double c_nodes_jacc(int_matrix & ten, int_matrix & en, int dim) {
	
	
	// this function does a best match based on the jaccard index.
	// note that it should be weighted on the cluster size (I believe)
	
	
	deque<deque<int> > mems;
	
	deque<int> first;
	for(int i=0; i<dim; i++)
		mems.push_back(first);
	
	for (int ii=0; ii<int(ten.size()); ii++)
		for(int i=0; i<int(ten[ii].size()); i++)
			mems[ten[ii][i]].push_back(ii);
	
	double global_overlap=0;
	RANGE_loop(k, en) {
		
		deque<int> & c = en[k];
		
		map<int, int> com_ol;		// it maps the index of the ten into the overlap with en[k]
		
		RANGE_loop(i, c) {
			
			for(int j=0; j<int(mems[c[i]].size()); j++)
				int_histogram(mems[c[i]][j], com_ol);
		}
		
		double max_jac=0;
		for(map<int, int>::iterator itm=com_ol.begin(); itm!=com_ol.end(); itm++) {
			
			set<int> s1;
			set<int> s2;
			
			deque_to_set(c, s1);
			deque_to_set(ten[itm->first], s2);
			
			double jc=jaccard(s1, s2);
			cout<<"jc: "<<jc<<endl;
			max_jac=max(max_jac, jc);
			
		}
		
		global_overlap+=max_jac;
		cout<<"========== "<<global_overlap<<endl;
	}
void int_histogram(string infile, string outfile) {
	
	// this makes a int_histogram of integers from a file
	
	
	char b[infile.size()+outfile.size()+1];
	cast_string_to_char(infile, b);

	ifstream ing(b);
	deque<int> H;
	int h;
	while(ing>>h)
		H.push_back(h);
	
	
	cast_string_to_char(outfile, b);
	ofstream outg(b);
	int_histogram(H, outg);
	


}
double H_x_given_y3(deque<deque<int> > &en, deque<deque<int> > &ten, int dim) {
	
	// you know y and you want to find x according to a certain index labelling.
	// so, for each x you look for the best y.
	
	
	deque<deque<int> > mems;
	
	deque<int> first;
	for(int i=0; i<dim; i++)
		mems.push_back(first);
	
	for (int ii=0; ii<int(ten.size()); ii++)
		for(int i=0; i<int(ten[ii].size()); i++)
			mems[ten[ii][i]].push_back(ii);

	
	
	double H_x_y=0;
				
	for (int k=0; k<int(en.size()); k++) {
		
		
		
		deque<int> & c = en[k];
		
		
		deque <double> p;
		double I2=double(c.size());
		double O2=(dim-I2);
		p.push_back(I2/dim);
		p.push_back(O2/dim);
		double H2_=H(p);
		p.clear();
		
		
		
		double diff=H2_;
		
		// I need to know all the group with share nodes with en[k]
		
		map<int, int> com_ol;		// it maps the index of the ten into the overlap with en[k]
		
		for(int i=0; i<int(c.size()); i++) {
			
			for(int j=0; j<int(mems[c[i]].size()); j++)
				int_histogram(mems[c[i]][j], com_ol);
			
		}
		
		
				
		for(map<int, int>::iterator itm=com_ol.begin(); itm!=com_ol.end(); itm++) {		
			
			
			
			double I1=double(ten[itm->first].size());
			double O1=(dim-I1);
			
			
			p.push_back(I1/dim);
			p.push_back(O1/dim);
			double H1_=H(p);
			p.clear();
			
			
			
			
			double I1_I2= itm->second;
			double I1_02= ten[itm->first].size() - I1_I2;	
			double O1_I2= c.size() - I1_I2;	
			double O1_02= dim - I1_I2 - I1_02 - O1_I2;
			
			
			p.push_back(I1_I2/dim);
			p.push_back(O1_02/dim);
			
			double H12_positive=H(p);
			
			p.clear();
			p.push_back(I1_02/dim);
			p.push_back(O1_I2/dim);
			
			
			double H12_negative=H(p);
			
			double H12_=H12_negative+H12_positive;
			
			p.clear();
			
			if (H12_negative>H12_positive) {
				
				H12_=H1_+H2_;
				
			}
			
			
			
			
			
			if ((H12_-H1_)<diff) {
				diff=(H12_-H1_);
			}
			
			
			
		}
		
		
		
		if (H2_==0)
			H_x_y+=1;
		else
			H_x_y+=(diff/H2_);
		
	}
	
	
	
	
	
	
	
	return (H_x_y/(en.size()));
	
}
int print_network(deque<set<int> > & E, const deque<deque<int> > & member_list, const deque<deque<int> > & member_matrix, deque<int> & num_seq) {

	
	int edges=0;

		
	int num_nodes=member_list.size();
	
	deque<double> double_mixing;
	for (int i=0; i<E.size(); i++) {
		
		double one_minus_mu = double(internal_kin(E, member_list, i))/E[i].size();
		
		double_mixing.push_back(1.- one_minus_mu);
				
		edges+=E[i].size();
		
