Exemple #1
0
void Copter::init_ardupilot()
{
    if (!hal.gpio->usb_connected()) {
        // USB is not connected, this means UART0 may be a Xbee, with
        // its darned bricking problem. We can't write to it for at
        // least one second after powering up. Simplest solution for
        // now is to delay for 1 second. Something more elegant may be
        // added later
        delay(1000);
    }

    // initialise serial port
    serial_manager.init_console();

    // init vehicle capabilties
    init_capabilities();

    cliSerial->printf("\n\nInit " FIRMWARE_STRING
                         "\n\nFree RAM: %u\n",
                      (unsigned)hal.util->available_memory());

    //
    // Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
    //
    report_version();

    // load parameters from EEPROM
    load_parameters();

    BoardConfig.init();

    // initialise serial port
    serial_manager.init();

    // init EPM cargo gripper
#if EPM_ENABLED == ENABLED
    epm.init();
#endif

    // initialise notify system
    // disable external leds if epm is enabled because of pin conflict on the APM
    notify.init(true);

    // initialise battery monitor
    battery.init();

    // Init RSSI
    rssi.init();
    
    barometer.init();

    // Register the mavlink service callback. This will run
    // anytime there are more than 5ms remaining in a call to
    // hal.scheduler->delay.
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
    ap.usb_connected = true;
    check_usb_mux();

    // init the GCS connected to the console
    gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);

    // init telemetry port
    gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);

    // setup serial port for telem2
    gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);

    // setup serial port for fourth telemetry port (not used by default)
    gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);

#if FRSKY_TELEM_ENABLED == ENABLED
    // setup frsky
    frsky_telemetry.init(serial_manager);
#endif

    // identify ourselves correctly with the ground station
    mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    GCS_MAVLINK::set_dataflash(&DataFlash);

    // update motor interlock state
    update_using_interlock();

#if FRAME_CONFIG == HELI_FRAME
    // trad heli specific initialisation
    heli_init();
#endif
    
    init_rc_in();               // sets up rc channels from radio
    init_rc_out();              // sets up motors and output to escs

    // initialise which outputs Servo and Relay events can use
    ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());

    relay.init();

    /*
     *  setup the 'main loop is dead' check. Note that this relies on
     *  the RC library being initialised.
     */
    hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);

    // Do GPS init
    gps.init(&DataFlash, serial_manager);

    if(g.compass_enabled)
        init_compass();

#if OPTFLOW == ENABLED
    // make optflow available to AHRS
    ahrs.set_optflow(&optflow);
#endif

    // init Location class
    Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
    Location_Class::set_terrain(&terrain);
    wp_nav.set_terrain(&terrain);
#endif

    pos_control.set_dt(MAIN_LOOP_SECONDS);

    // init the optical flow sensor
    init_optflow();

#if MOUNT == ENABLED
    // initialise camera mount
    camera_mount.init(&DataFlash, serial_manager);
#endif

#if PRECISION_LANDING == ENABLED
    // initialise precision landing
    init_precland();
#endif

#ifdef USERHOOK_INIT
    USERHOOK_INIT
#endif

#if CLI_ENABLED == ENABLED
    if (g.cli_enabled) {
        const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
        cliSerial->println(msg);
        if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
            gcs[1].get_uart()->println(msg);
        }
        if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
            gcs[2].get_uart()->println(msg);
        }
    }
#endif // CLI_ENABLED

#if HIL_MODE != HIL_MODE_DISABLED
    while (barometer.get_last_update() == 0) {
        // the barometer begins updating when we get the first
        // HIL_STATE message
        gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
        delay(1000);
    }

    // set INS to HIL mode
    ins.set_hil_mode();
#endif

    // read Baro pressure at ground
    //-----------------------------
    init_barometer(true);

    // initialise sonar
#if CONFIG_SONAR == ENABLED
    init_sonar();
#endif

    // initialise AP_RPM library
    rpm_sensor.init();

    // initialise mission library
    mission.init();

    // initialise the flight mode and aux switch
    // ---------------------------
    reset_control_switch();
    init_aux_switches();

    startup_INS_ground();

    // set landed flags
    set_land_complete(true);
    set_land_complete_maybe(true);

    // we don't want writes to the serial port to cause us to pause
    // mid-flight, so set the serial ports non-blocking once we are
    // ready to fly
    serial_manager.set_blocking_writes_all(false);

    // enable CPU failsafe
    failsafe_enable();

    ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
    ins.set_dataflash(&DataFlash);

    cliSerial->print("\nReady to FLY ");

