void data_to_triangulation( TriangulationData *data, Triangulation **manifold_ptr) { /* * We assume the UI has done some basic error checking * on the data, so we don't repeat it here. */ Triangulation *manifold; Tetrahedron **tet_array; Cusp **cusp_array; Boolean cusps_are_given; int i, j, k, l, m; Boolean all_peripheral_curves_are_zero, finite_vertices_are_present; /* * Initialize *manifold_ptr to NULL. * We'll do all our work with manifold, and then copy * manifold to *manifold_ptr at the very end. */ *manifold_ptr = NULL; /* * Allocate and initialize the Triangulation structure. */ manifold = NEW_STRUCT(Triangulation); initialize_triangulation(manifold); /* * Allocate and copy the name. */ manifold->name = NEW_ARRAY(strlen(data->name) + 1, char); strcpy(manifold->name, data->name); /* * Set up the global information. * * The hyperbolic structure is included in the file only for * human readers; here we recompute it from scratch. */ manifold->num_tetrahedra = data->num_tetrahedra; manifold->solution_type[complete] = not_attempted; manifold->solution_type[ filled ] = not_attempted; manifold->orientability = data->orientability; manifold->num_or_cusps = data->num_or_cusps; manifold->num_nonor_cusps = data->num_nonor_cusps; manifold->num_cusps = manifold->num_or_cusps + manifold->num_nonor_cusps; /* * Allocate the Tetrahedra. * Keep pointers to them on a temporary array, so we can * find them by their indices. */ tet_array = NEW_ARRAY(manifold->num_tetrahedra, Tetrahedron *); for (i = 0; i < manifold->num_tetrahedra; i++) { tet_array[i] = NEW_STRUCT(Tetrahedron); initialize_tetrahedron(tet_array[i]); INSERT_BEFORE(tet_array[i], &manifold->tet_list_end); } /* * If num_or_cusps or num_nonor_cusps is nonzero, allocate the Cusps. * Keep pointers to them on temporary arrays, so we can find them * by their indices. * Otherwise we will create arbitrary Cusps later. */ cusps_are_given = (data->num_or_cusps != 0) || (data->num_nonor_cusps != 0); if (cusps_are_given == TRUE) { cusp_array = NEW_ARRAY(manifold->num_cusps, Cusp *); for (i = 0; i < manifold->num_cusps; i++) { cusp_array[i] = NEW_STRUCT(Cusp); initialize_cusp(cusp_array[i]); INSERT_BEFORE(cusp_array[i], &manifold->cusp_list_end); } }
/* DJH */ void my_drill_tube( Triangulation *manifold, int singular_index ) { /* * Insert a triangular-pillow-with-tunnel (as described at the top * of this file) so as to connect the boundary component at one * end of the given edge to the boundary component at the other end. * The orientation on the triangular pillow will match the * orientation on tet, so that the orientation on the manifold * (if there is one) will be preserved. Edge orientations are also * respected. */ EdgeIndex e; VertexIndex v0, v1, v2, vv0, vv1, vv2; FaceIndex f, ff; Tetrahedron *nbr_tet, *tet, *tet0, *new_tet0, *new_tet1; Permutation gluing; EdgeClass *edge0, *edge1, *edge2, *edge, *new_edge, *edge3; Orientation edge_orientation0, edge_orientation1, edge_orientation2; PeripheralCurve c; Orientation h; int num_strands, i, intersection_number[2], the_gcd; Cusp *unique_cusp, *merged_cusp, *dead_cusp, *cusp; MatrixInt22 *basis_change = NULL; Boolean creating_new_cusp, same_cusp; int *cone_points, num_cone_points, dead_index; for( edge = manifold->edge_list_begin.next; edge!