Exemple #1
0
/**
 * Map a teximage in a mipmap tree.
 * \param row_stride  returns row stride in bytes
 * \param image_stride  returns image stride in bytes (for 3D textures).
 * \param image_offsets pointer to array of pixel offsets from the returned
 *	  pointer to each depth image
 * \return address of mapping
 */
GLubyte *
intel_miptree_image_map(struct intel_context * intel,
                        struct intel_mipmap_tree * mt,
                        GLuint face,
                        GLuint level,
                        GLuint * row_stride, GLuint * image_offsets)
{
    GLuint x, y;
    DBG("%s \n", __FUNCTION__);

    if (row_stride)
        *row_stride = mt->region->pitch * mt->cpp;

    if (mt->target == GL_TEXTURE_3D) {
        int i;

        for (i = 0; i < mt->level[level].depth; i++) {

            intel_miptree_get_image_offset(mt, level, face, i,
                                           &x, &y);
            image_offsets[i] = x + y * mt->region->pitch;
        }

        return intel_region_map(intel, mt->region);
    } else {
        assert(mt->level[level].depth == 1);
        intel_miptree_get_image_offset(mt, level, face, 0,
                                       &x, &y);
        image_offsets[0] = 0;

        return intel_region_map(intel, mt->region) +
               (x + y * mt->region->pitch) * mt->cpp;
    }
}
Exemple #2
0
/**
 * \param mode  bitmask of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT
 */
static void
intel_tex_map_image_for_swrast(struct intel_context *intel,
			       struct intel_texture_image *intel_image,
			       GLbitfield mode)
{
   int level;
   int face;
   struct intel_mipmap_tree *mt;
   unsigned int x, y;

   if (!intel_image || !intel_image->mt)
      return;

   level = intel_image->base.Base.Level;
   face = intel_image->base.Base.Face;
   mt = intel_image->mt;

   for (int i = 0; i < mt->level[level].depth; i++)
      intel_miptree_slice_resolve_depth(intel, mt, level, i);

   if (mt->target == GL_TEXTURE_3D ||
       mt->target == GL_TEXTURE_2D_ARRAY ||
       mt->target == GL_TEXTURE_1D_ARRAY) {
      int i;

      /* ImageOffsets[] is only used for swrast's fetch_texel_3d, so we can't
       * share code with the normal path.
       */
      for (i = 0; i < mt->level[level].depth; i++) {
	 intel_miptree_get_image_offset(mt, level, i, &x, &y);
	 intel_image->base.ImageOffsets[i] = x + y * (mt->region->pitch /
                                                      mt->region->cpp);
      }

      DBG("%s \n", __FUNCTION__);

      intel_image->base.Map = intel_miptree_map_raw(intel, mt);
   } else {
      assert(intel_image->base.Base.Depth == 1);
      intel_miptree_get_image_offset(mt, level, face, &x, &y);

      DBG("%s: (%d,%d) -> (%d, %d)/%d\n",
	  __FUNCTION__, face, level, x, y, mt->region->pitch);

      intel_image->base.Map = intel_miptree_map_raw(intel, mt) +
	 x * mt->cpp + y * mt->region->pitch;
   }

   assert(mt->region->pitch % mt->region->cpp == 0);
   intel_image->base.RowStride = mt->region->pitch / mt->region->cpp;
}
Exemple #3
0
/**
 * Copy mipmap image between trees
 */
void
intel_miptree_image_copy(struct intel_context *intel,
                         struct intel_mipmap_tree *dst,
                         GLuint face, GLuint level,
                         struct intel_mipmap_tree *src)
{
    GLuint width = src->level[level].width;
    GLuint height = src->level[level].height;
    GLuint depth = src->level[level].depth;
    GLuint src_x, src_y, dst_x, dst_y;
    GLuint i;
    GLboolean success;

    if (dst->compressed) {
        GLuint align_w, align_h;

        intel_get_texture_alignment_unit(dst->internal_format,
                                         &align_w, &align_h);
        height = (height + 3) / 4;
        width = ALIGN(width, align_w);
    }

    intel_prepare_render(intel);

    for (i = 0; i < depth; i++) {
        intel_miptree_get_image_offset(src, level, face, i, &src_x, &src_y);
        intel_miptree_get_image_offset(dst, level, face, i, &dst_x, &dst_y);
        success = intel_region_copy(intel,
                                    dst->region, 0, dst_x, dst_y,
                                    src->region, 0, src_x, src_y,
                                    width, height, GL_FALSE,
                                    GL_COPY);
        if (!success) {
            GLubyte *src_ptr, *dst_ptr;

            src_ptr = intel_region_map(intel, src->region);
            dst_ptr = intel_region_map(intel, dst->region);

            _mesa_copy_rect(dst_ptr,
                            dst->cpp,
                            dst->region->pitch,
                            dst_x, dst_y, width, height,
                            src_ptr,
                            src->region->pitch,
                            src_x, src_y);
            intel_region_unmap(intel, src->region);
            intel_region_unmap(intel, dst->region);
        }
    }
}
static void
intel_miptree_copy_slice(struct intel_context *intel,
                         struct intel_mipmap_tree *dst_mt,
                         struct intel_mipmap_tree *src_mt,
                         int level,
                         int face,
                         int depth)

{
    mesa_format format = src_mt->format;
    uint32_t width = src_mt->level[level].width;
    uint32_t height = src_mt->level[level].height;
    int slice;

    if (face > 0)
        slice = face;
    else
        slice = depth;

    assert(depth < src_mt->level[level].depth);
    assert(src_mt->format == dst_mt->format);

    if (dst_mt->compressed) {
        height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
        width = ALIGN(width, dst_mt->align_w);
    }

    uint32_t dst_x, dst_y, src_x, src_y;
    intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
    intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);

    DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
        _mesa_get_format_name(src_mt->format),
        src_mt, src_x, src_y, src_mt->region->pitch,
        _mesa_get_format_name(dst_mt->format),
        dst_mt, dst_x, dst_y, dst_mt->region->pitch,
        width, height);

    if (!intel_miptree_blit(intel,
                            src_mt, level, slice, 0, 0, false,
                            dst_mt, level, slice, 0, 0, false,
                            width, height, GL_COPY)) {
        perf_debug("miptree validate blit for %s failed\n",
                   _mesa_get_format_name(format));

        intel_miptree_copy_slice_sw(intel, dst_mt, src_mt, level, slice,
                                    width, height);
    }
}
Exemple #5
0
/**
 * Upload data for a particular image.
 */
void
intel_miptree_image_data(struct intel_context *intel,
                         struct intel_mipmap_tree *dst,
                         GLuint face,
                         GLuint level,
                         void *src,
                         GLuint src_row_pitch,
                         GLuint src_image_pitch)
{
    const GLuint depth = dst->level[level].depth;
    GLuint i;

    DBG("%s: %d/%d\n", __FUNCTION__, face, level);
    for (i = 0; i < depth; i++) {
        GLuint dst_x, dst_y, height;

        intel_miptree_get_image_offset(dst, level, face, i, &dst_x, &dst_y);

        height = dst->level[level].height;
        if(dst->compressed)
            height = (height + 3) / 4;

        intel_region_data(intel,
                          dst->region, 0, dst_x, dst_y,
                          src,
                          src_row_pitch,
                          0, 0,                             /* source x, y */
                          dst->level[level].width, height); /* width, height */

        src = (char *)src + src_image_pitch * dst->cpp;
    }
}
Exemple #6
0
/**
 * Sets up a DRIImage structure to point to our shared image in a region
 */
static void
intel_setup_image_from_mipmap_tree(struct intel_context *intel, __DRIimage *image,
                                   struct intel_mipmap_tree *mt, GLuint level,
                                   GLuint zoffset)
{
   unsigned int draw_x, draw_y;
   uint32_t mask_x, mask_y;

   intel_miptree_check_level_layer(mt, level, zoffset);

   intel_region_get_tile_masks(mt->region, &mask_x, &mask_y, false);
   intel_miptree_get_image_offset(mt, level, zoffset, &draw_x, &draw_y);

   image->width = mt->level[level].width;
   image->height = mt->level[level].height;
   image->tile_x = draw_x & mask_x;
   image->tile_y = draw_y & mask_y;

   image->offset = intel_region_get_aligned_offset(mt->region,
                                                   draw_x & ~mask_x,
                                                   draw_y & ~mask_y,
                                                   false);

   intel_region_reference(&image->region, mt->region);
}
/**
 * When stencil is mapped as Y-tiled render target the mip-level offsets
 * calculated for the Y-tiling do not always match the offsets in W-tiling.
 * Therefore the sampling engine cannot be used for individual mip-level
 * access but the program needs to do it internally. This can be achieved
 * by shifting the coordinates of the blit rectangle here.
 */
static void
adjust_mip_level(const struct intel_mipmap_tree *mt,
                 unsigned level, unsigned layer, struct blit_dims *dims)
{
   unsigned x_offset;
   unsigned y_offset;

   intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);

   dims->dst_x0 += x_offset;
   dims->dst_y0 += y_offset;
   dims->dst_x1 += x_offset;
   dims->dst_y1 += y_offset;
}
Exemple #8
0
void
brw_blorp_mip_info::set(struct intel_mipmap_tree *mt,
                        unsigned int level, unsigned int layer)
{
   intel_miptree_check_level_layer(mt, level, layer);

   this->mt = mt;
   this->level = level;
   this->layer = layer;
   this->width = mt->level[level].width;
   this->height = mt->level[level].height;

   intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);
}
Exemple #9
0
void
intel_renderbuffer_set_draw_offset(struct intel_renderbuffer *irb)
{
   unsigned int dst_x, dst_y;

