numThreadBlocksPerCoreBlock_z; tbk++) {
              if ((rank % numThreadBlocksPerCoreBlock) == tbn) {
		threadBlock[1] = cbj * numThreadBlocksPerCoreBlock_y + tbj;
		threadBlock[2] = cbk * numThreadBlocksPerCoreBlock_z + tbk;
		threadBlockMin[1] = realMin_y + threadBlock[1] * numThreadBlockCells_y;
		threadBlockMax[1] = threadBlockMin[1] + numThreadBlockCells_y;
		threadBlockMin[2] = realMin_z + threadBlock[2] * numThreadBlockCells_z;
		threadBlockMax[2] = threadBlockMin[2] + numThreadBlockCells_z;

		init_blocks(threadBlock, threadBlockMin, threadBlockMax);

#if defined(DEBUG)
		printf("Thread %d: threadBlock = [%d, %d, %d]\n", rank, threadBlock[0], threadBlock[1], threadBlock[2]);
		printf("Thread %d: threadBlockMin = [%d, %d, %d]\n", rank, threadBlockMin[0], threadBlockMin[1], threadBlockMin[2]);
		printf("Thread %d: threadBlockMax = [%d, %d, %d]\n", rank, threadBlockMax[0], threadBlockMax[1], threadBlockMax[2]);
#endif
	      }
	      tbn++;
	    }
	  }
	}
	cbn++;
      }
    }
  }
#endif
#else
  int32_t i, j, k;

  if (rank == 0) {
    for (i=0; i < nx; i++) {
      for (j=0; j < ny; j++) {
	for (k=0; k < nz; k++) {
	  A[Index3D(i,j,k)] = INIT_GHOST_VALUE;
	  B[Index3D(i,j,k)] = INIT_GHOST_VALUE;
	}
      }
    }

    for (i=realMin_x; i < realMax_x; i++) {
      for (j=realMin_y; j < realMax_y; j++) {
	for (k=realMin_y; k < realMax_z; k++) {
	  A[Index3D(i,j,k)] = INIT_REAL_VALUE;
	}
      }
    }
  }
#endif
}
Exemple #16
0
int main()
{
    const char* testm = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasdsdsdsdasfsadfasdfsdafasdfasdfasdfasdfsadfsadf";
    
    BIGNUM* e;
    BIGNUM* n;
    if (load_rsa_keys(1, &e, &n) != 0) {
        return 1;
    }
    size_t b_size = BN_num_bytes(n);

    size_t m_size = strlen(testm) + 1;

    struct message_blocks* b = create_message_bloks(m_size, b_size);

    init_blocks(testm, m_size, b);
    
    size_t o_size = b->size * b->b_size;
    
    void* out_message = malloc(o_size); 

    int ind = 0;
    for (; ind < b->size; ++ind) {
        void* out;
        size_t outsize;
        RSA_EncDec_block(b->bloks[ind], b->b_size, e, n, &out, &outsize);
        printf("\nOUT SIZE = %d m = %s\n", outsize, b->bloks[ind]);
        assert(b_size == outsize);
        memcpy(((char*)out_message) + ind * outsize, out, outsize);
    }

    if (load_rsa_keys(0, &e, &n) != 0) {
        return 1;
    }
    
    ind = 0;
    for (; ind < b->size; ++ind) {
        void* out;
        size_t outsize;
        printf("\nOUT SIZE = %d m = %s\n", outsize, b->bloks[ind]);
        RSA_EncDec_block(b->bloks[ind], b->b_size, e, n, &out, &outsize);
        printf("\nOUT SIZE = %d m = %s\n", outsize, b->bloks[ind]);
        assert(b_size == outsize);
        memcpy(((char*)out_message) + ind * b_size, out, b_size);
    }

    printf("------------------------%s\n", out_message);


/*
    FILE* pfp = fopen("./keys/private.pem","r");

    if (pfp == NULL) printf("sdsds");

    RSA *prsa = PEM_read_RSAPrivateKey(pfp, NULL, password_cb, "12345");

    if (prsa == NULL) {
        printf("error load pivate key\n");
        fclose(pfp);
        return 1;
    }


    RSA_EncDec_block(out, outsize, prsa->d, prsa->n, &out, &outsize);

    size_t i = 0;
    for (; i < outsize; ++i) {
        printf("%c", ((char*)out)[i]);
    }
    printf("%c", '\n');