=&manifold->edge_list_end; edge = edge->next ) if (edge->is_singular) if (edge->singular_index == singular_index) break; if (edge == &manifold->edge_list_end) uFatalError("my_drill_tube", "finite_vertices"); tet = edge->incident_tet; e = edge->incident_edge_index; /* * Relative to the orientation of tet, the vertices v0, v1 and v2 * are arranged in counterclockwise order around the face f. */ v0 = one_vertex_at_edge[e]; v1 = other_vertex_at_edge[e]; if ( tet->cusp[v0] == tet->cusp[v1] && tet->cusp[v1]->num_cone_points ==2 /* if it's a $\S^2(n,n) orbifold then we are creating a torus cusp */ && tet->cusp[v1]->euler_characteristic==2) creating_new_cusp = TRUE; else creating_new_cusp = FALSE; v2 = remaining_face[v1][v0]; f = remaining_face[v0][v1]; /* * Note the matching face and its vertices. */ nbr_tet = tet->neighbor[f]; gluing = tet->gluing[f]; ff = EVALUATE(gluing, f); vv0 = EVALUATE(gluing, v0); vv1 = EVALUATE(gluing, v1); vv2 = EVALUATE(gluing, v2); /* * Note the incident EdgeClasses (which may or may not be distinct). */ edge0 = tet->edge_class[e]; edge1 = tet->edge_class[edge_between_vertices[v1][v2]]; edge2 = tet->edge_class[edge_between_vertices[v2][v0]]; /* * Construct the triangular-pillow-with-tunnel, as described * at the top of this file. */ new_tet0 = NEW_STRUCT(Tetrahedron); new_tet1 = NEW_STRUCT(Tetrahedron); initialize_tetrahedron(new_tet0); initialize_tetrahedron(new_tet1); INSERT_BEFORE(new_tet0, &manifold->tet_list_end); INSERT_BEFORE(new_tet1, &manifold->tet_list_end); manifold->num_tetrahedra += 2; new_edge = NEW_STRUCT(EdgeClass); initialize_edge_class(new_edge); INSERT_BEFORE(new_edge, &manifold->edge_list_end); new_tet0->neighbor[0] = new_tet1; new_tet0->neighbor[1] = NULL; /* assigned below */ new_tet0->neighbor[2] = NULL; /* assigned below */ new_tet0->neighbor[3] = new_tet1; new_tet1->neighbor[0] = new_tet0; new_tet1->neighbor[1] = new_tet1; new_tet1->neighbor[2] = new_tet1; new_tet1->neighbor[3] = new_tet0; new_tet0->gluing[0] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet0->gluing[1] = 0x00; /* assigned below */ new_tet0->gluing[2] = 0x00; /* assigned below */ new_tet0->gluing[3] = CREATE_PERMUTATION(0, 1, 1, 0, 2, 2, 3, 3); new_tet1->gluing[0] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet1->gluing[1] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet1->gluing[2] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet1->gluing[3] = CREATE_PERMUTATION(0, 1, 1, 0, 2, 2, 3, 3); new_tet0->edge_class[0] = edge1; new_tet0->edge_class[1] = edge1; new_tet0->edge_class[2] = edge0; new_tet0->edge_class[3] = edge2; new_tet0->edge_class[4] = edge0; new_tet0->edge_class[5] = edge0; new_tet1->edge_class[0] = edge1; new_tet1->edge_class[1] = edge1; new_tet1->edge_class[2] = edge0; new_tet1->edge_class[3] = new_edge; new_tet1->edge_class[4] = edge0; new_tet1->edge_class[5] = edge0; edge0->order += 6; edge1->order += 4; edge2->order += 1; new_edge->order = 1; new_edge->incident_tet = new_tet1; new_edge->incident_edge_index = 3; edge_orientation0 = tet->edge_orientation[e]; edge_orientation1 = tet->edge_orientation[edge_between_vertices[v1][v2]]; edge_orientation2 = tet->edge_orientation[edge_between_vertices[v2][v0]]; new_tet0->edge_orientation[0] = edge_orientation1; new_tet0->edge_orientation[1] = edge_orientation1; new_tet0->edge_orientation[2] = edge_orientation0; new_tet0->edge_orientation[3] = edge_orientation2; new_tet0->edge_orientation[4] = edge_orientation0; new_tet0->edge_orientation[5] = edge_orientation0; new_tet1->edge_orientation[0] = edge_orientation1; new_tet1->edge_orientation[1] = edge_orientation1; new_tet1->edge_orientation[2] = edge_orientation0; new_tet1->edge_orientation[3] = right_handed; new_tet1->edge_orientation[4] = edge_orientation0; new_tet1->edge_orientation[5] = edge_orientation0; new_tet0->cusp[0] = tet->cusp[v0]; new_tet0->cusp[1] = tet->cusp[v0]; new_tet0->cusp[2] = tet->cusp[v0]; new_tet0->cusp[3] = tet->cusp[v2]; new_tet1->cusp[0] = tet->cusp[v0]; new_tet1->cusp[1] = tet->cusp[v0]; new_tet1->cusp[2] = tet->cusp[v0]; new_tet1->cusp[3] = tet->cusp[v2]; /* * Install the triangular-pillow-with-tunnel. */ tet->neighbor[f] = new_tet0; tet->gluing[f] = CREATE_PERMUTATION(f, 2, v0, 0, v1, 1, v2, 3); new_tet0->neighbor[2] = tet; new_tet0->gluing[2] = inverse_permutation[tet->gluing[f]]; nbr_tet->neighbor[ff] = new_tet0; nbr_tet->gluing[ff] = CREATE_PERMUTATION(ff, 1, vv0, 0, vv1, 2, vv2, 3); new_tet0->neighbor[1] = nbr_tet; new_tet0->gluing[1] = inverse_permutation[nbr_tet->gluing[ff]]; for(c=0;c<2;c++) for(h=0;h<2;h++) { new_tet0->curve[c][h][3][2] = -nbr_tet->curve[c][h][v2][f]; new_tet0->curve[c][h][3][1] = -nbr_tet->curve[c][h][vv2][ff]; } /* * Typically creating_new_cusp is FALSE, meaning that we are * connecting a spherical boundary component to a torus or * Klein bottle boundary component, and we simply extend the * existing peripheral curves across the new tetrahedra. * * In the exceptional case that creating_new_cusp is TRUE, * meaning that the manifold has no real cusps and we are * connecting the "special fake cusp" to itself, we must * install a meridian and longitude, and set up the Dehn filling. */ if (creating_new_cusp == FALSE) { if (tet->cusp[v0]->index<tet->cusp[v1]->index) { merged_cusp = tet->cusp[v0]; dead_cusp = tet->cusp[v1]; } else { merged_cusp = tet->cusp[v1]; dead_cusp = tet->cusp[v0]; } if (merged_cusp==dead_cusp) same_cusp = TRUE; else same_cusp = FALSE; if (same_cusp) merged_cusp->euler_characteristic = merged_cusp->euler_characteristic - 2; else if (merged_cusp->euler_characteristic==2 || dead_cusp->euler_characteristic==2) merged_cusp->euler_characteristic = merged_cusp->euler_characteristic +dead_cusp->euler_characteristic - 2; else merged_cusp->euler_characteristic = merged_cusp->euler_characteristic +dead_cusp->euler_characteristic; merged_cusp->topology = unknown_topology; if (same_cusp) num_cone_points = merged_cusp->num_cone_points - 2; else num_cone_points = merged_cusp->num_cone_points + dead_cusp->num_cone_points -2; cone_points = NEW_ARRAY( num_cone_points, int ); num_cone_points = 0; for(i=0;i<merged_cusp->num_cone_points;i++) if (merged_cusp->cone_points[i]!=edge->singular_index) cone_points[num_cone_points++] = merged_cusp->cone_points[i]; my_free(merged_cusp->cone_points); if (!same_cusp) { dead_index = dead_cusp->index; /* fix cusp fields */ for( tet0 = manifold->tet_list_begin.next; tet0!=&manifold->tet_list_end; tet0 = tet0->next ) for( i = 0; i < 4; i++ ) if (tet0->cusp[i] == dead_cusp) tet0->cusp[i] = merged_cusp; for(i=0;i<dead_cusp->num_cone_points;i++) if (dead_cusp->cone_points[i]!