   /* compute offset of the particular 2D image within the texture region */
   intel_miptree_get_image_offset(irb->mt,
				  irb->mt_level,
				  irb->mt_layer,
				  &dst_x, &dst_y);

   irb->draw_x = dst_x;
   irb->draw_y = dst_y;
}
/**
 * Rendering with tiled buffers requires that the base address of the buffer
 * be aligned to a page boundary.  For renderbuffers, and sometimes with
 * textures, we may want the surface to point at a texture image level that
 * isn't at a page boundary.
 *
 * This function returns an appropriately-aligned base offset
 * according to the tiling restrictions, plus any required x/y offset
 * from there.
 */
uint32_t
intel_miptree_get_tile_offsets(struct intel_mipmap_tree *mt,
                               GLuint level, GLuint slice,
                               uint32_t *tile_x,
                               uint32_t *tile_y)
{
    struct intel_region *region = mt->region;
    uint32_t x, y;
    uint32_t mask_x, mask_y;

    intel_region_get_tile_masks(region, &mask_x, &mask_y, false);
    intel_miptree_get_image_offset(mt, level, slice, &x, &y);

    *tile_x = x & mask_x;
    *tile_y = y & mask_y;

    return intel_region_get_aligned_offset(region, x & ~mask_x, y & ~mask_y,
                                           false);
}
static void
intel_miptree_map_gtt(struct intel_context *intel,
                      struct intel_mipmap_tree *mt,
                      struct intel_miptree_map *map,
                      unsigned int level, unsigned int slice)
{
    unsigned int bw, bh;
    void *base;
    unsigned int image_x, image_y;
    int x = map->x;
    int y = map->y;

    /* For compressed formats, the stride is the number of bytes per
     * row of blocks.  intel_miptree_get_image_offset() already does
     * the divide.
     */
    _mesa_get_format_block_size(mt->format, &bw, &bh);
    assert(y % bh == 0);
    y /= bh;

    base = intel_miptree_map_raw(intel, mt) + mt->offset;

    if (base == NULL)
        map->ptr = NULL;
    else {
        /* Note that in the case of cube maps, the caller must have passed the
         * slice number referencing the face.
        */
        intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
        x += image_x;
        y += image_y;

        map->stride = mt->region->pitch;
        map->ptr = base + y * map->stride + x * mt->cpp;
    }

    DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
        map->x, map->y, map->w, map->h,
        mt, _mesa_get_format_name(mt->format),
        x, y, map->ptr, map->stride);
}
void
brw_blorp_mip_info::set(struct intel_mipmap_tree *mt,
                        unsigned int level, unsigned int layer)
{
   /* Layer is a physical layer, so if this is a 2D multisample array texture
    * using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better
    * be a multiple of num_samples.
    */
   if (mt->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
       mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
      assert(layer % mt->num_samples == 0);
   }

   intel_miptree_check_level_layer(mt, level, layer);

   this->mt = mt;
   this->level = level;
   this->layer = layer;
   this->width = minify(mt->physical_width0, level - mt->first_level);
   this->height = minify(mt->physical_height0, level - mt->first_level);

   intel_miptree_get_image_offset(mt, level, layer, &x_offset, &y_offset);
}
Exemple #13
0
bool
intel_miptree_copy(struct brw_context *brw,
                   struct intel_mipmap_tree *src_mt,
                   int src_level, int src_slice,
                   uint32_t src_x, uint32_t src_y,
                   struct intel_mipmap_tree *dst_mt,
                   int dst_level, int dst_slice,
                   uint32_t dst_x, uint32_t dst_y,
                   uint32_t src_width, uint32_t src_height)
{
   /* The blitter doesn't understand multisampling at all. */
   if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1)
      return false;

   if (src_mt->format == MESA_FORMAT_S_UINT8)
      return false;

   /* The blitter has no idea about HiZ or fast color clears, so we need to
    * resolve the miptrees before we do anything.
    */
   intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false);
   intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true);

   uint32_t src_image_x, src_image_y;
   intel_miptree_get_image_offset(src_mt, src_level, src_slice,
                                  &src_image_x, &src_image_y);

   if (_mesa_is_format_compressed(src_mt->format)) {
      GLuint bw, bh;
      _mesa_get_format_block_size(src_mt->format, &bw, &bh);

      /* Compressed textures need not have dimensions that are a multiple of
       * the block size.  Rectangles in compressed textures do need to be a
       * multiple of the block size.  The one exception is that the right and
       * bottom edges may be at the right or bottom edge of the miplevel even
       * if it's not aligned.
       */
      assert(src_x % bw == 0);
      assert(src_y % bh == 0);

      assert(src_width % bw == 0 ||
             src_x + src_width ==
             minify(src_mt->surf.logical_level0_px.width, src_level));
      assert(src_height % bh == 0 ||
             src_y + src_height ==
             minify(src_mt->surf.logical_level0_px.height, src_level));

      src_x /= (int)bw;
      src_y /= (int)bh;
      src_width = DIV_ROUND_UP(src_width, (int)bw);
      src_height = DIV_ROUND_UP(src_height, (int)bh);
   }
   src_x += src_image_x;
   src_y += src_image_y;

   uint32_t dst_image_x, dst_image_y;
   intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
                                  &dst_image_x, &dst_image_y);

   if (_mesa_is_format_compressed(dst_mt->format)) {
      GLuint bw, bh;
      _mesa_get_format_block_size(dst_mt->format, &bw, &bh);

      assert(dst_x % bw == 0);
      assert(dst_y % bh == 0);

      dst_x /= (int)bw;
      dst_y /= (int)bh;
   }
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   return emit_miptree_blit(brw, src_mt, src_x, src_y,
                            dst_mt, dst_x, dst_y,
                            src_width, src_height, false, COLOR_LOGICOP_COPY);
}
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static GLboolean
i830_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   GLcontext *ctx = &intel->ctx;
   struct i830_context *i830 = i830_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   GLuint *state = i830->state.Tex[unit], format, pitch;
   GLint lodbias;
   GLubyte border[4];
   GLuint dst_x, dst_y;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i830->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i830->state.tex_buffer[unit]);
       i830->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return GL_FALSE;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][intelObj->firstLevel];

   intel_miptree_get_image_offset(intelObj->mt, intelObj->firstLevel, 0, 0,
				  &dst_x, &dst_y);

   drm_intel_bo_reference(intelObj->mt->region->buffer);
   i830->state.tex_buffer[unit] = intelObj->mt->region->buffer;
   pitch = intelObj->mt->region->pitch * intelObj->mt->cpp;

   /* XXX: This calculation is probably broken for tiled images with
    * a non-page-aligned offset.
    */
   i830->state.tex_offset[unit] = dst_x * intelObj->mt->cpp + dst_y * pitch;

   format = translate_texture_format(firstImage->TexFormat,
				     firstImage->InternalFormat);

   state[I830_TEXREG_TM0LI] = (_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
                               (LOAD_TEXTURE_MAP0 << unit) | 4);

   state[I830_TEXREG_TM0S1] =
      (((firstImage->Height - 1) << TM0S1_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << TM0S1_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I830_TEXREG_TM0S1] |= TM0S1_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I830_TEXREG_TM0S1] |= TM0S1_TILE_WALK;
   }

   state[I830_TEXREG_TM0S2] =
      ((((pitch / 4) - 1) << TM0S2_PITCH_SHIFT) | TM0S2_CUBE_FACE_ENA_MASK);

   {
      if (tObj->Target == GL_TEXTURE_CUBE_MAP)
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit) |
                                    CUBE_NEGX_ENABLE |
                                    CUBE_POSX_ENABLE |
                                    CUBE_NEGY_ENABLE |
                                    CUBE_POSY_ENABLE |
                                    CUBE_NEGZ_ENABLE | CUBE_POSZ_ENABLE);
      else
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit));
   }




   {
      GLuint minFilt, mipFilt, magFilt;

      switch (tObj->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return GL_FALSE;
      }

      if (tObj->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
      }
      else {
         switch (tObj->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return GL_FALSE;
         }
      }

      lodbias = (int) ((tUnit->LodBias + tObj->LodBias) * 16.0);
      if (lodbias < -64)
          lodbias = -64;
      if (lodbias > 63)
          lodbias = 63;
      
      state[I830_TEXREG_TM0S3] = ((lodbias << TM0S3_LOD_BIAS_SHIFT) & 
                                  TM0S3_LOD_BIAS_MASK);
#if 0
      /* YUV conversion:
       */
      if (firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV)
         state[I830_TEXREG_TM0S3] |= SS2_COLORSPACE_CONVERSION;
#endif

      state[I830_TEXREG_TM0S3] |= ((intelObj->lastLevel -
                                    intelObj->firstLevel) *
                                   4) << TM0S3_MIN_MIP_SHIFT;

      state[I830_TEXREG_TM0S3] |= ((minFilt << TM0S3_MIN_FILTER_SHIFT) |
                                   (mipFilt << TM0S3_MIP_FILTER_SHIFT) |
                                   (magFilt << TM0S3_MAG_FILTER_SHIFT));
   }

   {
      GLenum ws = tObj->WrapS;
      GLenum wt = tObj->WrapT;


      /* 3D textures not available on i830
       */
      if (tObj->Target == GL_TEXTURE_3D)
         return GL_FALSE;

      state[I830_TEXREG_MCS] = (_3DSTATE_MAP_COORD_SET_CMD |
                                MAP_UNIT(unit) |
                                ENABLE_TEXCOORD_PARAMS |
                                ss3 |
                                ENABLE_ADDR_V_CNTL |
                                TEXCOORD_ADDR_V_MODE(translate_wrap_mode(wt))
                                | ENABLE_ADDR_U_CNTL |
                                TEXCOORD_ADDR_U_MODE(translate_wrap_mode
                                                     (ws)));
   }

   /* convert border color from float to ubyte */
   CLAMPED_FLOAT_TO_UBYTE(border[0], tObj->BorderColor.f[0]);
   CLAMPED_FLOAT_TO_UBYTE(border[1], tObj->BorderColor.f[1]);
   CLAMPED_FLOAT_TO_UBYTE(border[2], tObj->BorderColor.f[2]);
   CLAMPED_FLOAT_TO_UBYTE(border[3], tObj->BorderColor.f[3]);

   state[I830_TEXREG_TM0S4] = PACK_COLOR_8888(border[3],
					      border[0],
					      border[1],
					      border[2]);

