Exemple #1
0
float64
float64_sin (float64 rad)
{
  float64 app;
  float64 diff;
  float64 m_rad2;
  int inc;

  app = diff = rad;
  inc = 1;
  m_rad2 = float64_neg (float64_mul (rad, rad, 3));
  do
    {
      diff = float64_div (float64_mul (diff, m_rad2, 3),
			  int32_to_float64 ((2 * inc) * (2 * inc + 1)), 3);
      app = float64_add (app, diff, 3);
      inc++;
    }
  while (float64_ge (float64_abs (diff), 0x3ee4f8b588e368f1ULL, 3));	/* 0.00001 */
  return app;
}
unsigned int PerformFLT(const unsigned int opcode)
{
    FPA11 *fpa11 = GET_FPA11();
    SetRoundingMode(opcode);
    SetRoundingPrecision(opcode);

    switch (opcode & MASK_ROUNDING_PRECISION) {
    case ROUND_SINGLE:
    {
        fpa11->fType[getFn(opcode)] = typeSingle;
        fpa11->fpreg[getFn(opcode)].fSingle = int32_to_float32(readRegister(getRd(opcode)));
    }
    break;

    case ROUND_DOUBLE:
    {
        fpa11->fType[getFn(opcode)] = typeDouble;
        fpa11->fpreg[getFn(opcode)].fDouble = int32_to_float64(readRegister(getRd(opcode)));
    }
    break;

#ifdef CONFIG_FPE_NWFPE_XP
    case ROUND_EXTENDED:
    {
        fpa11->fType[getFn(opcode)] = typeExtended;
        fpa11->fpreg[getFn(opcode)].fExtended = int32_to_floatx80(readRegister(getRd(opcode)));
    }
    break;
#endif

    default:
        return 0;
    }

    return 1;
}
Exemple #3
0
/* convert 32-bit int to 64-bit float */
void HELPER(cdfbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
{
    HELPER_LOG("%s: converting %d to f%d\n", __func__, v2, f1);
    env->fregs[f1].d = int32_to_float64(v2, &env->fpu_status);
}
Exemple #4
0
uint64_t helper_float_DT(uint32_t t0)
{
    CPU_DoubleU d;
    d.d = int32_to_float64(t0, &env->fp_status);
    return d.ll;
}
Exemple #5
0
float64 __floatsidf(int I)
{
	return int32_to_float64(I);
}
unsigned int DoubleCPDO(const unsigned int opcode)
{
   float64 rFm, rFn;
   unsigned int Fd, Fm, Fn, nRc = 1;

   //printk("DoubleCPDO(0x%08x)\n",opcode);
   
   Fm = getFm(opcode);
   if (CONSTANT_FM(opcode))
   {
     rFm = getDoubleConstant(Fm);
   }
   else
   {  
     switch (fpa11->fType[Fm])
     {
        case typeSingle:
          rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle);
        break;

        case typeDouble:
          rFm = fpa11->fpreg[Fm].fDouble;
          break;

        case typeExtended:
            // !! patb
	    //printk("not implemented! why not?\n");
            //!! ScottB
            // should never get here, if extended involved
            // then other operand should be promoted then
            // ExtendedCPDO called.
            break;

        default: return 0;
     }
   }

   if (!MONADIC_INSTRUCTION(opcode))
   {
      Fn = getFn(opcode);
      switch (fpa11->fType[Fn])
      {
        case typeSingle:
          rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle);
        break;

        case typeDouble:
          rFn = fpa11->fpreg[Fn].fDouble;
        break;
        
        default: return 0;
      }
   }

   Fd = getFd(opcode);
   /* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */
   switch (opcode & MASK_ARITHMETIC_OPCODE)
   {
      /* dyadic opcodes */
      case ADF_CODE:
         fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm);
      break;

      case MUF_CODE:
      case FML_CODE:
         fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm);
      break;

      case SUF_CODE:
         fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm);
      break;

      case RSF_CODE:
         fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn);
      break;

      case DVF_CODE:
      case FDV_CODE:
         fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm);
      break;

      case RDF_CODE:
      case FRD_CODE:
         fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn);
      break;

#if 0
      case POW_CODE:
         fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm);
      break;

      case RPW_CODE:
         fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn);
      break;
#endif

      case RMF_CODE:
         fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm);
      break;

#if 0
      case POL_CODE:
         fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm);
      break;
#endif

      /* monadic opcodes */
      case MVF_CODE:
         fpa11->fpreg[Fd].fDouble = rFm;
      break;

      case MNF_CODE:
      {
         unsigned int *p = (unsigned int*)&rFm;
         p[1] ^= 0x80000000;
         fpa11->fpreg[Fd].fDouble = rFm;
      }
      break;

      case ABS_CODE:
      {
         unsigned int *p = (unsigned int*)&rFm;
         p[1] &= 0x7fffffff;
         fpa11->fpreg[Fd].fDouble = rFm;
      }
      break;

      case RND_CODE:
      case URD_CODE:
         fpa11->fpreg[Fd].fDouble = 
             int32_to_float64(float64_to_int32(rFm));
      break;

      case SQT_CODE:
         fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm);
      break;

#if 0
      case LOG_CODE:
         fpa11->fpreg[Fd].fDouble = float64_log(rFm);
      break;

      case LGN_CODE:
         fpa11->fpreg[Fd].fDouble = float64_ln(rFm);
      break;

      case EXP_CODE:
         fpa11->fpreg[Fd].fDouble = float64_exp(rFm);
      break;

      case SIN_CODE:
         fpa11->fpreg[Fd].fDouble = float64_sin(rFm);
      break;

      case COS_CODE:
         fpa11->fpreg[Fd].fDouble = float64_cos(rFm);
      break;

      case TAN_CODE:
         fpa11->fpreg[Fd].fDouble = float64_tan(rFm);
      break;

      case ASN_CODE:
         fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm);
      break;

      case ACS_CODE:
         fpa11->fpreg[Fd].fDouble = float64_arccos(rFm);
      break;

      case ATN_CODE:
         fpa11->fpreg[Fd].fDouble = float64_arctan(rFm);
      break;
#endif

      case NRM_CODE:
      break;
      
      default:
      {
        nRc = 0;
      }
   }

   if (0 != nRc) fpa11->fType[Fd] = typeDouble;
   return nRc;
}