*/
    return 0;
}
Exemple #17
0
int main(int argc, char *argv[])
{
  FILE *parameterfile = NULL;
  int j, i, ix = 0, isample = 0, op_id = 0;
  char datafilename[206];
  char parameterfilename[206];
  char conf_filename[50];
  char * input_filename = NULL;
  char * filename = NULL;
  double plaquette_energy;
  struct stout_parameters params_smear;

#ifdef _KOJAK_INST
#pragma pomp inst init
#pragma pomp inst begin(main)
#endif

#if (defined SSE || defined SSE2 || SSE3)
  signal(SIGILL, &catch_ill_inst);
#endif

  DUM_DERI = 8;
  DUM_MATRIX = DUM_DERI + 5;
  NO_OF_SPINORFIELDS = DUM_MATRIX + 4;

  //4 extra fields (corresponding to DUM_MATRIX+0..5) for deg. and ND matrix mult.  
  NO_OF_SPINORFIELDS_32 = 6;

  verbose = 0;
  g_use_clover_flag = 0;


  process_args(argc,argv,&input_filename,&filename);
  set_default_filenames(&input_filename, &filename);

  init_parallel_and_read_input(argc, argv, input_filename);

  /* this DBW2 stuff is not needed for the inversion ! */
  if (g_dflgcr_flag == 1) {
    even_odd_flag = 0;
  }
  g_rgi_C1 = 0;
  if (Nsave == 0) {
    Nsave = 1;
  }

  if (g_running_phmc) {
    NO_OF_SPINORFIELDS = DUM_MATRIX + 8;
  }

  tmlqcd_mpi_init(argc, argv);

  g_dbw2rand = 0;

  /* starts the single and double precision random number */
  /* generator                                            */
  start_ranlux(rlxd_level, random_seed^nstore);

  /* we need to make sure that we don't have even_odd_flag = 1 */
  /* if any of the operators doesn't use it                    */
  /* in this way even/odd can still be used by other operators */
  for(j = 0; j < no_operators; j++) if(!operator_list[j].even_odd_flag) even_odd_flag = 0;

#ifndef TM_USE_MPI
  g_dbw2rand = 0;
#endif

#ifdef _GAUGE_COPY
  j = init_gauge_field(VOLUMEPLUSRAND, 1);
  j += init_gauge_field_32(VOLUMEPLUSRAND, 1);
#else
  j = init_gauge_field(VOLUMEPLUSRAND, 0);
  j += init_gauge_field_32(VOLUMEPLUSRAND, 0);  
#endif
 
  if (j != 0) {
    fprintf(stderr, "Not enough memory for gauge_fields! Aborting...\n");
    exit(-1);
  }
  j = init_geometry_indices(VOLUMEPLUSRAND);
  if (j != 0) {
    fprintf(stderr, "Not enough memory for geometry indices! Aborting...\n");
    exit(-1);
  }
  if (no_monomials > 0) {
    if (even_odd_flag) {
      j = init_monomials(VOLUMEPLUSRAND / 2, even_odd_flag);
    }
    else {
      j = init_monomials(VOLUMEPLUSRAND, even_odd_flag);
    }
    if (j != 0) {
      fprintf(stderr, "Not enough memory for monomial pseudo fermion fields! Aborting...\n");
      exit(-1);
    }
  }
  if (even_odd_flag) {
    j = init_spinor_field(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS);
    j += init_spinor_field_32(VOLUMEPLUSRAND / 2, NO_OF_SPINORFIELDS_32);   
  }
  else {
    j = init_spinor_field(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS);
    j += init_spinor_field_32(VOLUMEPLUSRAND, NO_OF_SPINORFIELDS_32);   
  }
  if (j != 0) {
    fprintf(stderr, "Not enough memory for spinor fields! Aborting...\n");
    exit(-1);
  }

  if (g_running_phmc) {
    j = init_chi_spinor_field(VOLUMEPLUSRAND / 2, 20);
    if (j != 0) {
      fprintf(stderr, "Not enough memory for PHMC Chi fields! Aborting...\n");
      exit(-1);
    }
  }

  g_mu = g_mu1;

  if (g_cart_id == 0) {
    /*construct the filenames for the observables and the parameters*/
    strncpy(datafilename, filename, 200);
    strcat(datafilename, ".data");
    strncpy(parameterfilename, filename, 200);
    strcat(parameterfilename, ".para");

    parameterfile = fopen(parameterfilename, "w");
    write_first_messages(parameterfile, "invert", git_hash);
    fclose(parameterfile);
  }

