void darkRate() {

  //gROOT->SetBatch(true);
  gROOT->SetStyle("Plain");
  gStyle->SetOptStat(0000);
  gStyle->SetOptTitle(0);

  TFile * f1300 = new TFile("Spectra/08_12_16_1700V_LightsOff_Short.root", "READ");
  TFile * f1500 = new TFile("Spectra/08_12_16_1800V_LightsOff_Short.root", "READ");
  TFile * f1700 = new TFile("Spectra/08_12_16_1900V_LightsOff_Short.root", "READ");

  TTree * t1300 = (TTree*)f1300->Get("Channel_1");
  TTree * t1500 = (TTree*)f1500->Get("Channel_1");
  TTree * t1700 = (TTree*)f1700->Get("Channel_1");

  TGraphErrors * h1300 = integralHistogram(t1300);
  TGraphErrors * h1500 = integralHistogram(t1500);
  TGraphErrors * h1700 = integralHistogram(t1700);

  h1300->GetYaxis()->SetTitle("Rate [Hz]");
  h1300->GetYaxis()->SetRangeUser(0.5, 10e6);

  h1300->GetXaxis()->SetTitle("Threshold [mV]");
  h1300->GetXaxis()->SetRangeUser(0.5, 1000);

  h1300->SetLineColor(kBlack);
  h1500->SetLineColor(kRed);
  h1700->SetLineColor(kBlue);

  TLegend * leg = new TLegend(0.60, 0.70, 0.88, 0.88);
  leg->SetHeader("PMT Voltage");
  leg->AddEntry(h1300, "1700V", "l");
  leg->AddEntry(h1500, "1800V", "l");
  leg->AddEntry(h1700, "1900V", "l");

  h1300->Draw("ALP");
  h1500->Draw("LP");
  h1700->Draw("LP");
  leg->Draw();


}
void CvHOGEvaluator::setImage( const Mat &img, uchar clsLabel, int idx )
{
  CV_DbgAssert( !hist.empty());
  CvFeatureEvaluator::setImage( img, clsLabel, idx );
  std::vector<Mat> integralHist;
  for ( int bin = 0; bin < N_BINS; bin++ )
  {
    integralHist.push_back( Mat( winSize.height + 1, winSize.width + 1, hist[bin].type(), hist[bin].ptr<float>( (int) idx ) ) );
  }
  Mat integralNorm( winSize.height + 1, winSize.width + 1, normSum.type(), normSum.ptr<float>( (int) idx ) );
  integralHistogram( img, integralHist, integralNorm, (int) N_BINS );
}
Exemple #3
0
bool HOGEvaluator::setImage( const Mat& image, Size winSize )
{
    int rows = image.rows + 1;
    int cols = image.cols + 1;
    origWinSize = winSize;
    if( image.cols < origWinSize.width || image.rows < origWinSize.height )
        return false;
    hist.clear();
    for( int bin = 0; bin < Feature::BIN_NUM; bin++ )
    {
        hist.push_back( Mat(rows, cols, CV_32FC1) );
    }
    normSum.create( rows, cols, CV_32FC1 );

    integralHistogram( image, hist, normSum, Feature::BIN_NUM );

    size_t featIdx, featCount = features->size();

    for( featIdx = 0; featIdx < featCount; featIdx++ )
    {
        featuresPtr[featIdx].updatePtrs( hist, normSum );
    }
    return true;
}