	}
	
	
	//cout<<"\n----------------------------------------------------------"<<endl;
	//cout<<endl;
	
	
	
	double density=0; 
	double sparsity=0;
	
	for (int i=0; i<member_matrix.size(); i++) {

		double media_int=0;
		double media_est=0;
		
		for (int j=0; j<member_matrix[i].size(); j++) {
			
			
			double kinj = double(internal_kin_only_one(E[member_matrix[i][j]], member_matrix[i]));
			media_int+= kinj;
			media_est+=E[member_matrix[i][j]].size() - double(internal_kin_only_one(E[member_matrix[i][j]], member_matrix[i]));
					
		}
		
		double pair_num=(member_matrix[i].size()*(member_matrix[i].size()-1));
		double pair_num_e=((num_nodes-member_matrix[i].size())*(member_matrix[i].size()));
		
		if(pair_num!=0)
			density+=media_int/pair_num;
		if(pair_num_e!=0)
			sparsity+=media_est/pair_num_e;
		
		
	
	}
	
	density=density/member_matrix.size();
	sparsity=sparsity/member_matrix.size();
	
	
	


	ofstream out1("network.dat");
	for (int u=0; u<E.size(); u++) {

		set<int>::iterator itb=E[u].begin();
	
		while (itb!=E[u].end())
			out1<<u+1<<"\t"<<*(itb++)+1<<endl;
		
		

	}
	out1.close();	

	
	ofstream out2("community.dat");

	for (int i=0; i<member_list.size(); i++) {
		
		out2<<i+1<<"\t";
		for (int j=0; j<member_list[i].size(); j++)
			out2<<member_list[i][j]+1<<" ";
		out2<<endl;
	
	}
    out2.close();
    
	cout<<"\n\n---------------------------------------------------------------------------"<<endl;
	
	
	cout<<"network of "<<num_nodes<<" vertices and "<<edges/2<<" edges"<<";\t average degree = "<<double(edges)/num_nodes<<endl;
	cout<<"\naverage mixing parameter: "<<average_func(double_mixing)<<" +/- "<<sqrt(variance_func(double_mixing))<<endl;
	cout<<"p_in: "<<density<<"\tp_out: "<<sparsity<<endl;

	
	
	ofstream statout("statistics.dat");
	
	deque<int> degree_seq;
	for (int i=0; i<E.size(); i++)
		degree_seq.push_back(E[i].size());
	
	statout<<"degree distribution (probability density function of the degree in logarithmic bins) "<<endl;
	log_histogram(degree_seq, statout, 10);
	statout<<"\ndegree distribution (degree-occurrences) "<<endl;
	int_histogram(degree_seq, statout);
	statout<<endl<<"--------------------------------------"<<endl;

		
	statout<<"community distribution (size-occurrences)"<<endl;
	int_histogram(num_seq, statout);
	statout<<endl<<"--------------------------------------"<<endl;

	statout<<"mixing parameter"<<endl;
	not_norm_histogram(double_mixing, statout, 20, 0, 0);
	statout<<endl<<"--------------------------------------"<<endl;
	
	
	
    statout.close();

	cout<<endl<<endl;

	return 0;

}
int print_network(deque<set<int> > & E, const deque<deque<int> > & member_list, const deque<deque<int> > & member_matrix, 
	deque<int> & num_seq, deque<map <int, double > > & neigh_weigh, double beta, double mu, double mu0) {

	
	int edges=0;

	
	int num_nodes=member_list.size();
	
	deque<double> double_mixing;
	for (int i=0; i<E.size(); i++) {
		
		double one_minus_mu = double(internal_kin(E, member_list, i))/E[i].size();
		
		double_mixing.push_back(1.- one_minus_mu);
				
		edges+=E[i].size();
		
	}
	
	
	//cout<<"\n----------------------------------------------------------"<<endl;
	//cout<<endl;
	
		
	double density=0; 
	double sparsity=0;
	
	for (int i=0; i<member_matrix.size(); i++) {

		double media_int=0;
		double media_est=0;
		
		for (int j=0; j<member_matrix[i].size(); j++) {
			
			
			double kinj = double(internal_kin_only_one(E[member_matrix[i][j]], member_matrix[i]));
			media_int+= kinj;
			media_est+=E[member_matrix[i][j]].size() - double(internal_kin_only_one(E[member_matrix[i][j]], member_matrix[i]));
					
		}
		
		double pair_num=(member_matrix[i].size()*(member_matrix[i].size()-1));
		double pair_num_e=((num_nodes-member_matrix[i].size())*(member_matrix[i].size()));
		
		if(pair_num!=0)
			density+=media_int/pair_num;
		if(pair_num_e!=0)
			sparsity+=media_est/pair_num_e;
		
		
	
	}
	
	density=density/member_matrix.size();
	sparsity=sparsity/member_matrix.size();
	
	
	


	ofstream out1("network.dat");
	for (int u=0; u<E.size(); u++) {

		set<int>::iterator itb=E[u].begin();
	
		while (itb!=E[u].end())
			out1<<u+1<<"\t"<<*(itb++)+1<<"\t"<<neigh_weigh[u][*(itb)]<<endl;
		