  /* define the geometry */
  geometry();

  /* define the boundary conditions for the fermion fields */
  boundary(g_kappa);

  phmc_invmaxev = 1.;

  init_operators();

  /* list and initialize measurements*/
  if(g_proc_id == 0) {
    printf("\n");
    for(int j = 0; j < no_measurements; j++) {
      printf("# measurement id %d, type = %d\n", j, measurement_list[j].type);
    }
  }
  init_measurements();  

  /* this could be maybe moved to init_operators */
#ifdef _USE_HALFSPINOR
  j = init_dirac_halfspinor();
  if (j != 0) {
    fprintf(stderr, "Not enough memory for halffield! Aborting...\n");
    exit(-1);
  }
  /* for mixed precision solvers, the 32 bit halfspinor field must always be there */
  j = init_dirac_halfspinor32();
  if (j != 0)
  {
    fprintf(stderr, "Not enough memory for 32-bit halffield! Aborting...\n");
    exit(-1);
  }
#  if (defined _PERSISTENT)
  if (even_odd_flag)
    init_xchange_halffield();
#  endif
#endif

  for (j = 0; j < Nmeas; j++) {
    sprintf(conf_filename, "%s.%.4d", gauge_input_filename, nstore);
    if (g_cart_id == 0) {
      printf("#\n# Trying to read gauge field from file %s in %s precision.\n",
            conf_filename, (gauge_precision_read_flag == 32 ? "single" : "double"));
      fflush(stdout);
    }
    if( (i = read_gauge_field(conf_filename,g_gauge_field)) !=0) {
      fprintf(stderr, "Error %d while reading gauge field from %s\n Aborting...\n", i, conf_filename);
      exit(-2);
    }


    if (g_cart_id == 0) {
      printf("# Finished reading gauge field.\n");
      fflush(stdout);
    }
#ifdef TM_USE_MPI
    xchange_gauge(g_gauge_field);
#endif
    /*Convert to a 32 bit gauge field, after xchange*/
    convert_32_gauge_field(g_gauge_field_32, g_gauge_field, VOLUMEPLUSRAND);
    /*compute the energy of the gauge field*/
    plaquette_energy = measure_plaquette( (const su3**) g_gauge_field);

    if (g_cart_id == 0) {
      printf("# The computed plaquette value is %e.\n", plaquette_energy / (6.*VOLUME*g_nproc));
      fflush(stdout);
    }

    if (use_stout_flag == 1){
      params_smear.rho = stout_rho;
      params_smear.iterations = stout_no_iter;
/*       if (stout_smear((su3_tuple*)(g_gauge_field[0]), &params_smear, (su3_tuple*)(g_gauge_field[0])) != 0) */
/*         exit(1) ; */
      g_update_gauge_copy = 1;
      plaquette_energy = measure_plaquette( (const su3**) g_gauge_field);

      if (g_cart_id == 0) {
        printf("# The plaquette value after stouting is %e\n", plaquette_energy / (6.*VOLUME*g_nproc));
        fflush(stdout);
      }
    }

    /* if any measurements are defined in the input file, do them here */
    measurement * meas;
    for(int imeas = 0; imeas < no_measurements; imeas++){
      meas = &measurement_list[imeas];
      if (g_proc_id == 0) {
        fprintf(stdout, "#\n# Beginning online measurement.\n");
      }
      meas->measurefunc(nstore, imeas, even_odd_flag);
    }

    if (reweighting_flag == 1) {
      reweighting_factor(reweighting_samples, nstore);
    }

    /* Compute minimal eigenvalues, if wanted */
    if (compute_evs != 0) {
      eigenvalues(&no_eigenvalues, 5000, eigenvalue_precision,
                  0, compute_evs, nstore, even_odd_flag);
    }
    if (phmc_compute_evs != 0) {
#ifdef TM_USE_MPI
      MPI_Finalize();
#endif
      return(0);
    }