   I830_ACTIVESTATE(i830, I830_UPLOAD_TEX(unit), GL_TRUE);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I830_STATECHANGE(i830, I830_UPLOAD_TEX(unit));
   return GL_TRUE;
}
void
brw_workaround_depthstencil_alignment(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   struct gl_framebuffer *fb = ctx->DrawBuffer;
   bool rebase_depth = false;
   bool rebase_stencil = false;
   struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
   struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
   struct intel_mipmap_tree *depth_mt = NULL;
   struct intel_mipmap_tree *stencil_mt = get_stencil_miptree(stencil_irb);
   uint32_t tile_x = 0, tile_y = 0, stencil_tile_x = 0, stencil_tile_y = 0;
   uint32_t stencil_draw_x = 0, stencil_draw_y = 0;

   if (depth_irb)
      depth_mt = depth_irb->mt;

   uint32_t tile_mask_x, tile_mask_y;
   brw_get_depthstencil_tile_masks(depth_mt, stencil_mt,
                                   &tile_mask_x, &tile_mask_y);

   if (depth_irb) {
      tile_x = depth_irb->draw_x & tile_mask_x;
      tile_y = depth_irb->draw_y & tile_mask_y;

      /* According to the Sandy Bridge PRM, volume 2 part 1, pp326-327
       * (3DSTATE_DEPTH_BUFFER dw5), in the documentation for "Depth
       * Coordinate Offset X/Y":
       *
       *   "The 3 LSBs of both offsets must be zero to ensure correct
       *   alignment"
       */
      if (tile_x & 7 || tile_y & 7)
         rebase_depth = true;

      /* We didn't even have intra-tile offsets before g45. */
      if (intel->gen == 4 && !intel->is_g4x) {
         if (tile_x || tile_y)
            rebase_depth = true;
      }

      if (rebase_depth) {
         perf_debug("HW workaround: blitting depth level %d to a temporary "
                    "to fix alignment (depth tile offset %d,%d)\n",
                    depth_irb->mt_level, tile_x, tile_y);

         intel_renderbuffer_move_to_temp(intel, depth_irb);
         /* In the case of stencil_irb being the same packed depth/stencil
          * texture but not the same rb, make it point at our rebased mt, too.
          */
         if (stencil_irb &&
             stencil_irb != depth_irb &&
             stencil_irb->mt == depth_mt) {
            intel_miptree_reference(&stencil_irb->mt, depth_irb->mt);
            intel_renderbuffer_set_draw_offset(stencil_irb);
         }

         stencil_mt = get_stencil_miptree(stencil_irb);

         tile_x = depth_irb->draw_x & tile_mask_x;
         tile_y = depth_irb->draw_y & tile_mask_y;
      }

      if (stencil_irb) {
         stencil_mt = get_stencil_miptree(stencil_irb);
         intel_miptree_get_image_offset(stencil_mt,
                                        stencil_irb->mt_level,
                                        stencil_irb->mt_layer,
                                        &stencil_draw_x, &stencil_draw_y);
         int stencil_tile_x = stencil_draw_x & tile_mask_x;
         int stencil_tile_y = stencil_draw_y & tile_mask_y;

         /* If stencil doesn't match depth, then we'll need to rebase stencil
          * as well.  (if we hadn't decided to rebase stencil before, the
          * post-stencil depth test will also rebase depth to try to match it
          * up).
          */
         if (tile_x != stencil_tile_x ||
             tile_y != stencil_tile_y) {
            rebase_stencil = true;
         }
      }
   }

   /* If we have (just) stencil, check it for ignored low bits as well */
   if (stencil_irb) {
      intel_miptree_get_image_offset(stencil_mt,
                                     stencil_irb->mt_level,
                                     stencil_irb->mt_layer,
                                     &stencil_draw_x, &stencil_draw_y);
      stencil_tile_x = stencil_draw_x & tile_mask_x;
      stencil_tile_y = stencil_draw_y & tile_mask_y;

      if (stencil_tile_x & 7 || stencil_tile_y & 7)
         rebase_stencil = true;

      if (intel->gen == 4 && !intel->is_g4x) {
         if (stencil_tile_x || stencil_tile_y)
            rebase_stencil = true;
      }
   }

   if (rebase_stencil) {
      perf_debug("HW workaround: blitting stencil level %d to a temporary "
                 "to fix alignment (stencil tile offset %d,%d)\n",
                 stencil_irb->mt_level, stencil_tile_x, stencil_tile_y);

      intel_renderbuffer_move_to_temp(intel, stencil_irb);
      stencil_mt = get_stencil_miptree(stencil_irb);

      intel_miptree_get_image_offset(stencil_mt,
                                     stencil_irb->mt_level,
                                     stencil_irb->mt_layer,
                                     &stencil_draw_x, &stencil_draw_y);
      stencil_tile_x = stencil_draw_x & tile_mask_x;
      stencil_tile_y = stencil_draw_y & tile_mask_y;

      if (depth_irb && depth_irb->mt == stencil_irb->mt) {
         intel_miptree_reference(&depth_irb->mt, stencil_irb->mt);
         intel_renderbuffer_set_draw_offset(depth_irb);
      } else if (depth_irb && !rebase_depth) {
         if (tile_x != stencil_tile_x ||
             tile_y != stencil_tile_y) {
            perf_debug("HW workaround: blitting depth level %d to a temporary "
                       "to match stencil level %d alignment (depth tile offset "
                       "%d,%d, stencil offset %d,%d)\n",
                       depth_irb->mt_level,
                       stencil_irb->mt_level,
                       tile_x, tile_y,
                       stencil_tile_x, stencil_tile_y);

            intel_renderbuffer_move_to_temp(intel, depth_irb);

            tile_x = depth_irb->draw_x & tile_mask_x;
            tile_y = depth_irb->draw_y & tile_mask_y;

            if (stencil_irb && stencil_irb->mt == depth_mt) {
               intel_miptree_reference(&stencil_irb->mt, depth_irb->mt);
               intel_renderbuffer_set_draw_offset(stencil_irb);
            }

            WARN_ONCE(stencil_tile_x != tile_x ||
                      stencil_tile_y != tile_y,
                      "Rebased stencil tile offset (%d,%d) doesn't match depth "
                      "tile offset (%d,%d).\n",
                      stencil_tile_x, stencil_tile_y,
                      tile_x, tile_y);
         }
      }
   }

   if (!depth_irb) {
      tile_x = stencil_tile_x;
      tile_y = stencil_tile_y;
   }

   /* While we just tried to get everything aligned, we may have failed to do
    * so in the case of rendering to array or 3D textures, where nonzero faces
    * will still have an offset post-rebase.  At least give an informative
    * warning.
    */
   WARN_ONCE((tile_x & 7) || (tile_y & 7),
             "Depth/stencil buffer needs alignment to 8-pixel boundaries.\n"
             "Truncating offset, bad rendering may occur.\n");
   tile_x &= ~7;
   tile_y &= ~7;

   /* Now, after rebasing, save off the new dephtstencil state so the hardware
    * packets can just dereference that without re-calculating tile offsets.
    */
   brw->depthstencil.tile_x = tile_x;
   brw->depthstencil.tile_y = tile_y;
   brw->depthstencil.depth_offset = 0;
   brw->depthstencil.stencil_offset = 0;
   brw->depthstencil.hiz_offset = 0;
   brw->depthstencil.depth_mt = NULL;
   brw->depthstencil.stencil_mt = NULL;
   brw->depthstencil.hiz_mt = NULL;
   if (depth_irb) {
      depth_mt = depth_irb->mt;
      brw->depthstencil.depth_mt = depth_mt;
      brw->depthstencil.depth_offset =
         intel_region_get_aligned_offset(depth_mt->region,
                                         depth_irb->draw_x & ~tile_mask_x,
                                         depth_irb->draw_y & ~tile_mask_y,
                                         false);
      if (depth_mt->hiz_mt) {
         brw->depthstencil.hiz_mt = depth_mt->hiz_mt;
         brw->depthstencil.hiz_offset =
            intel_region_get_aligned_offset(depth_mt->region,
                                            depth_irb->draw_x & ~tile_mask_x,
                                            (depth_irb->draw_y & ~tile_mask_y) /
                                            2,
                                            false);
      }
   }
   if (stencil_irb) {
      stencil_mt = get_stencil_miptree(stencil_irb);

      brw->depthstencil.stencil_mt = stencil_mt;
      if (stencil_mt->format == MESA_FORMAT_S8) {
         /* Note: we can't compute the stencil offset using
          * intel_region_get_aligned_offset(), because stencil_region claims
          * that the region is untiled even though it's W tiled.
          */
         brw->depthstencil.stencil_offset =
            (stencil_draw_y & ~tile_mask_y) * stencil_mt->region->pitch +
            (stencil_draw_x & ~tile_mask_x) * 64;
      }
   }
}
Exemple #16
0
void
brw_workaround_depthstencil_alignment(struct brw_context *brw,
                                      GLbitfield clear_mask)
{
   struct gl_context *ctx = &brw->ctx;
   struct gl_framebuffer *fb = ctx->DrawBuffer;
   bool rebase_depth = false;
   bool rebase_stencil = false;
   struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
   struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
   struct intel_mipmap_tree *depth_mt = NULL;
   struct intel_mipmap_tree *stencil_mt = get_stencil_miptree(stencil_irb);
   uint32_t tile_x = 0, tile_y = 0, stencil_tile_x = 0, stencil_tile_y = 0;
   uint32_t stencil_draw_x = 0, stencil_draw_y = 0;
   bool invalidate_depth = clear_mask & BUFFER_BIT_DEPTH;
   bool invalidate_stencil = clear_mask & BUFFER_BIT_STENCIL;

   if (depth_irb)
      depth_mt = depth_irb->mt;