		

	}
		

	
	ofstream out2("community.dat");

	for (int i=0; i<member_list.size(); i++) {
		
		out2<<i+1<<"\t";
		for (int j=0; j<member_list[i].size(); j++)
			out2<<member_list[i][j]+1<<" ";
		out2<<endl;
	
	}

	cout<<"\n\n---------------------------------------------------------------------------"<<endl;
	
	
	cout<<"network of "<<num_nodes<<" vertices and "<<edges/2<<" edges"<<";\t average degree = "<<double(edges)/num_nodes<<endl;
	cout<<"\naverage mixing parameter (topology): "<< average_func(double_mixing)<<" +/- "<<sqrt(variance_func(double_mixing))<<endl;
	cout<<"p_in: "<<density<<"\tp_out: "<<sparsity<<endl;

	
	
	ofstream statout("statistics.dat");
	
	deque<int> degree_seq;
	for (int i=0; i<E.size(); i++)
		degree_seq.push_back(E[i].size());
	
	statout<<"degree distribution (probability density function of the degree in logarithmic bins) "<<endl;
	log_histogram(degree_seq, statout, 10);
	statout<<"\ndegree distribution (degree-occurrences) "<<endl;
	int_histogram(degree_seq, statout);
	statout<<endl<<"--------------------------------------"<<endl;

		
	statout<<"community distribution (size-occurrences)"<<endl;
	int_histogram(num_seq, statout);
	statout<<endl<<"--------------------------------------"<<endl;

	statout<<"mixing parameter (topology)"<<endl;
	not_norm_histogram(double_mixing, statout, 20, 0, 0);
	statout<<endl<<"--------------------------------------"<<endl;
	
	
	//*
	
	deque<double> inwij;
	deque<double> outwij;
	//deque<double> inkij;
	//deque<double> outkij;
	
	double csi=(1. - mu) / (1. - mu0);
	double csi2=mu /mu0;
	
	
	double tstrength=0;
	deque<double> one_minus_mu2;
	
	for(int i=0; i<neigh_weigh.size(); i++) {
		
		
		double internal_strength_i=0;
		double strength_i=0;
		
		for(map<int, double>::iterator itm = neigh_weigh[i].begin(); itm!=neigh_weigh[i].end(); itm++) {
			
			
			if(they_are_mate(i, itm->first, member_list)) {
				
				inwij.push_back(itm->second);
				//inkij.push_back(csi * pow(E[i].size(), beta-1));
				internal_strength_i+=itm->second;

				
			}
			else {
				
				outwij.push_back(itm->second);
				//outkij.push_back(csi2 * pow(E[i].size(), beta-1));
			
			
			}
			
			tstrength+=itm->second;
			strength_i+=itm->second;
		
		
		}
		
		one_minus_mu2.push_back(1 - internal_strength_i/strength_i);
		
	}
	
	
	//cout<<"average strength "<<tstrength / E.size()<<"\taverage internal strenght: "<<average_internal_strenght<<endl;
	cout<<"\naverage mixing parameter (weights): "<<average_func(one_minus_mu2)<<" +/- "<<sqrt(variance_func(one_minus_mu2))<<endl;	
	statout<<"mixing parameter (weights)"<<endl;
	not_norm_histogram(one_minus_mu2, statout, 20, 0, 0);
	statout<<endl<<"--------------------------------------"<<endl;

	
	//cout<<" expected internal "<<tstrength * (1 - mu) / E.size()<<endl;
	//cout<<"internal links: "<<inwij.size()<<" external: "<<outwij.size()<<endl;
	
	/*
	ofstream hout1("inwij.dat");
	not_norm_histogram(inwij, hout1, 20, 0, 0);
	ofstream hout2("outwij.dat");
	not_norm_histogram(outwij, hout2, 20, 0, 0);
	ofstream hout3("corrin.dat");
	not_norm_histogram_correlated(inkij, inwij, hout3, 20, 0, 0);
	ofstream hout4("corrout.dat");
	not_norm_histogram_correlated(outkij, outwij, hout4, 20, 0, 0);
	
	//*/
	
	//*/
	
	cout<<"average weight of an internal link "<<average_func(inwij)<<" +/- "<<sqrt(variance_func(inwij))<<endl;
	cout<<"average weight of an external link "<<average_func(outwij)<<" +/- "<<sqrt(variance_func(outwij))<<endl;


	//cout<<"average weight of an internal link expected "<<tstrength / edges * (1. - mu) / (1. - mu0)<<endl;
	//cout<<"average weight of an external link expected "<<tstrength / edges * (mu) / (mu0)<<endl;
	
	
	statout<<"internal weights (weight-occurrences)"<<endl;
	not_norm_histogram(inwij, statout, 20, 0, 0);
	statout<<endl<<"--------------------------------------"<<endl;
	
	
	statout<<"external weights (weight-occurrences)"<<endl;
	not_norm_histogram(outwij, statout, 20, 0, 0);

	


	cout<<endl<<endl;

	return 0;

}