    /* Compute the mode number or topological susceptibility using spectral projectors, if wanted*/
    if(compute_modenumber != 0 || compute_topsus !=0){
      invert_compute_modenumber(); 
    }

    //  set up blocks if Deflation is used 
    if (g_dflgcr_flag) 
      init_blocks(nblocks_t, nblocks_x, nblocks_y, nblocks_z);
    
    if(SourceInfo.type == SRC_TYPE_VOL || SourceInfo.type == SRC_TYPE_PION_TS || SourceInfo.type == SRC_TYPE_GEN_PION_TS) {
      index_start = 0;
      index_end = 1;
    }

    g_precWS=NULL;
    if(use_preconditioning == 1){
      /* todo load fftw wisdom */
#if (defined HAVE_FFTW ) && !( defined TM_USE_MPI)
      loadFFTWWisdom(g_spinor_field[0],g_spinor_field[1],T,LX);
#else
      use_preconditioning=0;
#endif
    }

    if (g_cart_id == 0) {
      fprintf(stdout, "#\n"); /*Indicate starting of the operator part*/
    }
    for(op_id = 0; op_id < no_operators; op_id++) {
      boundary(operator_list[op_id].kappa);
      g_kappa = operator_list[op_id].kappa; 
      g_mu = operator_list[op_id].mu;
      g_c_sw = operator_list[op_id].c_sw;
      // DFLGCR and DFLFGMRES
      if(operator_list[op_id].solver == DFLGCR || operator_list[op_id].solver == DFLFGMRES) {
        generate_dfl_subspace(g_N_s, VOLUME, reproduce_randomnumber_flag);
      }

      if(use_preconditioning==1 && PRECWSOPERATORSELECT[operator_list[op_id].solver]!=PRECWS_NO ){
        printf("# Using preconditioning with treelevel preconditioning operator: %s \n",
              precWSOpToString(PRECWSOPERATORSELECT[operator_list[op_id].solver]));
        /* initial preconditioning workspace */
        operator_list[op_id].precWS=(spinorPrecWS*)malloc(sizeof(spinorPrecWS));
        spinorPrecWS_Init(operator_list[op_id].precWS,
                  operator_list[op_id].kappa,
                  operator_list[op_id].mu/2./operator_list[op_id].kappa,
                  -(0.5/operator_list[op_id].kappa-4.),
                  PRECWSOPERATORSELECT[operator_list[op_id].solver]);
        g_precWS = operator_list[op_id].precWS;

        if(PRECWSOPERATORSELECT[operator_list[op_id].solver] == PRECWS_D_DAGGER_D) {
          fitPrecParams(op_id);
        }
      }

      for(isample = 0; isample < no_samples; isample++) {
        for (ix = index_start; ix < index_end; ix++) {
          if (g_cart_id == 0) {
            fprintf(stdout, "#\n"); /*Indicate starting of new index*/
          }
          /* we use g_spinor_field[0-7] for sources and props for the moment */
          /* 0-3 in case of 1 flavour  */
          /* 0-7 in case of 2 flavours */
          prepare_source(nstore, isample, ix, op_id, read_source_flag, source_location, random_seed);
          //randmize initial guess for eigcg if needed-----experimental
          if( (operator_list[op_id].solver == INCREIGCG) && (operator_list[op_id].solver_params.eigcg_rand_guess_opt) ){ //randomize the initial guess
              gaussian_volume_source( operator_list[op_id].prop0, operator_list[op_id].prop1,isample,ix,0); //need to check this
          } 
          operator_list[op_id].inverter(op_id, index_start, 1);
        }
      }


      if(use_preconditioning==1 && operator_list[op_id].precWS!=NULL ){
        /* free preconditioning workspace */
        spinorPrecWS_Free(operator_list[op_id].precWS);
        free(operator_list[op_id].precWS);
      }