    // flag that initialisation has completed
    ap.initialised = true;
}
Exemple #2
0
int8_t Rover::test_sonar(uint8_t argc, const Menu::arg *argv)
{
    init_sonar();
    delay(20);
    sonar.update();

    if (sonar.status() == RangeFinder::RangeFinder_NotConnected) {
        cliSerial->println("WARNING: Sonar is not enabled");
    }

    print_hit_enter();
    
    float sonar_dist_cm_min = 0.0f;
    float sonar_dist_cm_max = 0.0f;
    float voltage_min=0.0f, voltage_max = 0.0f;
    float sonar2_dist_cm_min = 0.0f;
    float sonar2_dist_cm_max = 0.0f;
    float voltage2_min=0.0f, voltage2_max = 0.0f;
    uint32_t last_print = 0;

	while (true) {
        delay(20);
        sonar.update();
        uint32_t now = millis();
    
        float dist_cm = sonar.distance_cm(0);
        float voltage = sonar.voltage_mv(0);
        if (is_zero(sonar_dist_cm_min)) {
            sonar_dist_cm_min = dist_cm;
            voltage_min = voltage;
        }
        sonar_dist_cm_max = MAX(sonar_dist_cm_max, dist_cm);
        sonar_dist_cm_min = MIN(sonar_dist_cm_min, dist_cm);
        voltage_min = MIN(voltage_min, voltage);
        voltage_max = MAX(voltage_max, voltage);

        dist_cm = sonar.distance_cm(1);
        voltage = sonar.voltage_mv(1);
        if (is_zero(sonar2_dist_cm_min)) {
            sonar2_dist_cm_min = dist_cm;
            voltage2_min = voltage;
        }
        sonar2_dist_cm_max = MAX(sonar2_dist_cm_max, dist_cm);
        sonar2_dist_cm_min = MIN(sonar2_dist_cm_min, dist_cm);
        voltage2_min = MIN(voltage2_min, voltage);
        voltage2_max = MAX(voltage2_max, voltage);

        if (now - last_print >= 200) {
            cliSerial->printf("sonar1 dist=%.1f:%.1fcm volt1=%.2f:%.2f   sonar2 dist=%.1f:%.1fcm volt2=%.2f:%.2f\n",
                                (double)sonar_dist_cm_min,
                                (double)sonar_dist_cm_max,
                                (double)voltage_min,
                                (double)voltage_max,
                                (double)sonar2_dist_cm_min,
                                (double)sonar2_dist_cm_max,
                                (double)voltage2_min,
                                (double)voltage2_max);
            voltage_min = voltage_max = 0.0f;
            voltage2_min = voltage2_max = 0.0f;
            sonar_dist_cm_min = sonar_dist_cm_max = 0.0f;
            sonar2_dist_cm_min = sonar2_dist_cm_max = 0.0f;
            last_print = now;
        }
        if (cliSerial->available() > 0) {
            break;
	    }
    }
    return (0);
}
Exemple #3
0
void Rover::init_ardupilot()
{
    // initialise console serial port
    serial_manager.init_console();

	cliSerial->printf("\n\nInit " FIRMWARE_STRING
						 "\n\nFree RAM: %u\n",
                        hal.util->available_memory());
                    
	//
	// Check the EEPROM format version before loading any parameters from EEPROM.
	//
	
    load_parameters();

    BoardConfig.init();

    // initialise serial ports
    serial_manager.init();

    ServoRelayEvents.set_channel_mask(0xFFF0);

    set_control_channels();

    battery.init();

    // keep a record of how many resets have happened. This can be
    // used to detect in-flight resets
    g.num_resets.set_and_save(g.num_resets+1);

    // init baro before we start the GCS, so that the CLI baro test works
    barometer.init();

	// init the GCS
    gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);

    // we start by assuming USB connected, as we initialed the serial
    // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.    
    usb_connected = true;
    check_usb_mux();

    // setup serial port for telem1
    gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);

    // setup serial port for telem2
    gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);

    // setup serial port for fourth telemetry port (not used by default)
    gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);

    // setup frsky telemetry
#if FRSKY_TELEM_ENABLED == ENABLED
    frsky_telemetry.init(serial_manager);
#endif

	mavlink_system.sysid = g.sysid_this_mav;

#if LOGGING_ENABLED == ENABLED
    log_init();
#endif

    // Register mavlink_delay_cb, which will run anytime you have
    // more than 5ms remaining in your call to hal.scheduler->delay
    hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);

	if (g.compass_enabled==true) {
		if (!compass.init()|| !compass.read()) {
            cliSerial->println("Compass initialisation failed!");
            g.compass_enabled = false;
        } else {
            ahrs.set_compass(&compass);
            //compass.get_offsets();						// load offsets to account for airframe magnetic interference
        }
	}

	// initialise sonar
    init_sonar();

    // and baro for EKF
    init_barometer();

	// Do GPS init
    gps.init(&DataFlash, serial_manager);

    rc_override_active = hal.rcin->set_overrides(rc_override, 8);

	init_rc_in();		// sets up rc channels from radio
	init_rc_out();		// sets up the timer libs

    relay.init();

#if MOUNT == ENABLED
    // initialise camera mount
    camera_mount.init(serial_manager);
#endif

    /*
      setup the 'main loop is dead' check. Note that this relies on
      the RC library being initialised.
     */
    hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);


#if CLI_ENABLED == ENABLED
	// If the switch is in 'menu' mode, run the main menu.
	//
	// Since we can't be sure that the setup or test mode won't leave
	// the system in an odd state, we don't let the user exit the top
	// menu; they must reset in order to fly.
	//
    if (g.cli_enabled == 1) {
        const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
        cliSerial->println(msg);
        if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
            gcs[1].get_uart()->println(msg);
        }
        if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
            gcs[2].get_uart()->println(msg);
        }
    }
#endif

	init_capabilities();

	startup_ground();

    set_mode((enum mode)g.initial_mode.get());

	// set the correct flight mode
	// ---------------------------
	reset_control_switch();
}