   /* Initialize brw->depthstencil to 'nop' workaround state.
    */
   brw->depthstencil.tile_x = 0;
   brw->depthstencil.tile_y = 0;
   brw->depthstencil.depth_offset = 0;
   brw->depthstencil.stencil_offset = 0;
   brw->depthstencil.hiz_offset = 0;
   brw->depthstencil.depth_mt = NULL;
   brw->depthstencil.stencil_mt = NULL;
   if (depth_irb)
      brw->depthstencil.depth_mt = depth_mt;
   if (stencil_irb)
      brw->depthstencil.stencil_mt = get_stencil_miptree(stencil_irb);

   /* Gen7+ doesn't require the workarounds, since we always program the
    * surface state at the start of the whole surface.
    */
   if (brw->gen >= 7)
      return;

   /* Check if depth buffer is in depth/stencil format.  If so, then it's only
    * safe to invalidate it if we're also clearing stencil, and both depth_irb
    * and stencil_irb point to the same miptree.
    *
    * Note: it's not sufficient to check for the case where
    * _mesa_get_format_base_format(depth_mt->format) == GL_DEPTH_STENCIL,
    * because this fails to catch depth/stencil buffers on hardware that uses
    * separate stencil.  To catch that case, we check whether
    * depth_mt->stencil_mt is non-NULL.
    */
   if (depth_irb && invalidate_depth &&
       (_mesa_get_format_base_format(depth_mt->format) == GL_DEPTH_STENCIL ||
        depth_mt->stencil_mt)) {
      invalidate_depth = invalidate_stencil && depth_irb && stencil_irb
         && depth_irb->mt == stencil_irb->mt;
   }

   uint32_t tile_mask_x, tile_mask_y;
   brw_get_depthstencil_tile_masks(depth_mt,
                                   depth_mt ? depth_irb->mt_level : 0,
                                   depth_mt ? depth_irb->mt_layer : 0,
                                   stencil_mt,
                                   &tile_mask_x, &tile_mask_y);

   if (depth_irb) {
      tile_x = depth_irb->draw_x & tile_mask_x;
      tile_y = depth_irb->draw_y & tile_mask_y;

      /* According to the Sandy Bridge PRM, volume 2 part 1, pp326-327
       * (3DSTATE_DEPTH_BUFFER dw5), in the documentation for "Depth
       * Coordinate Offset X/Y":
       *
       *   "The 3 LSBs of both offsets must be zero to ensure correct
       *   alignment"
       */
      if (tile_x & 7 || tile_y & 7)
         rebase_depth = true;

      /* We didn't even have intra-tile offsets before g45. */
      if (!brw->has_surface_tile_offset) {
         if (tile_x || tile_y)
            rebase_depth = true;
      }

      if (rebase_depth) {
         perf_debug("HW workaround: blitting depth level %d to a temporary "
                    "to fix alignment (depth tile offset %d,%d)\n",
                    depth_irb->mt_level, tile_x, tile_y);
         intel_renderbuffer_move_to_temp(brw, depth_irb, invalidate_depth);
         /* In the case of stencil_irb being the same packed depth/stencil
          * texture but not the same rb, make it point at our rebased mt, too.
          */
         if (stencil_irb &&
             stencil_irb != depth_irb &&
             stencil_irb->mt == depth_mt) {
            intel_miptree_reference(&stencil_irb->mt, depth_irb->mt);
            intel_renderbuffer_set_draw_offset(stencil_irb);
         }

         stencil_mt = get_stencil_miptree(stencil_irb);

         tile_x = depth_irb->draw_x & tile_mask_x;
         tile_y = depth_irb->draw_y & tile_mask_y;
      }

      if (stencil_irb) {
         stencil_mt = get_stencil_miptree(stencil_irb);
         intel_miptree_get_image_offset(stencil_mt,
                                        stencil_irb->mt_level,
                                        stencil_irb->mt_layer,
                                        &stencil_draw_x, &stencil_draw_y);
         int stencil_tile_x = stencil_draw_x & tile_mask_x;
         int stencil_tile_y = stencil_draw_y & tile_mask_y;

         /* If stencil doesn't match depth, then we'll need to rebase stencil
          * as well.  (if we hadn't decided to rebase stencil before, the
          * post-stencil depth test will also rebase depth to try to match it
          * up).
          */
         if (tile_x != stencil_tile_x ||
             tile_y != stencil_tile_y) {
            rebase_stencil = true;
         }
      }
   }

   /* If we have (just) stencil, check it for ignored low bits as well */
   if (stencil_irb) {
      intel_miptree_get_image_offset(stencil_mt,
                                     stencil_irb->mt_level,
                                     stencil_irb->mt_layer,
                                     &stencil_draw_x, &stencil_draw_y);
      stencil_tile_x = stencil_draw_x & tile_mask_x;
      stencil_tile_y = stencil_draw_y & tile_mask_y;

      if (stencil_tile_x & 7 || stencil_tile_y & 7)
         rebase_stencil = true;

      if (!brw->has_surface_tile_offset) {
         if (stencil_tile_x || stencil_tile_y)
            rebase_stencil = true;
      }
   }

   if (rebase_stencil) {
      perf_debug("HW workaround: blitting stencil level %d to a temporary "
                 "to fix alignment (stencil tile offset %d,%d)\n",
                 stencil_irb->mt_level, stencil_tile_x, stencil_tile_y);

      intel_renderbuffer_move_to_temp(brw, stencil_irb, invalidate_stencil);
      stencil_mt = get_stencil_miptree(stencil_irb);

      intel_miptree_get_image_offset(stencil_mt,
                                     stencil_irb->mt_level,
                                     stencil_irb->mt_layer,
                                     &stencil_draw_x, &stencil_draw_y);
      stencil_tile_x = stencil_draw_x & tile_mask_x;
      stencil_tile_y = stencil_draw_y & tile_mask_y;

      if (depth_irb && depth_irb->mt == stencil_irb->mt) {
         intel_miptree_reference(&depth_irb->mt, stencil_irb->mt);
         intel_renderbuffer_set_draw_offset(depth_irb);
      } else if (depth_irb && !rebase_depth) {
         if (tile_x != stencil_tile_x ||
             tile_y != stencil_tile_y) {
            perf_debug("HW workaround: blitting depth level %d to a temporary "
                       "to match stencil level %d alignment (depth tile offset "
                       "%d,%d, stencil offset %d,%d)\n",
                       depth_irb->mt_level,
                       stencil_irb->mt_level,
                       tile_x, tile_y,
                       stencil_tile_x, stencil_tile_y);

            intel_renderbuffer_move_to_temp(brw, depth_irb, invalidate_depth);

            tile_x = depth_irb->draw_x & tile_mask_x;
            tile_y = depth_irb->draw_y & tile_mask_y;

            if (stencil_irb && stencil_irb->mt == depth_mt) {
               intel_miptree_reference(&stencil_irb->mt, depth_irb->mt);
               intel_renderbuffer_set_draw_offset(stencil_irb);
            }

            WARN_ONCE(stencil_tile_x != tile_x ||
                      stencil_tile_y != tile_y,
                      "Rebased stencil tile offset (%d,%d) doesn't match depth "
                      "tile offset (%d,%d).\n",
                      stencil_tile_x, stencil_tile_y,
                      tile_x, tile_y);
         }
      }
   }

   if (!depth_irb) {
      tile_x = stencil_tile_x;
      tile_y = stencil_tile_y;
   }

   /* While we just tried to get everything aligned, we may have failed to do
    * so in the case of rendering to array or 3D textures, where nonzero faces
    * will still have an offset post-rebase.  At least give an informative
    * warning.
    */
   WARN_ONCE((tile_x & 7) || (tile_y & 7),
             "Depth/stencil buffer needs alignment to 8-pixel boundaries.\n"
             "Truncating offset, bad rendering may occur.\n");
   tile_x &= ~7;
   tile_y &= ~7;

   /* Now, after rebasing, save off the new dephtstencil state so the hardware
    * packets can just dereference that without re-calculating tile offsets.
    */
   brw->depthstencil.tile_x = tile_x;
   brw->depthstencil.tile_y = tile_y;
   if (depth_irb) {
      depth_mt = depth_irb->mt;
      brw->depthstencil.depth_mt = depth_mt;
      brw->depthstencil.depth_offset =
         intel_region_get_aligned_offset(depth_mt->region,
                                         depth_irb->draw_x & ~tile_mask_x,
                                         depth_irb->draw_y & ~tile_mask_y,
                                         false);
      if (intel_renderbuffer_has_hiz(depth_irb)) {
         brw->depthstencil.hiz_offset =
            intel_region_get_aligned_offset(depth_mt->region,
                                            depth_irb->draw_x & ~tile_mask_x,
                                            (depth_irb->draw_y & ~tile_mask_y) /
                                            2,
                                            false);
      }
   }
   if (stencil_irb) {
      stencil_mt = get_stencil_miptree(stencil_irb);

      brw->depthstencil.stencil_mt = stencil_mt;
      if (stencil_mt->format == MESA_FORMAT_S_UINT8) {
         /* Note: we can't compute the stencil offset using
          * intel_region_get_aligned_offset(), because stencil_region claims
          * that the region is untiled even though it's W tiled.
          */
         brw->depthstencil.stencil_offset =
            (stencil_draw_y & ~tile_mask_y) * stencil_mt->region->pitch +
            (stencil_draw_x & ~tile_mask_x) * 64;
      }
   }
}
Exemple #17
0
/**
 * \brief A fast path for glReadPixels
 *
 * This fast path is taken when the source format is BGRA, RGBA,
 * A or L and when the texture memory is X- or Y-tiled.  It downloads
 * the source data by directly mapping the memory without a GTT fence.
 * This then needs to be de-tiled on the CPU before presenting the data to
 * the user in the linear fasion.
 *
 * This is a performance win over the conventional texture download path.
 * In the conventional texture download path, the texture is either mapped
 * through the GTT or copied to a linear buffer with the blitter before
 * handing off to a software path.  This allows us to avoid round-tripping
 * through the GPU (in the case where we would be blitting) and do only a
 * single copy operation.
 */
static bool
intel_readpixels_tiled_memcpy(struct gl_context * ctx,
                              GLint xoffset, GLint yoffset,
                              GLsizei width, GLsizei height,
                              GLenum format, GLenum type,
                              GLvoid * pixels,
                              const struct gl_pixelstore_attrib *pack)
{
   struct brw_context *brw = brw_context(ctx);
   struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer;
   const struct gen_device_info *devinfo = &brw->screen->devinfo;