      if(operator_list[op_id].type == OVERLAP){
        free_Dov_WS();
      }

    }
    nstore += Nsave;
  }

#ifdef TM_USE_OMP
  free_omp_accumulators();
#endif
  free_blocks();
  free_dfl_subspace();
  free_gauge_field();
  free_gauge_field_32();
  free_geometry_indices();
  free_spinor_field();
  free_spinor_field_32();  
  free_moment_field();
  free_chi_spinor_field();
  free(filename);
  free(input_filename);
  free(SourceInfo.basename);
  free(PropInfo.basename);
#ifdef TM_USE_QUDA
  _endQuda();
#endif
#ifdef TM_USE_MPI
  MPI_Barrier(MPI_COMM_WORLD);
  MPI_Finalize();
#endif
  return(0);
#ifdef _KOJAK_INST
#pragma pomp inst end(main)
#endif
}
Exemple #18
0
/*Permet de jouer tout les niveaux
 * à la suite*/
void campagne(config *cfg, int cmp_level)
{
	int selection=0, level;
	SAVE_ENABLE=1;
	Pacman pac;
	Fantome ftm[NB_MAX_GHOSTS];
	score_message *msg_list = NULL;
	Input in;

	init_pacman(&pac, cfg);
	init_blocks();
	memset(&in,0,sizeof(in));

	while(cmp_level < CAMPAGNE_LEVEL)
	{
		level=0;
		while(strcmp(LEVEL_FILE[level], CAMPAGNE[cmp_level]) && level < NB_LEVEL)
		{
			level++;
		}
		DELAY = 40-cmp_level;
		play_menu(cmp_level);
		init_level();
		load_level(level);
		pac_restart(&pac);
		init_ghosts(ftm, cfg);
		while(POINTS) //Tant que l'on a pas mangé toutes les pac-gommes
		{
			UpdateEvents(&in);
			if(in.quit) //Si clique sur croix
			{
				delete(&pac, ftm);
				exit(EXIT_SUCCESS);
			}
			while(in.key[SDLK_ESCAPE])
			{
				selection=game_menu();
				if(selection==0) in.key[SDLK_ESCAPE]=0;
				else if(selection==1) save_game(cmp_level);
				else if(selection==2) //Retour menu principal
				{
					delete(&pac, ftm);
					return;
				}
			}
			if (in.key[SDLK_w])
			{
				in.key[SDLK_w]=0;
				POINTS=0; //cheat code for winning!!
			}
			else if (in.key[SDLK_l] || !(pac.nb_lives)) //cheat code for loosing!!
			{
				lost_menu();
				draw_result("data/results.txt", pac.score);
				delete(&pac, ftm);
				return;
			}
			jouer(&pac, ftm, in, cfg, cmp_level, &msg_list);
		}
		cmp_level++;
		win_menu();
	}
	draw_result("data/results.txt", pac.score);
	delete(&pac, ftm);
}
Exemple #19
0
int main(int argc, char **argv) {
	shutdown = false;

	//Create a screen context that will be used to create an EGL surface to to receive libscreen events
	screen_create_context(&screen_cxt, 0);

	//Initialize BPS library
	bps_initialize();

	//Determine initial orientation angle
	orientation_direction_t direction;
	orientation_get(&direction, &orientation_angle);

	//Use utility code to initialize EGL for rendering with GL ES 1.1
	if (EXIT_SUCCESS != bbutil_init_egl(screen_cxt, GL_ES_1)) {
		fprintf(stderr, "bbutil_init_egl failed\n");
		bbutil_terminate();
		screen_destroy_context(screen_cxt);
		return 0;
	}

	//Initialize application logic
	if (EXIT_SUCCESS != init_blocks()) {
		fprintf(stderr, "initialize failed\n");
		bbutil_terminate();
		screen_destroy_context(screen_cxt);
		return 0;
	}

	//Signal BPS library that navigator and screen events will be requested
	if (BPS_SUCCESS != screen_request_events(screen_cxt)) {
		fprintf(stderr, "screen_request_events failed\n");
		bbutil_terminate();
		screen_destroy_context(screen_cxt);
		return 0;
	}

	if (BPS_SUCCESS != navigator_request_events(0)) {
		fprintf(stderr, "navigator_request_events failed\n");
		bbutil_terminate();
		screen_destroy_context(screen_cxt);
		return 0;
	}

	//Signal BPS library that navigator orientation is not to be locked
	if (BPS_SUCCESS != navigator_rotation_lock(false)) {
		fprintf(stderr, "navigator_rotation_lock failed\n");
		bbutil_terminate();
		screen_destroy_context(screen_cxt);
		return 0;
	}

	//Setup Sensors
	if (sensor_is_supported(SENSOR_TYPE_AZIMUTH_PITCH_ROLL)) {
		//Microseconds between sensor reads. This is the rate at which the
		//sensor data will be updated from hardware. The hardware update
		//rate is set below using sensor_set_rate.
		static const int SENSOR_RATE = 25000;