=edge->singular_index) cone_points[num_cone_points++] = dead_cusp->cone_points[i]; my_free(dead_cusp->cone_points); REMOVE_NODE(dead_cusp); my_free(dead_cusp); } /* install new cone points */ merged_cusp->cone_points = cone_points; merged_cusp->num_cone_points = num_cone_points; for( cusp = manifold->cusp_list_begin.next; cusp!=&manifold->cusp_list_end; cusp = cusp->next ) { for (i=0;i < cusp->num_cone_points;i++) if (cusp->cone_points[i] > edge->singular_index) cusp->cone_points[i] = cusp->cone_points[i] - 1; if (!same_cusp && cusp->index > dead_index) cusp->index--; } for( edge3 = manifold->edge_list_begin.next; edge3!=&manifold->edge_list_end; edge3 = edge3->next ) if (edge3->is_singular && edge3->singular_index > edge->singular_index) edge3->singular_index--; edge->singular_index = -1; edge->is_singular = FALSE; edge->singular_order = 1; manifold->num_singular_arcs--; if (!same_cusp) { manifold->num_cusps--; manifold->num_or_cusps--; } } else /* creating_new_cusp == TRUE */ {
static Triangulation *try_Dirichlet_to_triangulation( WEPolyhedron *polyhedron) { /* * Implement Plan A as described above. */ Triangulation *triangulation; WEEdge *edge, *nbr_edge, *mate_edge; WEEdgeEnd end; WEEdgeSide side; Tetrahedron *new_tet; FaceIndex f; /* * Don't attempt to triangulate an orbifold. */ if (singular_set_is_empty(polyhedron) == FALSE) return NULL; /* * Set up the Triangulation. */ triangulation = NEW_STRUCT(Triangulation); initialize_triangulation(triangulation); /* * Allocate and copy the name. */ triangulation->name = NEW_ARRAY(strlen(DEFAULT_NAME) + 1, char); strcpy(triangulation->name, DEFAULT_NAME); /* * Allocate the Tetrahedra. */ triangulation->num_tetrahedra = 4 * polyhedron->num_edges; for (edge = polyhedron->edge_list_begin.next; edge != &polyhedron->edge_list_end; edge = edge->next) for (end = 0; end < 2; end++) /* = tail, tip */ for (side = 0; side < 2; side++) /* = left, right */ { new_tet = NEW_STRUCT(Tetrahedron); initialize_tetrahedron(new_tet); INSERT_BEFORE(new_tet, &triangulation->tet_list_end); edge->tet[end][side] = new_tet; } /* * Initialize neighbors. */ for (edge = polyhedron->edge_list_begin.next; edge != &polyhedron->edge_list_end; edge = edge->next) for (end = 0; end < 2; end++) /* = tail, tip */ for (side = 0; side < 2; side++) /* = left, right */ { /* * Neighbor[0] is associated to this same WEEdge. * It lies on the same side (left or right), but * at the opposite end (tail or tip). */ edge->tet[end][side]->neighbor[0] = edge->tet[!end][side]; /* * Neighbor[1] lies on the same face of the Dirichlet * domain, but at the "next side" of that face. */ nbr_edge = edge->e[end][side]; if (nbr_edge->v[!end] == edge->v[end]) /* edge and nbr_edge point in the same direction */ edge->tet[end][side]->neighbor[1] = nbr_edge->tet[!end][side]; else if (nbr_edge->v[end] == edge->v[end]) /* edge and nbr_edge point in opposite directions */ edge->tet[end][side]->neighbor[1] = nbr_edge->tet[end][!side]; else uFatalError("Dirichlet_to_triangulation", "Dirichlet_conversion"); /* * Neighbor[2] is associated to this same WEEdge. * It lies at the same end (tail or tip), but * on the opposite side (left or right). */ edge->tet[end][side]->neighbor[2] = edge->tet[end][!side]; /* * Neighbor[3] lies on this face's "mate" elsewhere * on the Dirichlet domain. */ mate_edge = edge->neighbor[side]; edge->tet[end][side]->neighbor[3] = mate_edge->tet [edge->preserves_direction[side] ? end : !end ] [edge->preserves_sides[side] ? side : !side]; } /* * Initialize all gluings to the identity. */ for (edge = polyhedron->edge_list_begin.next; edge != &polyhedron->edge_list_end; edge = edge->next) for (end = 0; end < 2; end++) /* = tail, tip */ for (side = 0; side < 2; side++) /* = left, right */ for (f = 0; f < 4; f++) edge->tet[end][side]->gluing[f] = IDENTITY_PERMUTATION; /* * Set up the EdgeClasses. */ create_edge_classes(triangulation); orient_edge_classes(triangulation); /* * Attempt to orient the manifold. */ orient(triangulation); /* * Set up the Cusps, including "fake cusps" for the finite vertices. * Then locate and remove the fake cusps. If the manifold is closed, * drill out an arbitrary curve to express it as a Dehn filling. * Finally, determine the topology of each cusp (torus or Klein bottle) * and count them. */ create_cusps(triangulation); mark_fake_cusps(triangulation); peripheral_curves(triangulation); remove_finite_vertices(triangulation); count_cusps(triangulation); /* * Try to compute a hyperbolic structure, first for the unfilled * manifold, and then for the closed manifold if appropriate. */ find_complete_hyperbolic_structure(triangulation); do_Dehn_filling(triangulation); /* * If the manifold is hyperbolic, install a shortest basis on each cusp. */ if ( triangulation->solution_type[complete] == geometric_solution || triangulation->solution_type[complete] == nongeometric_solution) install_shortest_bases(triangulation); /* * All done! */ return triangulation; }
static void drill_tube( Triangulation *manifold, Tetrahedron *tet, EdgeIndex e, Boolean creating_new_cusp) { /* * Insert a triangular-pillow-with-tunnel (as described at the top * of this file) so as to connect the boundary component at one * end of the given edge to the boundary component at the other end. * The orientation on the triangular pillow will match the * orientation on tet, so that the orientation on the manifold * (if there is one) will be preserved. Edge orientations are also * respected. */ VertexIndex v0, v1, v2, vv0, vv1, vv2; FaceIndex f, ff; Tetrahedron *nbr_tet, *new_tet0, *new_tet1; Permutation gluing; EdgeClass *edge0, *edge1, *edge2, *new_edge; Orientation edge_orientation0, edge_orientation1, edge_orientation2; PeripheralCurve c; Orientation h; int num_strands, intersection_number[2], the_gcd; Cusp *unique_cusp; MatrixInt22 basis_change[1]; /* * Relative to the orientation of tet, the vertices v0, v1 and v2 * are arranged in counterclockwise order around the face f. */ v0 = one_vertex_at_edge[e]; v1 = other_vertex_at_edge[e]; v2 = remaining_face[v1][v0]; f = remaining_face[v0][v1]; /* * Note the matching face and its vertices. */ nbr_tet = tet->neighbor[f]; gluing = tet->gluing[f]; ff = EVALUATE(gluing, f); vv0 = EVALUATE(gluing, v0); vv1 = EVALUATE(gluing, v1); vv2 = EVALUATE(gluing, v2); /* * Note the incident EdgeClasses (which may or may not be distinct). */ edge0 = tet->edge_class[e]; edge1 = tet->edge_class[edge_between_vertices[v1][v2]]; edge2 = tet->edge_class[edge_between_vertices[v2][v0]]; /* * Construct the triangular-pillow-with-tunnel, as described * at the top of this file. */ new_tet0 = NEW_STRUCT(Tetrahedron); new_tet1 = NEW_STRUCT(Tetrahedron); initialize_tetrahedron(new_tet0); initialize_tetrahedron(new_tet1); INSERT_BEFORE(new_tet0, &manifold->tet_list_end); INSERT_BEFORE(new_tet1, &manifold->tet_list_end); manifold->num_tetrahedra += 2; new_edge = NEW_STRUCT(EdgeClass); initialize_edge_class(new_edge); INSERT_BEFORE(new_edge, &manifold->edge_list_end); new_tet0->neighbor[0] = new_tet1; new_tet0->neighbor[1] = NULL; /* assigned below */ new_tet0->neighbor[2] = NULL; /* assigned below */ new_tet0->neighbor[3] = new_tet1; new_tet1->neighbor[0] = new_tet0; new_tet1->neighbor[1] = new_tet1; new_tet1->neighbor[2] = new_tet1; new_tet1->neighbor[3] = new_tet0; new_tet0->gluing[0] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet0->gluing[1] = 0x00; /* assigned below */ new_tet0->gluing[2] = 0x00; /* assigned below */ new_tet0->gluing[3] = CREATE_PERMUTATION(0, 1, 1, 0, 2, 2, 3, 3); new_tet1->gluing[0] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet1->gluing[1] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet1->gluing[2] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3); new_tet1->gluing[3] = CREATE_PERMUTATION(0, 1, 1, 0, 2, 2, 3, 3); new_tet0->edge_class[0] = edge1; new_tet0->edge_class[1] = edge1; new_tet0->edge_class[2] = edge0; new_tet0->edge_class[3] = edge2; new_tet0->edge_class[4] = edge0; new_tet0->edge_class[5] = edge0; new_tet1->edge_class[0] = edge1; new_tet1->edge_class[1] = edge1; new_tet1->edge_class[2] = edge0; new_tet1->edge_class[3] = new_edge; new_tet1->edge_class[4] = edge0; new_tet1->edge_class[5] = edge0; edge0->order += 6; edge1->order += 4; edge2->order += 1; new_edge->order = 1; new_edge->incident_tet = new_tet1; new_edge->incident_edge_index = 3; edge_orientation0 = tet->edge_orientation[e]; edge_orientation1 = tet->edge_orientation[edge_between_vertices[v1][v2]]; edge_orientation2 = tet->edge_orientation[edge_between_vertices[v2][v0]]; new_tet0->edge_orientation[0] = edge_orientation1; new_tet0->edge_orientation[1] = edge_orientation1; new_tet0->edge_orientation[2] = edge_orientation0; new_tet0->edge_orientation[3] = edge_orientation2; new_tet0->edge_orientation[4] = edge_orientation0; new_tet0->edge_orientation[5] = edge_orientation0; new_tet1->edge_orientation[0] = edge_orientation1; new_tet1->edge_orientation[1] = edge_orientation1; new_tet1->edge_orientation[2] = edge_orientation0; new_tet1->edge_orientation[3] = right_handed; new_tet1->edge_orientation[4] = edge_orientation0; new_tet1->edge_orientation[5] = edge_orientation0; new_tet0->cusp[0] = tet->cusp[v0]; new_tet0->cusp[1] = tet->cusp[v0]; new_tet0->cusp[2] = tet->cusp[v0]; new_tet0->cusp[3] = tet->cusp[v2]; new_tet1->cusp[0] = tet->cusp[v0]; new_tet1->cusp[1] = tet->cusp[v0]; new_tet1->cusp[2] = tet->cusp[v0]; new_tet1->cusp[3] = tet->cusp[v2]; /* * Install the triangular-pillow-with-tunnel. */ tet->neighbor[f] = new_tet0; tet->gluing[f] = CREATE_PERMUTATION(f, 2, v0, 0, v1, 1, v2, 3); new_tet0->neighbor[2] = tet; new_tet0->gluing[2] = inverse_permutation[tet->gluing[f]]; nbr_tet->neighbor[ff] = new_tet0; nbr_tet->gluing[ff] = CREATE_PERMUTATION(ff, 1, vv0, 0, vv1, 2, vv2, 3); new_tet0->neighbor[1] = nbr_tet; new_tet0->gluing[1] = inverse_permutation[nbr_tet->gluing[ff]]; /* * Typically creating_new_cusp is FALSE, meaning that we are * connecting a spherical boundary component to a torus or * Klein bottle boundary component, and we simply extend the * existing