   /* This path supports reading from color buffers only */
   if (rb == NULL)
      return false;

   struct intel_renderbuffer *irb = intel_renderbuffer(rb);
   int dst_pitch;

   /* The miptree's buffer. */
   struct brw_bo *bo;

   uint32_t cpp;
   mem_copy_fn mem_copy = NULL;

   /* This fastpath is restricted to specific renderbuffer types:
    * a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support
    * more types.
    */
   if (!devinfo->has_llc ||
       !(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_INT_8_8_8_8_REV) ||
       pixels == NULL ||
       _mesa_is_bufferobj(pack->BufferObj) ||
       pack->Alignment > 4 ||
       pack->SkipPixels > 0 ||
       pack->SkipRows > 0 ||
       (pack->RowLength != 0 && pack->RowLength != width) ||
       pack->SwapBytes ||
       pack->LsbFirst ||
       pack->Invert)
      return false;

   /* Only a simple blit, no scale, bias or other mapping. */
   if (ctx->_ImageTransferState)
      return false;

   /* It is possible that the renderbuffer (or underlying texture) is
    * multisampled.  Since ReadPixels from a multisampled buffer requires a
    * multisample resolve, we can't handle this here
    */
   if (rb->NumSamples > 1)
      return false;

   /* We can't handle copying from RGBX or BGRX because the tiled_memcpy
    * function doesn't set the last channel to 1. Note this checks BaseFormat
    * rather than TexFormat in case the RGBX format is being simulated with an
    * RGBA format.
    */
   if (rb->_BaseFormat == GL_RGB)
      return false;

   if (!intel_get_memcpy(rb->Format, format, type, &mem_copy, &cpp))
      return false;

   if (!irb->mt ||
       (irb->mt->surf.tiling != ISL_TILING_X &&
        irb->mt->surf.tiling != ISL_TILING_Y0)) {
      /* The algorithm is written only for X- or Y-tiled memory. */
      return false;
   }

   /* tiled_to_linear() assumes that if the object is swizzled, it is using
    * I915_BIT6_SWIZZLE_9_10 for X and I915_BIT6_SWIZZLE_9 for Y.  This is only
    * true on gen5 and above.
    *
    * The killer on top is that some gen4 have an L-shaped swizzle mode, where
    * parts of the memory aren't swizzled at all. Userspace just can't handle
    * that.
    */
   if (devinfo->gen < 5 && brw->has_swizzling)
      return false;

   /* Since we are going to read raw data to the miptree, we need to resolve
    * any pending fast color clears before we start.
    */
   intel_miptree_access_raw(brw, irb->mt, irb->mt_level, irb->mt_layer, false);

   bo = irb->mt->bo;

   if (brw_batch_references(&brw->batch, bo)) {
      perf_debug("Flushing before mapping a referenced bo.\n");
      intel_batchbuffer_flush(brw);
   }

   void *map = brw_bo_map(brw, bo, MAP_READ | MAP_RAW);
   if (map == NULL) {
      DBG("%s: failed to map bo\n", __func__);
      return false;
   }

   unsigned slice_offset_x, slice_offset_y;
   intel_miptree_get_image_offset(irb->mt, irb->mt_level, irb->mt_layer,
                                  &slice_offset_x, &slice_offset_y);
   xoffset += slice_offset_x;
   yoffset += slice_offset_y;

   dst_pitch = _mesa_image_row_stride(pack, width, format, type);

   /* For a window-system renderbuffer, the buffer is actually flipped
    * vertically, so we need to handle that.  Since the detiling function
    * can only really work in the forwards direction, we have to be a
    * little creative.  First, we compute the Y-offset of the first row of
    * the renderbuffer (in renderbuffer coordinates).  We then match that
    * with the last row of the client's data.  Finally, we give
    * tiled_to_linear a negative pitch so that it walks through the
    * client's data backwards as it walks through the renderbufer forwards.
    */
   if (rb->Name == 0) {
      yoffset = rb->Height - yoffset - height;
      pixels += (ptrdiff_t) (height - 1) * dst_pitch;
      dst_pitch = -dst_pitch;
   }

   /* We postponed printing this message until having committed to executing
    * the function.
    */
   DBG("%s: x,y=(%d,%d) (w,h)=(%d,%d) format=0x%x type=0x%x "
       "mesa_format=0x%x tiling=%d "
       "pack=(alignment=%d row_length=%d skip_pixels=%d skip_rows=%d)\n",
       __func__, xoffset, yoffset, width, height,
       format, type, rb->Format, irb->mt->surf.tiling,
       pack->Alignment, pack->RowLength, pack->SkipPixels,
       pack->SkipRows);

   tiled_to_linear(
      xoffset * cpp, (xoffset + width) * cpp,
      yoffset, yoffset + height,
      pixels - (ptrdiff_t) yoffset * dst_pitch - (ptrdiff_t) xoffset * cpp,
      map + irb->mt->offset,
      dst_pitch, irb->mt->surf.row_pitch,
      brw->has_swizzling,
      irb->mt->surf.tiling,
      mem_copy
   );

   brw_bo_unmap(bo);
   return true;
}
Exemple #18
0
bool
intel_copy_texsubimage(struct intel_context *intel,
                       struct intel_texture_image *intelImage,
                       GLint dstx, GLint dsty,
                       struct intel_renderbuffer *irb,
                       GLint x, GLint y, GLsizei width, GLsizei height)
{
    struct gl_context *ctx = &intel->ctx;
    struct intel_region *region;
    const GLenum internalFormat = intelImage->base.Base.InternalFormat;
    bool copy_supported = false;
    bool copy_supported_with_alpha_override = false;

    intel_prepare_render(intel);

    if (!intelImage->mt || !irb || !irb->mt) {
        if (unlikely(INTEL_DEBUG & DEBUG_PERF))
            fprintf(stderr, "%s fail %p %p (0x%08x)\n",
                    __FUNCTION__, intelImage->mt, irb, internalFormat);
        return false;
    } else {
        region = irb->mt->region;
        assert(region);
    }

    /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
     * Data Size Limitations):
     *
     *    The BLT engine is capable of transferring very large quantities of
     *    graphics data. Any graphics data read from and written to the
     *    destination is permitted to represent a number of pixels that
     *    occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
     *    at the destination. The maximum number of pixels that may be
     *    represented per scan line’s worth of graphics data depends on the
     *    color depth.
     *
     * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
     * 16-bit integer to represent buffer pitch, so it can only handle buffer
     * pitches < 32k.
     *
     * As a result of these two limitations, we can only use the blitter to do
     * this copy when the region's pitch is less than 32k.
     */
    if (region->pitch >= 32768)
        return false;

    if (intelImage->base.Base.TexObject->Target == GL_TEXTURE_1D_ARRAY ||
            intelImage->base.Base.TexObject->Target == GL_TEXTURE_2D_ARRAY) {
        perf_debug("no support for array textures\n");
    }

    copy_supported = intelImage->base.Base.TexFormat == intel_rb_format(irb);

    /* Converting ARGB8888 to XRGB8888 is trivial: ignore the alpha bits */
    if (intel_rb_format(irb) == MESA_FORMAT_ARGB8888 &&
            intelImage->base.Base.TexFormat == MESA_FORMAT_XRGB8888) {
        copy_supported = true;
    }

    /* Converting XRGB8888 to ARGB8888 requires setting the alpha bits to 1.0 */
    if (intel_rb_format(irb) == MESA_FORMAT_XRGB8888 &&
            intelImage->base.Base.TexFormat == MESA_FORMAT_ARGB8888) {
        copy_supported_with_alpha_override = true;
    }

    if (!copy_supported && !copy_supported_with_alpha_override) {
        if (unlikely(INTEL_DEBUG & DEBUG_PERF))
            fprintf(stderr, "%s mismatched formats %s, %s\n",
                    __FUNCTION__,
                    _mesa_get_format_name(intelImage->base.Base.TexFormat),
                    _mesa_get_format_name(intel_rb_format(irb)));
        return false;
    }

    {
        GLuint image_x, image_y;
        GLshort src_pitch;

        /* get dest x/y in destination texture */
        intel_miptree_get_image_offset(intelImage->mt,
                                       intelImage->base.Base.Level,
                                       intelImage->base.Base.Face,
                                       &image_x, &image_y);

        /* The blitter can't handle Y-tiled buffers. */
        if (intelImage->mt->region->tiling == I915_TILING_Y) {
            return false;
        }

        if (_mesa_is_winsys_fbo(ctx->ReadBuffer)) {
            /* Flip vertical orientation for system framebuffers */
            y = ctx->ReadBuffer->Height - (y + height);
            src_pitch = -region->pitch;
        } else {
            /* reading from a FBO, y is already oriented the way we like */
            src_pitch = region->pitch;
        }