		//Initialize the sensor by setting the rates at which the
		//sensor values will be updated from hardware
		sensor_set_rate(SENSOR_TYPE_AZIMUTH_PITCH_ROLL, SENSOR_RATE);

		sensor_set_skip_duplicates(SENSOR_TYPE_AZIMUTH_PITCH_ROLL, true);
		sensor_request_events(SENSOR_TYPE_AZIMUTH_PITCH_ROLL);
	} else {
		set_gravity(0.0f, -1.0f);
	}

	//Start with one cube on the screen
	add_cube(200, 100);

	int i = 0;

	while (!shutdown) {


		i = check(1);

		// Handle user input and sensors
		handle_events();

		//Update cube positions
		update();

		// Draw Scene
		render();
	}

	//Stop requesting events from libscreen
	screen_stop_events(screen_cxt);

	//Shut down BPS library for this process
	bps_shutdown();

	//Free app data
	free(boxes);

	//Use utility code to terminate EGL setup
	bbutil_terminate();

	//Destroy libscreen context
	screen_destroy_context(screen_cxt);
	return 0;
}
Exemple #20
0
void r4300_execute(void)
{
#if (defined(DYNAREC) && defined(PROFILE_R4300))
    unsigned int i;
#endif

    current_instruction_table = cached_interpreter_table;

    delay_slot=0;
    stop = 0;
    rompause = 0;

    /* clear instruction counters */
#if defined(COUNT_INSTR)
    memset(instr_count, 0, 131*sizeof(instr_count[0]));
#endif

    last_addr = 0xa4000040;
    next_interupt = 624999;
    init_interupt();

    if (r4300emu == CORE_PURE_INTERPRETER)
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Pure Interpreter");
        r4300emu = CORE_PURE_INTERPRETER;
        pure_interpreter();
    }
#if defined(DYNAREC)
    else if (r4300emu >= 2)
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Dynamic Recompiler");
        r4300emu = CORE_DYNAREC;
        init_blocks();

#ifdef NEW_DYNAREC
        new_dynarec_init();
        new_dyna_start();
        new_dynarec_cleanup();
#else
        dyna_start(dynarec_setup_code);
        PC++;
#endif
#if defined(PROFILE_R4300)
        pfProfile = fopen("instructionaddrs.dat", "ab");
        for (i=0; i<0x100000; i++)
            if (invalid_code[i] == 0 && blocks[i] != NULL && blocks[i]->code != NULL && blocks[i]->block != NULL)
            {
                unsigned char *x86addr;
                int mipsop;
                // store final code length for this block
                mipsop = -1; /* -1 == end of x86 code block */
                x86addr = blocks[i]->code + blocks[i]->code_length;
                if (fwrite(&mipsop, 1, 4, pfProfile) != 4 ||
                    fwrite(&x86addr, 1, sizeof(char *), pfProfile) != sizeof(char *))
                    DebugMessage(M64MSG_ERROR, "Error writing R4300 instruction address profiling data");
            }
        fclose(pfProfile);
        pfProfile = NULL;
#endif
        free_blocks();
    }
#endif
    else /* if (r4300emu == CORE_INTERPRETER) */
    {
        DebugMessage(M64MSG_INFO, "Starting R4300 emulator: Cached Interpreter");
        r4300emu = CORE_INTERPRETER;
        init_blocks();
        jump_to(0xa4000040);

        /* Prevent segfault on failed jump_to */
        if (!actual->block)
            return;

        last_addr = PC->addr;
        while (!stop)
        {
#ifdef COMPARE_CORE
            if (PC->ops == cached_interpreter_table.FIN_BLOCK && (PC->addr < 0x80000000 || PC->addr >= 0xc0000000))
                virtual_to_physical_address(PC->addr, 2);
            CoreCompareCallback();
#endif
#ifdef DBG
            if (g_DebuggerActive) update_debugger(PC->addr);
#endif
            PC->ops();
        }

        free_blocks();
    }

    DebugMessage(M64MSG_INFO, "R4300 emulator finished.");

    /* print instruction counts */
#if defined(COUNT_INSTR)
    if (r4300emu == CORE_DYNAREC)
        instr_counters_print();
#endif
}