peripheral curves across the new tetrahedra. * * In the exceptional case that creating_new_cusp is TRUE, * meaning that the manifold has no real cusps and we are * connecting the "special fake cusp" to itself, we must * install a meridian and longitude, and set up the Dehn filling. */ if (creating_new_cusp == FALSE) { /* * Extend the peripheral curves across the boundary of the * triangular-pillow-with-tunnel. * * Note: The orientations of new_tet0 and new_tet1 match that * of tet, so the right_handed and left_handed sheets match up * in the obvious way. */ for (c = 0; c < 2; c++) /* c = M, L */ for (h = 0; h < 2; h++) /* h = right_handed, left_handed */ { num_strands = tet->curve[c][h][v0][f]; new_tet0->curve[c][h][0][2] = -num_strands; new_tet0->curve[c][h][0][1] = +num_strands; num_strands = tet->curve[c][h][v1][f]; new_tet0->curve[c][h][1][2] = -num_strands; new_tet0->curve[c][h][1][0] = +num_strands; new_tet1->curve[c][h][2][0] = -num_strands; new_tet1->curve[c][h][2][1] = +num_strands; new_tet1->curve[c][h][1][2] = -num_strands; new_tet1->curve[c][h][1][0] = +num_strands; new_tet0->curve[c][h][2][0] = -num_strands; new_tet0->curve[c][h][2][1] = +num_strands; num_strands = tet->curve[c][h][v2][f]; new_tet0->curve[c][h][3][2] = -num_strands; new_tet0->curve[c][h][3][1] = +num_strands; } } else /* creating_new_cusp == TRUE */ { /* * We have just installed a tube connecting the (unique) * spherical "cusp" to itself, to convert it to a torus or * Klein bottle. */ unique_cusp = tet->cusp[v0]->matching_cusp; unique_cusp->is_complete = TRUE; /* to be filled below */ unique_cusp->index = 0; unique_cusp->is_finite = FALSE; manifold->num_cusps = 1; /* * Install an arbitrary meridian and longitude. */ peripheral_curves(manifold); count_cusps(manifold); /* * Two sides of the (truncated) vertex 0 of new_tet0 * (namely the sides incident to faces 1 and 2 of new_tet0) * define the Dehn filling curve by which we can recover * the closed manifold. Count how many times the newly * installed meridian and longitude cross this Dehn filling curve. * To avoid messy questions about which sheet of the cusp's * double cover we're on, use two (parallel) copies of the * Dehn filling curve, one on each sheet of the cover. * Ultimately we're looking for a linear combination of the * meridian and longitude whose intersection number with * the Dehn filling curve is zero, so it won't matter if * we're off by a factor of two. */ for (c = 0; c < 2; c++) /* c = M, L */ { intersection_number[c] = 0; for (h = 0; h < 2; h++) /* h = right_handed, left_handed */ { intersection_number[c] += new_tet0->curve[c][h][0][1]; intersection_number[c] += new_tet0->curve[c][h][0][2]; } } /* * Use the intersection numbers to deduce * the desired Dehn filling coefficients. */ the_gcd = gcd(intersection_number[M], intersection_number[L]); unique_cusp->is_complete = FALSE; unique_cusp->m = -intersection_number[L] / the_gcd; unique_cusp->l = +intersection_number[M] / the_gcd; /* * Switch to a basis in which the Dehn filling curve is a meridian. */ unique_cusp->cusp_shape[initial] = Zero; /* force current_curve_basis() to ignore the cusp shape */ current_curve_basis(manifold, unique_cusp->index, basis_change[0]); if (change_peripheral_curves(manifold, basis_change) != func_OK) uFatalError("drill_tube", "finite_vertices"); } }