        /* blit from src buffer to texture */
        if (!intelEmitCopyBlit(intel,
                               intelImage->mt->cpp,
                               src_pitch,
                               region->bo,
                               0,
                               region->tiling,
                               intelImage->mt->region->pitch,
                               intelImage->mt->region->bo,
                               0,
                               intelImage->mt->region->tiling,
                               irb->draw_x + x, irb->draw_y + y,
                               image_x + dstx, image_y + dsty,
                               width, height,
                               GL_COPY)) {
            return false;
        }
    }

    if (copy_supported_with_alpha_override)
        intel_set_teximage_alpha_to_one(ctx, intelImage);

    return true;
}
Exemple #19
0
/**
 * Implements a rectangular block transfer (blit) of pixels between two
 * miptrees.
 *
 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
 * but limited, pitches and sizes allowed.
 *
 * The src/dst coordinates are relative to the given level/slice of the
 * miptree.
 *
 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
 * will be inverted (including scanline order) when copying.  This is common
 * in GL when copying between window system and user-created
 * renderbuffers/textures.
 */
bool
intel_miptree_blit(struct brw_context *brw,
                   struct intel_mipmap_tree *src_mt,
                   int src_level, int src_slice,
                   uint32_t src_x, uint32_t src_y, bool src_flip,
                   struct intel_mipmap_tree *dst_mt,
                   int dst_level, int dst_slice,
                   uint32_t dst_x, uint32_t dst_y, bool dst_flip,
                   uint32_t width, uint32_t height,
                   GLenum logicop)
{
   /* The blitter doesn't understand multisampling at all. */
   if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
      return false;

   /* No sRGB decode or encode is done by the hardware blitter, which is
    * consistent with what we want in the callers (glCopyTexSubImage(),
    * glBlitFramebuffer(), texture validation, etc.).
    */
   mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
   mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);

   /* The blitter doesn't support doing any format conversions.  We do also
    * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
    * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
    * channel to 1.0 at the end.
    */
   if (src_format != dst_format &&
      ((src_format != MESA_FORMAT_B8G8R8A8_UNORM &&
        src_format != MESA_FORMAT_B8G8R8X8_UNORM) ||
       (dst_format != MESA_FORMAT_B8G8R8A8_UNORM &&
        dst_format != MESA_FORMAT_B8G8R8X8_UNORM))) {
      perf_debug("%s: Can't use hardware blitter from %s to %s, "
                 "falling back.\n", __FUNCTION__,
                 _mesa_get_format_name(src_format),
                 _mesa_get_format_name(dst_format));
      return false;
   }

   /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
    * Data Size Limitations):
    *
    *    The BLT engine is capable of transferring very large quantities of
    *    graphics data. Any graphics data read from and written to the
    *    destination is permitted to represent a number of pixels that
    *    occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
    *    at the destination. The maximum number of pixels that may be
    *    represented per scan line’s worth of graphics data depends on the
    *    color depth.
    *
    * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
    * 16-bit integer to represent buffer pitch, so it can only handle buffer
    * pitches < 32k.
    *
    * As a result of these two limitations, we can only use the blitter to do
    * this copy when the miptree's pitch is less than 32k.
    */
   if (src_mt->pitch >= 32768 ||
       dst_mt->pitch >= 32768) {
      perf_debug("Falling back due to >=32k pitch\n");
      return false;
   }

   /* The blitter has no idea about HiZ or fast color clears, so we need to
    * resolve the miptrees before we do anything.
    */
   intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
   intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
   intel_miptree_resolve_color(brw, src_mt);
   intel_miptree_resolve_color(brw, dst_mt);

   if (src_flip)
      src_y = minify(src_mt->physical_height0, src_level - src_mt->first_level) - src_y - height;

   if (dst_flip)
      dst_y = minify(dst_mt->physical_height0, dst_level - dst_mt->first_level) - dst_y - height;

   int src_pitch = src_mt->pitch;
   if (src_flip != dst_flip)
      src_pitch = -src_pitch;

   uint32_t src_image_x, src_image_y;
   intel_miptree_get_image_offset(src_mt, src_level, src_slice,
                                  &src_image_x, &src_image_y);
   src_x += src_image_x;
   src_y += src_image_y;

   /* The blitter interprets the 16-bit src x/y as a signed 16-bit value,
    * where negative values are invalid.  The values we're working with are
    * unsigned, so make sure we don't overflow.
    */
   if (src_x >= 32768 || src_y >= 32768) {
      perf_debug("Falling back due to >=32k src offset (%d, %d)\n",
                 src_x, src_y);
      return false;
   }

   uint32_t dst_image_x, dst_image_y;
   intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
                                  &dst_image_x, &dst_image_y);
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   /* The blitter interprets the 16-bit destination x/y as a signed 16-bit
    * value.  The values we're working with are unsigned, so make sure we
    * don't overflow.
    */
   if (dst_x >= 32768 || dst_y >= 32768) {
      perf_debug("Falling back due to >=32k dst offset (%d, %d)\n",
                 dst_x, dst_y);
      return false;
   }

   if (!intelEmitCopyBlit(brw,
                          src_mt->cpp,
                          src_pitch,
                          src_mt->bo, src_mt->offset,
                          src_mt->tiling,
                          dst_mt->pitch,
                          dst_mt->bo, dst_mt->offset,
                          dst_mt->tiling,
                          src_x, src_y,
                          dst_x, dst_y,
                          width, height,
                          logicop)) {
      return false;
   }

   if (src_mt->format == MESA_FORMAT_B8G8R8X8_UNORM &&
       dst_mt->format == MESA_FORMAT_B8G8R8A8_UNORM) {
      intel_miptree_set_alpha_to_one(brw, dst_mt,
                                     dst_x, dst_y,
                                     width, height);
   }

   return true;
}
bool
intel_copy_texsubimage(struct intel_context *intel,
                       struct intel_texture_image *intelImage,
                       GLint dstx, GLint dsty,
                       struct intel_renderbuffer *irb,
                       GLint x, GLint y, GLsizei width, GLsizei height)
{
   struct gl_context *ctx = &intel->ctx;
   struct intel_region *region;
   const GLenum internalFormat = intelImage->base.Base.InternalFormat;
   bool copy_supported = false;
   bool copy_supported_with_alpha_override = false;

   intel_prepare_render(intel);

   if (!intelImage->mt || !irb || !irb->mt) {
      if (unlikely(INTEL_DEBUG & DEBUG_FALLBACKS))
	 fprintf(stderr, "%s fail %p %p (0x%08x)\n",
		 __FUNCTION__, intelImage->mt, irb, internalFormat);
      return false;
   } else {
      region = irb->mt->region;
      assert(region);
   }

   copy_supported = intelImage->base.Base.TexFormat == intel_rb_format(irb);

   /* Converting ARGB8888 to XRGB8888 is trivial: ignore the alpha bits */
   if (intel_rb_format(irb) == MESA_FORMAT_ARGB8888 &&
       intelImage->base.Base.TexFormat == MESA_FORMAT_XRGB8888) {
      copy_supported = true;
   }

   /* Converting XRGB8888 to ARGB8888 requires setting the alpha bits to 1.0 */
   if (intel_rb_format(irb) == MESA_FORMAT_XRGB8888 &&
       intelImage->base.Base.TexFormat == MESA_FORMAT_ARGB8888) {
      copy_supported_with_alpha_override = true;
   }

   if (!copy_supported && !copy_supported_with_alpha_override) {
      if (unlikely(INTEL_DEBUG & DEBUG_FALLBACKS))
	 fprintf(stderr, "%s mismatched formats %s, %s\n",
		 __FUNCTION__,
		 _mesa_get_format_name(intelImage->base.Base.TexFormat),
		 _mesa_get_format_name(intel_rb_format(irb)));
      return false;
   }

   {
      GLuint image_x, image_y;
      GLshort src_pitch;

      /* get dest x/y in destination texture */
      intel_miptree_get_image_offset(intelImage->mt,
				     intelImage->base.Base.Level,
				     intelImage->base.Base.Face,
				     0,
				     &image_x, &image_y);

      /* The blitter can't handle Y-tiled buffers. */
      if (intelImage->mt->region->tiling == I915_TILING_Y) {
	 return false;
      }

      if (ctx->ReadBuffer->Name == 0) {
	 /* Flip vertical orientation for system framebuffers */
	 y = ctx->ReadBuffer->Height - (y + height);
	 src_pitch = -region->pitch;
      } else {
	 /* reading from a FBO, y is already oriented the way we like */
	 src_pitch = region->pitch;
      }

      /* blit from src buffer to texture */
      if (!intelEmitCopyBlit(intel,
			     intelImage->mt->cpp,
			     src_pitch,
			     region->bo,
			     0,
			     region->tiling,
			     intelImage->mt->region->pitch,
			     intelImage->mt->region->bo,
			     0,
			     intelImage->mt->region->tiling,
			     irb->draw_x + x, irb->draw_y + y,
			     image_x + dstx, image_y + dsty,
			     width, height,
			     GL_COPY)) {
	 return false;
      }
   }

   if (copy_supported_with_alpha_override)
      intel_set_teximage_alpha_to_one(ctx, intelImage);

   return true;
}
Exemple #21
0
/* XXX: Do this for TexSubImage also:
 */
static bool
try_pbo_upload(struct gl_context *ctx,
               struct gl_texture_image *image,
               const struct gl_pixelstore_attrib *unpack,
	       GLenum format, GLenum type, const void *pixels)
{
   struct intel_texture_image *intelImage = intel_texture_image(image);
   struct intel_context *intel = intel_context(ctx);
   struct intel_buffer_object *pbo = intel_buffer_object(unpack->BufferObj);
   GLuint src_offset, src_stride;
   GLuint dst_x, dst_y;
   drm_intel_bo *dst_buffer, *src_buffer;

   if (!_mesa_is_bufferobj(unpack->BufferObj))
      return false;

   DBG("trying pbo upload\n");

   if (intel->ctx._ImageTransferState ||
       unpack->SkipPixels || unpack->SkipRows) {
      DBG("%s: image transfer\n", __FUNCTION__);
      return false;
   }

   if (!_mesa_format_matches_format_and_type(image->TexFormat,
                                             format, type, false)) {
      DBG("%s: format mismatch (upload to %s with format 0x%x, type 0x%x)\n",
	  __FUNCTION__, _mesa_get_format_name(image->TexFormat),
	  format, type);
      return false;
   }

   ctx->Driver.AllocTextureImageBuffer(ctx, image);

   if (!intelImage->mt) {
      DBG("%s: no miptree\n", __FUNCTION__);
      return false;
   }

   if (image->TexObject->Target == GL_TEXTURE_1D_ARRAY ||
       image->TexObject->Target == GL_TEXTURE_2D_ARRAY) {
      DBG("%s: no support for array textures\n", __FUNCTION__);
      return false;
   }

   dst_buffer = intelImage->mt->region->bo;
   src_buffer = intel_bufferobj_source(intel, pbo, 64, &src_offset);
   /* note: potential 64-bit ptr to 32-bit int cast */
   src_offset += (GLuint) (unsigned long) pixels;

   if (unpack->RowLength > 0)
      src_stride = unpack->RowLength;
   else
      src_stride = image->Width;
   src_stride *= intelImage->mt->region->cpp;

   intel_miptree_get_image_offset(intelImage->mt, intelImage->base.Base.Level,
				  intelImage->base.Base.Face,
				  &dst_x, &dst_y);

   if (!intelEmitCopyBlit(intel,
			  intelImage->mt->cpp,
			  src_stride, src_buffer,
			  src_offset, false,
			  intelImage->mt->region->pitch, dst_buffer, 0,
			  intelImage->mt->region->tiling,
			  0, 0, dst_x, dst_y, image->Width, image->Height,
			  GL_COPY)) {
      DBG("%s: blit failed\n", __FUNCTION__);
      return false;
   }

   DBG("%s: success\n", __FUNCTION__);
   return true;
}
Exemple #22
0
static bool
copy_image_with_blitter(struct brw_context *brw,
                        struct intel_mipmap_tree *src_mt, int src_level,
                        int src_x, int src_y, int src_z,
                        struct intel_mipmap_tree *dst_mt, int dst_level,
                        int dst_x, int dst_y, int dst_z,
                        int src_width, int src_height)
{
   GLuint bw, bh;
   uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;

   /* The blitter doesn't understand multisampling at all. */
   if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
      return false;

   if (src_mt->format == MESA_FORMAT_S_UINT8)
      return false;

   /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
    * Data Size Limitations):
    *
    *    The BLT engine is capable of transferring very large quantities of
    *    graphics data. Any graphics data read from and written to the
    *    destination is permitted to represent a number of pixels that
    *    occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
    *    at the destination. The maximum number of pixels that may be
    *    represented per scan line’s worth of graphics data depends on the
    *    color depth.
    *
    * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
    * 16-bit integer to represent buffer pitch, so it can only handle buffer
    * pitches < 32k.
    *
    * As a result of these two limitations, we can only use the blitter to do
    * this copy when the miptree's pitch is less than 32k.
    */
   if (src_mt->pitch >= 32768 ||
       dst_mt->pitch >= 32768) {
      perf_debug("Falling back due to >=32k pitch\n");
      return false;
   }

   intel_miptree_get_image_offset(src_mt, src_level, src_z,
                                  &src_image_x, &src_image_y);

   if (_mesa_is_format_compressed(src_mt->format)) {
      _mesa_get_format_block_size(src_mt->format, &bw, &bh);

      assert(src_x % bw == 0);
      assert(src_y % bh == 0);
      assert(src_width % bw == 0);
      assert(src_height % bh == 0);

      src_x /= (int)bw;
      src_y /= (int)bh;
      src_width /= (int)bw;
      src_height /= (int)bh;
   }
   src_x += src_image_x;
   src_y += src_image_y;

   intel_miptree_get_image_offset(dst_mt, dst_level, dst_z,
                                  &dst_image_x, &dst_image_y);

   if (_mesa_is_format_compressed(dst_mt->format)) {
      _mesa_get_format_block_size(dst_mt->format, &bw, &bh);

      assert(dst_x % bw == 0);
      assert(dst_y % bh == 0);

      dst_x /= (int)bw;
      dst_y /= (int)bh;
   }
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   return intelEmitCopyBlit(brw,
                            src_mt->cpp,
                            src_mt->pitch,
                            src_mt->bo, src_mt->offset,
                            src_mt->tiling,
                            src_mt->tr_mode,
                            dst_mt->pitch,
                            dst_mt->bo, dst_mt->offset,
                            dst_mt->tiling,
                            dst_mt->tr_mode,
                            src_x, src_y,
                            dst_x, dst_y,
                            src_width, src_height,
                            GL_COPY);
}
Exemple #23
0
/**
 * Implements a rectangular block transfer (blit) of pixels between two
 * miptrees.
 *
 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
 * but limited, pitches and sizes allowed.
 *
 * The src/dst coordinates are relative to the given level/slice of the
 * miptree.
 *
 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
 * will be inverted (including scanline order) when copying.  This is common
 * in GL when copying between window system and user-created
 * renderbuffers/textures.
 */
bool
intel_miptree_blit(struct brw_context *brw,
                   struct intel_mipmap_tree *src_mt,
                   int src_level, int src_slice,
                   uint32_t src_x, uint32_t src_y, bool src_flip,
                   struct intel_mipmap_tree *dst_mt,
                   int dst_level, int dst_slice,
                   uint32_t dst_x, uint32_t dst_y, bool dst_flip,
                   uint32_t width, uint32_t height,
                   enum gl_logicop_mode logicop)
{
   /* The blitter doesn't understand multisampling at all. */
   if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1)
      return false;

   /* No sRGB decode or encode is done by the hardware blitter, which is
    * consistent with what we want in many callers (glCopyTexSubImage(),
    * texture validation, etc.).
    */
   mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
   mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);

   /* The blitter doesn't support doing any format conversions.  We do also
    * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
    * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
    * channel to 1.0 at the end. Also trivially ARGB2101010 to XRGB2101010,
    * but not XRGB2101010 to ARGB2101010 yet.
    */
   if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) {
      perf_debug("%s: Can't use hardware blitter from %s to %s, "
                 "falling back.\n", __func__,
                 _mesa_get_format_name(src_format),
                 _mesa_get_format_name(dst_format));
      return false;
   }

   /* The blitter has no idea about HiZ or fast color clears, so we need to
    * resolve the miptrees before we do anything.
    */
   intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false);
   intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true);

   if (src_flip) {
      const unsigned h0 = src_mt->surf.phys_level0_sa.height;
      src_y = minify(h0, src_level - src_mt->first_level) - src_y - height;
   }

   if (dst_flip) {
      const unsigned h0 = dst_mt->surf.phys_level0_sa.height;
      dst_y = minify(h0, dst_level - dst_mt->first_level) - dst_y - height;
   }

   uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
   intel_miptree_get_image_offset(src_mt, src_level, src_slice,
                                  &src_image_x, &src_image_y);
   intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
                                  &dst_image_x, &dst_image_y);
   src_x += src_image_x;
   src_y += src_image_y;
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   if (!emit_miptree_blit(brw, src_mt, src_x, src_y,
                          dst_mt, dst_x, dst_y, width, height,
                          src_flip != dst_flip, logicop)) {
      return false;
   }

   /* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */
   if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 &&
       _mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) {
      intel_miptree_set_alpha_to_one(brw, dst_mt,
                                     dst_x, dst_y,
                                     width, height);
   }

   return true;
}
Exemple #24
0
/**
 * Called by glFramebufferTexture[123]DEXT() (and other places) to
 * prepare for rendering into texture memory.  This might be called
 * many times to choose different texture levels, cube faces, etc
 * before intel_finish_render_texture() is ever called.
 */
static void
intel_render_texture(GLcontext * ctx,
                     struct gl_framebuffer *fb,
                     struct gl_renderbuffer_attachment *att)
{
   struct gl_texture_image *newImage
      = att->Texture->Image[att->CubeMapFace][att->TextureLevel];
   struct intel_renderbuffer *irb = intel_renderbuffer(att->Renderbuffer);
   struct intel_texture_image *intel_image;
   GLuint dst_x, dst_y;

   (void) fb;

   ASSERT(newImage);

   intel_image = intel_texture_image(newImage);
   if (!intel_image->mt) {
      /* Fallback on drawing to a texture that doesn't have a miptree
       * (has a border, width/height 0, etc.)
       */
      _mesa_reference_renderbuffer(&att->Renderbuffer, NULL);
      _mesa_render_texture(ctx, fb, att);
      return;
   }
   else if (!irb) {
      irb = intel_wrap_texture(ctx, newImage);
      if (irb) {
         /* bind the wrapper to the attachment point */
         _mesa_reference_renderbuffer(&att->Renderbuffer, &irb->Base);
      }
      else {
         /* fallback to software rendering */
         _mesa_render_texture(ctx, fb, att);
         return;
      }
   }

   if (!intel_update_wrapper(ctx, irb, newImage)) {
       _mesa_reference_renderbuffer(&att->Renderbuffer, NULL);
       _mesa_render_texture(ctx, fb, att);
       return;
   }

   DBG("Begin render texture tid %x tex=%u w=%d h=%d refcount=%d\n",
       _glthread_GetID(),
       att->Texture->Name, newImage->Width, newImage->Height,
       irb->Base.RefCount);

   /* point the renderbufer's region to the texture image region */
   if (irb->region != intel_image->mt->region) {
      if (irb->region)
	 intel_region_release(&irb->region);
      intel_region_reference(&irb->region, intel_image->mt->region);
   }

   /* compute offset of the particular 2D image within the texture region */
   intel_miptree_get_image_offset(intel_image->mt,
				  att->TextureLevel,
				  att->CubeMapFace,
				  att->Zoffset,
				  &dst_x, &dst_y);

   intel_image->mt->region->draw_offset = (dst_y * intel_image->mt->pitch +
					   dst_x) * intel_image->mt->cpp;
   intel_image->mt->region->draw_x = dst_x;
   intel_image->mt->region->draw_y = dst_y;
   intel_image->used_as_render_target = GL_TRUE;

   /* update drawing region, etc */
   intel_draw_buffer(ctx, fb);
}
Exemple #25
0
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static bool
i830_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   struct gl_context *ctx = &intel->ctx;
   struct i830_context *i830 = i830_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
   GLuint *state = i830->state.Tex[unit], format, pitch;
   GLint lodbias;
   GLubyte border[4];
   GLuint dst_x, dst_y;

   memset(state, 0, sizeof(*state));

   /*We need to refcount these. */

   if (i830->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i830->state.tex_buffer[unit]);
       i830->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return false;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][tObj->BaseLevel];

   intel_miptree_get_image_offset(intelObj->mt, tObj->BaseLevel, 0,
				  &dst_x, &dst_y);

   drm_intel_bo_reference(intelObj->mt->region->bo);
   i830->state.tex_buffer[unit] = intelObj->mt->region->bo;
   pitch = intelObj->mt->region->pitch;

   /* XXX: This calculation is probably broken for tiled images with
    * a non-page-aligned offset.
    */
   i830->state.tex_offset[unit] = dst_x * intelObj->mt->cpp + dst_y * pitch;

   format = translate_texture_format(firstImage->TexFormat);

   state[I830_TEXREG_TM0LI] = (_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
                               (LOAD_TEXTURE_MAP0 << unit) | 4);

   state[I830_TEXREG_TM0S1] =
      (((firstImage->Height - 1) << TM0S1_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << TM0S1_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I830_TEXREG_TM0S1] |= TM0S1_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I830_TEXREG_TM0S1] |= TM0S1_TILE_WALK;
   }

   state[I830_TEXREG_TM0S2] =
      ((((pitch / 4) - 1) << TM0S2_PITCH_SHIFT) | TM0S2_CUBE_FACE_ENA_MASK);

   {
      if (tObj->Target == GL_TEXTURE_CUBE_MAP)
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit) |
                                    CUBE_NEGX_ENABLE |
                                    CUBE_POSX_ENABLE |
                                    CUBE_NEGY_ENABLE |
                                    CUBE_POSY_ENABLE |
                                    CUBE_NEGZ_ENABLE | CUBE_POSZ_ENABLE);
      else
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit));
   }




   {
      GLuint minFilt, mipFilt, magFilt;
      float maxlod;
      uint32_t minlod_fixed, maxlod_fixed;

      switch (sampler->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return false;
      }

      if (sampler->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
      }
      else {
         switch (sampler->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return false;
         }
      }

      lodbias = (int) ((tUnit->LodBias + sampler->LodBias) * 16.0);
      if (lodbias < -64)
          lodbias = -64;
      if (lodbias > 63)
          lodbias = 63;
      
      state[I830_TEXREG_TM0S3] = ((lodbias << TM0S3_LOD_BIAS_SHIFT) & 
                                  TM0S3_LOD_BIAS_MASK);
#if 0
      /* YUV conversion:
       */
      if (firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV)
         state[I830_TEXREG_TM0S3] |= SS2_COLORSPACE_CONVERSION;
#endif

      /* We get one field with fraction bits for the maximum
       * addressable (smallest resolution) LOD.  Use it to cover both
       * MAX_LEVEL and MAX_LOD.
       */
      minlod_fixed = U_FIXED(CLAMP(sampler->MinLod, 0.0, 11), 4);
      maxlod = MIN2(sampler->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
      if (intel->intelScreen->deviceID == PCI_CHIP_I855_GM ||
	  intel->intelScreen->deviceID == PCI_CHIP_I865_G) {
	 maxlod_fixed = U_FIXED(CLAMP(maxlod, 0.0, 11.75), 2);
	 maxlod_fixed = MAX2(maxlod_fixed, (minlod_fixed + 3) >> 2);
	 state[I830_TEXREG_TM0S3] |= maxlod_fixed << TM0S3_MIN_MIP_SHIFT;
	 state[I830_TEXREG_TM0S2] |= TM0S2_LOD_PRECLAMP;
      } else {
Exemple #26
0
/**
 * Implements a rectangular block transfer (blit) of pixels between two
 * miptrees.
 *
 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
 * but limited, pitches and sizes allowed.
 *
 * The src/dst coordinates are relative to the given level/slice of the
 * miptree.
 *
 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
 * will be inverted (including scanline order) when copying.  This is common
 * in GL when copying between window system and user-created
 * renderbuffers/textures.
 */
bool
intel_miptree_blit(struct intel_context *intel,
                   struct intel_mipmap_tree *src_mt,
                   int src_level, int src_slice,
                   uint32_t src_x, uint32_t src_y, bool src_flip,
                   struct intel_mipmap_tree *dst_mt,
                   int dst_level, int dst_slice,
                   uint32_t dst_x, uint32_t dst_y, bool dst_flip,
                   uint32_t width, uint32_t height,
                   GLenum logicop)
{
   /* No sRGB decode or encode is done by the hardware blitter, which is
    * consistent with what we want in the callers (glCopyTexSubImage(),
    * glBlitFramebuffer(), texture validation, etc.).
    */
   gl_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
   gl_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);

   /* The blitter doesn't support doing any format conversions.  We do also
    * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
    * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
    * channel to 1.0 at the end.
    */
   if (src_format != dst_format &&
      ((src_format != MESA_FORMAT_ARGB8888 &&
        src_format != MESA_FORMAT_XRGB8888) ||
       (dst_format != MESA_FORMAT_ARGB8888 &&
        dst_format != MESA_FORMAT_XRGB8888))) {
      perf_debug("%s: Can't use hardware blitter from %s to %s, "
                 "falling back.\n", __FUNCTION__,
                 _mesa_get_format_name(src_format),
                 _mesa_get_format_name(dst_format));
      return false;
   }

   /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
    * Data Size Limitations):
    *
    *    The BLT engine is capable of transferring very large quantities of
    *    graphics data. Any graphics data read from and written to the
    *    destination is permitted to represent a number of pixels that
    *    occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
    *    at the destination. The maximum number of pixels that may be
    *    represented per scan line’s worth of graphics data depends on the
    *    color depth.
    *
    * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
    * 16-bit integer to represent buffer pitch, so it can only handle buffer
    * pitches < 32k.
    *
    * As a result of these two limitations, we can only use the blitter to do
    * this copy when the region's pitch is less than 32k.
    */
   if (src_mt->region->pitch > 32768 ||
       dst_mt->region->pitch > 32768) {
      perf_debug("Falling back due to >32k pitch\n");
      return false;
   }

   if (src_flip)
      src_y = src_mt->level[src_level].height - src_y - height;

   if (dst_flip)
      dst_y = dst_mt->level[dst_level].height - dst_y - height;

   int src_pitch = src_mt->region->pitch;
   if (src_flip != dst_flip)
      src_pitch = -src_pitch;

   uint32_t src_image_x, src_image_y;
   intel_miptree_get_image_offset(src_mt, src_level, src_slice,
                                  &src_image_x, &src_image_y);
   src_x += src_image_x;
   src_y += src_image_y;

   uint32_t dst_image_x, dst_image_y;
   intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
                                  &dst_image_x, &dst_image_y);
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   if (!intelEmitCopyBlit(intel,
                          src_mt->cpp,
                          src_pitch,
                          src_mt->region->bo, src_mt->offset,
                          src_mt->region->tiling,
                          dst_mt->region->pitch,
                          dst_mt->region->bo, dst_mt->offset,
                          dst_mt->region->tiling,
                          src_x, src_y,
                          dst_x, dst_y,
                          width, height,
                          logicop)) {
      return false;
   }

   if (src_mt->format == MESA_FORMAT_XRGB8888 &&
       dst_mt->format == MESA_FORMAT_ARGB8888) {
      intel_miptree_set_alpha_to_one(intel, dst_mt,
                                     dst_x, dst_y,
                                     width, height);
   }

   return true;
}
Exemple #27
0
/**
 * Used to initialize the alpha value of an ARGB8888 teximage after
 * loading it from an XRGB8888 source.
 *
 * This is very common with glCopyTexImage2D().
 */
void
intel_set_teximage_alpha_to_one(struct gl_context *ctx,
                                struct intel_texture_image *intel_image)
{
    struct intel_context *intel = intel_context(ctx);
    unsigned int image_x, image_y;
    uint32_t x1, y1, x2, y2;
    uint32_t BR13, CMD;
    int pitch, cpp;
    drm_intel_bo *aper_array[2];
    struct intel_region *region = intel_image->mt->region;
    BATCH_LOCALS;

    assert(intel_image->base.TexFormat == MESA_FORMAT_ARGB8888);

    /* get dest x/y in destination texture */
    intel_miptree_get_image_offset(intel_image->mt,
                                   intel_image->level,
                                   intel_image->face,
                                   0,
                                   &image_x, &image_y);

    x1 = image_x;
    y1 = image_y;
    x2 = image_x + intel_image->base.Width;
    y2 = image_y + intel_image->base.Height;

    pitch = region->pitch;
    cpp = region->cpp;

    DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
        __FUNCTION__,
        intel_image->mt->region->buffer, (pitch * cpp),
        x1, y1, x2 - x1, y2 - y1);

    BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
    CMD = XY_COLOR_BLT_CMD;
    CMD |= XY_BLT_WRITE_ALPHA;

    assert(region->tiling != I915_TILING_Y);

#ifndef I915
    if (region->tiling != I915_TILING_NONE) {
        CMD |= XY_DST_TILED;
        pitch /= 4;
    }
#endif
    BR13 |= (pitch * cpp);

    /* do space check before going any further */
    aper_array[0] = intel->batch.bo;
    aper_array[1] = region->buffer;

    if (drm_intel_bufmgr_check_aperture_space(aper_array,
            ARRAY_SIZE(aper_array)) != 0) {
        intel_batchbuffer_flush(intel);
    }

    BEGIN_BATCH_BLT(6);
    OUT_BATCH(CMD);
    OUT_BATCH(BR13);
    OUT_BATCH((y1 << 16) | x1);
    OUT_BATCH((y2 << 16) | x2);
    OUT_RELOC_FENCED(region->buffer,
                     I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
                     0);
    OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
    ADVANCE_BATCH();

    intel_batchbuffer_emit_mi_flush(intel);
}